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A motivating example: heterogenous trending behavior of

real GDP per capita

o Model:
Yit = ﬁl' (t/T) +HI+ Uiz, | = 1, . N, t = 1, . T

@ Data: World Bank annual data from 1960-2012 for 92 countries
(N =92, T =53).

@ Nonparametric sieve estimation with cubic B-spline, #knot = 3.
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Heterogenous trending behavior of real GDP per capita
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Figure: Four estimated trends of real GDP per capita (logarithm and demeaned)
for countries in each of the four estimated groups
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Heterogenous trending behavior of real GDP per capita
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Figure: Trending behavior of the real GDP per capita for countries in Group 1
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Heterogenous trending behavior of per capita GDP
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Figure: Trending behavior of the real GDP per capita for countries in Group 2
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Heterogenous trending behavior of real GDP per capita
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Figure: Trending behavior of the real GDP per capita for countries in Group 3
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Heterogenous trending behavior of real GDP per capita
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Figure: Trending behavior of the real GDP per capita for countries in Group 4
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Outline of the Presentation

The Model and Literature

Penalized Least Squares (PLS) Estimation
@ Penalized GMM Estimation

@ Monte Carlo Simulations

Empirical Application

Extension to Models with Cross Section Dependence

Conclusions
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The Model and Literature

The model

Yit = ,B?/Xit + y; + ujr (1)
where

Xi+ is a p X 1 vector of explanatory variables,
1; is an individual fixed effect,
ujr is the idiosyncratic error term with zero mean, and

ad ifi € G
pi=1 L (2)
o, if i € G,

Here 06? #+ 042 for any j # k, UkK":lG,? ={1,2,...,N}, and G,? N GJ-O =g
for any j # k. Let Ny = #G).
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The Model and Literature

Motivation

o Latent heterogeneity is an important phenomenon in panel data
analysis. Neglecting it can lead to inconsistent estimation and misleading
inference; see Hsiao (2003, Chapter 6). But it is challenging to model latent
heterogeneity in empirical research: do we allow for heterogeneous slope
coefficients in a regression?

o Complete slope homogeneity: Easy estimation and inference, but
frequently questioned and rejected in empirical studies.

o Complete slope heterogeneity:

@ Random coefficient model: parameters are assumed to be independent
draws from a common distribution — see Hsiao and Pesaran (2008).

@ Use Bayesian methods to shrink the individual slope estimates towards
the overall mean — see Maddala, Trost, Li, and Joutz (1997).

@ Parameterize individual slope coefficients as a function of observed
characteristics — see Durlauf, Kourtellos, and Minkin (2001) and
Browning, Ejrnaes, and Alvarez (2010).

@ Estimate the individual slope coefficients using heterogenous time

series regressions for each individual.
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The Model and Literature

Motivation

o Panel structure model:

e individuals belong to a number of homogeneous groups or clubs within
a broadly heterogeneous population.

e regression parameters are the same within each group but differ across
groups.

e Two essential questions are:
how to determine the unknown number of groups;
how to identify the individual’s group membership.
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The Model and Literature

Motivation

@ Bester and Hansen (2009) consider a panel structure model where
individuals are grouped according to some external classification,
geographic location, or observable explanatory variables. So the group
structure is completely known to the researcher.

@ Several approaches have been proposed to determine an unknown
group structure in modeling unobserved slope heterogeneity in panels.

o Mixture models/distributions: Sun (2005), Kasahara and Shimotsu
(2009), and Browning and Carro (2011), model membership
probabilities.

o K-means algorithm: Lin and Ng (2012) and Sarafidis and Weber (2011)
perform conditional clustering to estimate linear panel structure models
but provide no asymptotic properties. Bonhomme and Manresa (2014)
introduce time-varying grouped patterns of heterogeneity in linear panel
data models based on K-means algorithm, and study the asymptotic
properties. Both require that N and T pass to infinity jointly.
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The Model and Literature

Novelty

@ The present paper proposes a new method for estimation and
inference in panel models when
o the slope parameters are heterogenous across groups,

e individual group membership is unknown,
e classification is to be determined empirically.

@ It is an automated data-determined procedure and does not require
the specification of any modeling mechanism for the unknown group
structure.

@ It involves a new variant of Lasso (Tibshirani, 1996).

@ Like Lin and Ng (2012), Bonhomme and Manresa (2014) and Phillips
and Sul (2007), we assume that (N, T) — oo jointly. But in our
asymptotic theory T can pass to infinity at a very slow rate, even a
slowly varying rate such as O ((In N)!*€) for any € > 0 in the case of
uniformly bounded regressors.
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The Model and Literature

Novelty

© Motivated by the key feature of Lasso to handle parameter sparsity. {,B,-,
i=1,.., N} versus {txk, k=1,.., Ko} .

@ Contribute to the literature on fused Lasso (e.g., Tibshirani et al. (2005)).
No natural ordering across individuals.

© Additive-multiplicative penalty terms: = Classifier-Lasso or C-Lasso.

@ Two classes of estimates: PLS and PGMM. In either case, we show uniform
classification consistency. Such a uniform result allows us to establish an
oracle property for the PLS estimator. But our PGMM estimator generally
does not have the oracle property.

@ Kp is unknown: a BIC-type information criterion is proposed.

© Easy to extend to nonlinear models such as discrete choice models, to SP

and NP models, to models where only a subset of parameters are allowed to
be group-specific, etc.
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The Model and Literature

Potential applications

@ Economic Growth Convergence:
Much of the recent literature on economic growth addresses sources
of possible heterogeneity, including the occurrence of multiple steady
states and history-dependence in growth trajectories - see
Deissenberg, Feichtinger, Semmler, and Wirl (2001) and Durlauf,
Johnson and Temple (2005) and Eberhardt and Teal (2011) for
overviews of the relevant growth theory and empirics.

@ Subsample Studies of Stability: Much empirical research is
concerned with studying the stability of certain regression coefficients
over subsamples of the data.

@ Panel Unit Root Grouping: Our methodology can be used to
classify a subgroup of unit-root processes in the panel from a wider
class of stationary and nonstationary processes.
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Penalized Least Squares Estimation

Penalized Least Squares Estimation
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Penalized Least Squares Estimation

Within-group Estimation

e Model: y;; = ﬁ?/x,-t + u; + Ui
@ Define

1 N /
Qo.nT (B, 1) = NT E E (vie — Bixit —ﬂi)Z-

i=1t=1
o Concentrate u out:
1 N T 5
Qunt (B) ==Y ). (e — Bix)”
NT i=1t=1

o —1vT ~ —1vT
where Xj;y = x;p — T 21::1 xit and iy = yir — T Zt:1 Yit-
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Penalized Least Squares Estimation

PLS Estimation

@ PLS objective function

QN 2 (Bow) = Qunt (B ZH S B — el (3)

where A1 = Ayy7 is a tuning parameter.

o C-Lasso estimates: & = (&1, ..., &x) and B =(B,, ..., By)-

@ Numerical algorithm: a sequence of convex problems.
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Penalized Least Squares Estimation

Preliminary Rates of Convergence for Coefficient Estimates

Assumptlon Al. () i 0 = %2;1 Xiruir = Op (T_1/2) V.
(i) Qiax = L5701 %X > Qisz > 0V i, 3 czy such that
li m(N T)—>oo min1</<N lumm( /xx) > Csx > 0.

(i) 4 Ty || @isa|* = Op (T71).

(i )Nk/N—>Tk€(01)foreachk—1 Ky as N — oo.
(V)A1 —0as (N, T) —

Theorem

Suppose that Assumption Al holds. Then

(i) B;— B = Op (T‘”2 +Ay) fori=1,2,.. N,

(if) 2 :Bi_ﬁH =0p (T,

(ii) (&(1), k) — (a0, a% ) = Op (T1/2),

where (&(1), ..., &(k,)) is a suitable permutation of (&1, ..., k).
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Penalized Least Squares Estimation

Preliminary Rates of Convergence for Coefficient Estimates

o Note that QlNT N (Boa) = Ql(f,(\(,’T 2, (B ), where
it 1, (Biw) = er;(ﬁ )+ MITE, |18 — el
Quvt,i (B) = Z Vit — X:t

o Pointwise convergence:

INT A1 (‘B &) INT A1 (IB &)

~

= Qi (B;) — Qunr.i (BY)

A (T |1B — | — T ]9 — |}
< 0

Given &, B; must minimize Ql(,’.X(,’)T’M (B; &) with respect to f8..
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Penalized Least Squares Estimation

Preliminary Rates of Convergence for Coefficient Estimates

@ Mean-square convergence: relies on the observation

NT A1 (B &> NT A (/3 « ) (4)

We prove it by showing that V e* >0, 3 L = L(

inequality cannot hold with probability 1 — e* if
. 2

v [B =B = L/T.

e Convergence of (&(1), &(K0)> : relies on the observation

Pnr (B, &) — Py (ﬁ,:xo) <0 (5)

where Pyr (B, &) = £ YV 1/, ||B; — ax||, and the fact that the
convergence rate of &, (up to permutation) fully depends on the

mean-square convergence rate of f3,.

€*) s.t. the above
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Penalized Least Squares Estimation

Classification Consistency

Define
G = {ief{1,2,.,N}:B, =&} fork=1, .. Ko,
Ewri = {i¢G|ieG}y, Finri={i¢ G |i€ G},
Exnt = UIGGEEkNT,ir and Fynr = Uice, Fint ;.

Definition 1. (Uniform consistency of classification) We say that a
classification method is individually consistent if P (l:’—‘kNT',-) — 0 as

(N, T) — oo for each i € G and k =1, ..., Ko, and P (Fyn7,) — 0 as
(N, T) — oo for each i € Gk and k =1, ..., Ky. It is uniformly consistent

if P (UfOZIEkNT) —0and P (UkKozll:_kNT) —0as (N, T) — oo.

Su, Shi, and Phillips (SMU and Yale) Identifying Latent Structures in Panel Data July 9, 2014 22 /70



Penalized Least Squares Estimation

Classification Consistency

Assumption A2. (i) TA; — oo and TA] — ¢y € [0,00) as (N, T) — oo.

(ii) For any ¢ > 0, Nmaxj<j<ny P (H T-1 2;1 )~<,'tl~1,'tH > C\//\l) — 0 as
(N, T) — oo.

Suppose that Assumptions AI1-A2 hold. Then
(1) P (UK Biwr ) < R, P (Biwr) — 0 as (N, T) — o0,
(if) P (U, Fivr ) < 242, P (Fewr) — 0 as (N, T) — oo,

Su, Shi, and Phillips

(SMU and Yale) Identifying Latent Structures in Panel Data

July 9, 2014 23 /70



Penalized Least Squares Estimation

Oracle Property

Assumption A3. (i) &, = ﬁzieci’ Yl %X, LS Py >0 as

(N, T) — o0.

.. o~ D

(II) \/%ZIGGE Zt—r:l Xjt Uit _]BkNT — N(O,‘Yk) as (N, T) — 00 where

Bint = \/ﬁ ZIEGE Y, E (xit0jt ) is either 0 or O(\/Nx/ T) depending
on whether x;j; is strictly exogenous.

Suppose that Assumptions A1-A3 hold. Then
VNeT (& — a9) — D "By 2 N(0, @1, D, 1) for k=1, .., Ko.
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Penalized Least Squares Estimation

Oracle Property

@ If the individual's group identity is known, the WG estimator of 042 is

T T
M= ), ) XX, Yo ) Xl
ieG) t=1 ieG) t=1
and then /N, T (& — a0) — & "Byyr = N (0, D, ¥4 ®; ) .
@ The proof is done by the inspection of the Karush-Kuhn-Tucker
(KKT) optimality conditions based on subdifferential calculus (e.g.,

Bertsekas, 1995).
@ Then we show that /N, T ( ‘K — ock) = VN T (&g —ad) 4op (1),

where &Gk is the post-Lasso estimator:
-1

T T
A D30 3L A I o S

fEGk t=1 fEGk t=1
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Penalized Least Squares Estimation
Oracle Property

Suppose that Assumptions AI-A3 hold. Then
VT (g, —af) — & Bawr = N0, D10 0) for k =1,..., Ko.
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Penalized Least Squares Estimation

Determination of the Number of Groups

@ Consider the following PLS criterion
(K) Mok
Qv (Boa) = Qunt (B) + N Y IL 1B — ekl (6)
i=1

where 1 < K < Kpnax. C-Lasso estimates: {B, (K, A1), & (K,Al)}
of {B,;, ax}. As above, we can classify individual i into group
Gk (K, A1) if and only if B; (K, A1) = &k (K, A1).

o Define the post-Lasso estimate of a by

+

T T
Re, (k) = )3 Z%ﬁ{t Y Z Xie¥it- (7)

icGr(K At i€G(K,A) t=

1 T ~ ~ <. 12
Let ‘TG(K M)~ NT Zk=1 ZieGk(K,/\l) Y=y [Vie — “Gk(K’Al)X:‘t] .
@ Information criterion:

1G (K A1) = In |65 | + pivreK, (8)
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Penalized Least Squares Estimation

Extensions
1. Mixed Panel Structure Models:
Yie = BliyXie(r)  BilayXie(2) + Hi + Ui, (9)

where ﬁ?(z) = txk if i € G,? where k = 1, Ko and G1 R Gﬂo form a
partition for {1,2, ..., N}. See Pesaran, Shin, and Smith (1999).

2. Nonlinear Panel Data Models: Following Bester and Hansen (2009),
we can consider

1 N
QunT (0, p) = ﬁ):zq) Wit, 0, 1;) (10)

1t=1

where 6 is a common parameter, = My, ...,yN), ¢ =—Inf, and

f (wie, 0%, u9) is the PDF of wy, and p? = o if i € G? for k = 1, ..., Ko.
The PLS objective function here takes the form

QlNTA (0, a) = QunT (0, 1) + ZH 00 My — el -
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Penalized Least Squares Estimation

Extensions

3. Group Patterns of Heterogeneity: Bonhomme and Manresa (2014)
consider:

yie = 0%t + Hg,r t+ Uit (11)
where g; € {1, e Ko} map individual units into groups.
o Note that pi, , = ALfy where f, = (Hypr o ‘uKOt)', Ai=(0,...1, ...O)/

with 1 in the kth position if | € G,? for k =1, ..., Ky and zeros elsewhere,
we may embed (11) in the more general model

Vit = 0% x;; + A?Ifto + uit, (12)

where A? = 0(2 if i € G,? fork=1,..., Ky .

@ A two-step approach. (1) obtain the Gaussian QMLEs 0, A;, and f; under
certain identification restriction, (2) consider yj; = 90/Xit + /\?/ft + uj; by
imposing: A? = 0(2 if i € G,? where k =1, ..., Kp.
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Penalized Least Squares Estimation

Other extensions

4. Granger-causality, Unit Root, and Cointegration in Heterogenous

Panels:
The C-Lasso approach is also well suited

@ to testing for structural change in heterogeneous panel data models,
@ to nonparametric and semiparametric panel data models, and

@ to models with heterogeneous parametric or nonparametric time
trends (e.g., Kneip, Sickles, and Song (2012), Zhang, Su, and Phillips

(2012)).
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Penalized GMM Estimation

Penalized GMM Estimation
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Penalized GMM Estimation

o Consider the first differenced system

A_yli.“ ,B AXIi’ + Ault (13)
@ The PGMM criterion function
QN 2, (Biw) = Qonr (B ZH 2o 1B — all (14)
where
Q.nT (B)
1 &1 & / 1 &
= N - Z Z (AYit‘,B:'AXIt) Wint T Z Zit (Ayl't_,B:'AXit)
i=1 t=1 t=1
1 N T , 1 N T
# NT Z Z Zit (Ay:'t-,B:-AXit) Wi T Z Z Zit (AYI't‘,B:'AXit)
i=1t=1 i=1t=1

o The PGMM estimates: & = (&1, ..., &x,) and B =(B;, ... By)-
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Penalized GMM Estimation

Preliminary Rates of Convergence

If Assumption B1 holds, then

(’).B 5 Op (T_1/2+/\2) fori=1,...N,
(if) 3 H ﬂH =0p (T71),

(ii) ( By ) — (08, .0l ) = Op (T-112)

where (uc(l) A )) is a suitable permutation of (&1, ...,

\_/

AK, ).
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Penalized GMM Estimation

Classification Consistency

G, = {i€{1,2,...,N}:Bi:&k} for k=1, ..., Ko,
Ewri = {i¢G|i€eG}, Finri={i¢ G |i€ G},
Eiwt = Uieg? Eint i and Fyenr = Ui, Fint.i.

If Assumptions B1-B2 hold, then
(1) P (Ul Binr ) < TR, P (Biwr) — 0 as (N, T) — oo,

(i) P (UkKozlr:kNT) <y P(Fint) — 0as (N, T) — .
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Penalized GMM Estimation

Improved Convergence and Asymptotic Properties of Post-Lasso

Suppose that Assumptions B1-B3 hold. Then
VNCT (@ — a0) — A Benr 2 N(0, A TGeALY) fork =1,..., Ko.

@ The PGMM estimators {&,} may fail to possess the oracle property.
@ If the group identities were known in advance, one could obtain &, as the

minimizer of
/

~ 1 i k
Qnt (ax) = NT Y zie (Ayie — ) Axie) W,E,T)
k ieGYt=1
L Y Y 2 (A — )
-~ - Zit \AQYit — K AXit
NkT,-ecg t=1

@ The Post-Lasso estimator & » is asymptotically equivalent to &
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Monte Carlo Simulations

Monte Carlo Simulations
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Monte Carlo Simulations

Data Generating Processes (DGPs)

@ Three DGPs, each with three groups.
o Ni: N, : N3 =03:03:0.4.
e N =100, 200 and T = 10, 20, 40.

DGP 1 (Static panel with two exogenous regressors)

Yie = ,B?,Xit + y; + Ui,
xi1 = 0.2u; + zi1,
Xz = 0.2u; + zir2,

with (Z,'t]_,Z,'tQ) ~ 11D N(O, 1)

= ((15) (1) (o3))
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Monte Carlo Simulations

Data Generating Processes (DGPs)

DGP 2 (Static panel with endogeneity)

Yie = ,B(,-)IXit + y; + Ui,
Xjt1 = 0.2]/ll- + 0.5z;:1 + 0.5z + 0.5e;,

xit2 ~ N (0, 1) is independent of the idiosyncratic shock uj, where

(zit1, zita) ~ 11D N (0,1) are two excluded instrumental variables
independent of uj;.

(o) ~w((8)-(0: %))
) =((35) (1) (62))

Su, Shi, and Phillips (SMU and Yale) Identifying Latent Structures in Panel Data July 9, 2014 38 /70



Monte Carlo Simulations

Data Generating Processes (DGPs)

DGP 3 (PAR(1) with two exogenous regressors)
g0, 0., 0. 0 ,
Yit = ﬁ,’lyl,f—l + ,8;2X1t2 + ,B,'3Xlt3 + ,u,'(l - ,B,'l) + Uit

where xj;» and xj;3 are two exogenous regressors and they are independent
of all error terms. They follow the standard normal distribution.

Yio = /3(,-)2Xi02 + /3?3x,-03 + u; + ujo so that the observations in i is a strictly
stationary time series with mean ;.

0.8 0.6 0.4
(a9, a3, a3) = 04 |, 1], [ 16
0.4 1 1.6

o P(E)= %YM, P(Exnr,) and P(F) = £ YN, P(Finr.).
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Monte Carlo Simulations

Classification error

Table 1: Classification error for C-Lasso

C 0.2 0.4 0.8 1.6 3.2

N - A - A - A =, A

NAT P(E) P(F) P(E) P(F) P(E) P(F) P(E) P(F) P(E) P(F)

DGP1 100 10 0.1805 0.0901 0.1899 0.0954 0.2236 0.1115 0.2777 0.1305 0.4216 0.1897

PLS 100 20 0.0593 0.0289 0.0585 0.0292 0.0576 0.0290 0.0805 0.0396 0.1304 0.0598
100 40 0.0103 0.0049 0.0098 0.0046 0.0093 0.0045 0.0094 0.0048 0.0149 0.0070
200 10 0.1691 0.0848 0.1771 0.0894 0.2097 0.1054 0.2766 0.1322 0.3976 0.1746
200 20 0.0586 0.0284 0.0556 0.0275 0.0552 0.0277 0.0719 0.0362 0.1338 0.0613

200 40 0.0092 0.0044 0.0083 0.0040 0.0081 0.0039 0.0078 0.0040 0.0141 0.0066

DGP2 100 10 0.2082 0.0993 0.2001 0.0974 0.2024 0.1004 0.2145 0.1076 0.2527 0.1274
PGMM 100 20 0.1027 0.0485 0.0958 0.0462 0.0888 0.0437 0.0878 0.0440 0.0996 0.0504
100 40 0.0321 0.0152 0.0307 0.0147 0.0266 0.0130 0.0230 0.0115 0.0227 0.0116
200 10 0.2037 0.0980 0.1982 0.0971 0.1968 0.0984 0.2113 0.1071 0.2482 0.1257
200 20 0.1020 0.0483 0.0942 0.0456 0.0872 0.0432 0.0841 0.0424 0.0942 0.0480

200 40 0.0332 0.0158 0.0299 0.0144 0.0266 0.0130 0.0222 0.0111 0.0212 0.0109
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Monte Carlo Simulations

Classification error

Table 1: Classification error for C-Lasso (cont.)

C 0.2 0.4 0.8 1.6 3.2

N - A - A - A =, A

NAT P(E) P(F) P(E) P(F) P(E) P(F) P(E) P(F) P(E) P(F)

DGP3 100 10 0.2063 0.1038 0.1839 0.0908 0.1913 0.0937 0.2305 0.1092 0.4058 0.1715

PLS 100 20 0.1000 0.0501 0.0826 0.0404 0.0750 0.0357 0.0800 0.0391 0.1968 0.0886
100 40 0.0277 0.0137 0.0222 0.0106 0.0183 0.0085 0.0158 0.0072 0.0373 0.0177
200 10 0.2025 0.1026 0.1714 0.0853 0.1709 0.0844 0.2079 0.0998 0.3539 0.1498
200 20 0.0983 0.0490 0.0794 0.0386 0.0703 0.0333 0.0716 0.0347 0.1451 0.0657

200 40 0.0255 0.0126 0.0209 0.0100 0.0173 0.0080 0.0151 0.0069 0.0220 0.0103

DGP3 100 10 0.3133 0.1551 0.2969 0.1464 0.2872 0.1406 0.2968 0.1440 0.3317 0.1617
PGMM 100 20 0.1703 0.0838 0.1512 0.0746 0.1361 0.0660 0.1334 0.0628 0.1428 0.0664
100 40 0.0694 0.0338 0.0579 0.0283 0.0487 0.0232 0.0432 0.0198 0.0416 0.0185
200 10 0.3081 0.1529 0.2868 0.1425 0.2778 0.1367 0.2826 0.1380 0.3173 0.1550
200 20 0.1691 0.0836 0.1527 0.0753 0.1324 0.0645 0.1265 0.0597 0.1333 0.0620

200 40 0.0727  0.0357 0.0587 0.0290 0.0490 0.0238 0.0434 0.0202 0.0412 0.0186
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Monte Carlo Simulations

Table 2: PLS Estimation of ﬁl in DGP 1

CA 0.2 0.4 0.8 1.6 3.2
N T RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

100 10 C-Lasso 0.1010  0.0364 0.1116 0.0364 0.1303 0.0293 0.1780 -0.0150 0.3206 -0.0968
10  Post-lasso  0.0907  0.0282 0.1035 0.0293 0.1274 0.0254 0.1788 -0.0162 0.3216 -0.0984

10 Oracle 0.0583 -0.0033 0.0583 -0.0033 0.0583 -0.0033 0.0583 -0.0033 0.0583 -0.0033

100 20 C-Lasso 0.0590 0.0154 0.0560 0.0183 0.0507 0.0154 0.0690 0.0054 0.0856 0.0012
20 Post-lasso 0.0450 0.0066 0.0467 0.0092 0.0470 0.0090 0.0687 0.0038 0.0846 0.0012

20 Oracle 0.0399 -0.0021 0.0399 -0.0021 0.0399 -0.0021 0.0399 -0.0021 0.0399 -0.0021

100 40 C-Lasso 0.0347 0.0096 0.0348 0.0047 0.0305 0.0053 0.0301 0.0023 0.0347 0.0011
40 Post-lasso  0.0292  0.0012 0.0293 0.0002 0.0291 0.0010 0.0290  0.0008 0.0337 0.0010

40 Oracle 0.0281 -0.0010 0.0281 -0.0010 0.0281 -0.0010 0.0281 -0.0010 0.0281 -0.0010
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Monte Carlo Simulations

Table 3: PGMM Estimation of ﬁl in DGP 2

C)L 0.2 0.4 0.8 1.6 3.2

N T RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

100 10 C-Lasso 0.1906  0.1093 0.1907 0.1242 0.2018 0.1388 0.2096 0.1490 0.2220 0.1581
Post-lasso 0.1416 0.0152 0.1368 0.0251 0.1413 0.0325 0.1421 0.0381 0.1533  0.0443
C-Lasso BC  0.1603 0.0684 0.1586 0.0811 0.1679 0.0928 0.1737 0.1009 0.1858 0.1085

Oracle 0.0993 -0.0001 0.0993 -0.0001 0.0993 -0.0001 0.0993 -0.0001 0.0993 -0.0001

100 20 C-Lasso 0.1179  0.0560 0.1176 0.0683 0.1182 0.0799 0.1239 0.0898 0.1321  0.0985
Post-lasso 0.0838 0.0138 0.0815 0.0181 0.0810 0.0200 0.0826 0.0212 0.0871 0.0216
C-Lasso BC  0.0986 0.0374 0.0978 0.0464 0.0986 0.0539 0.1021 0.0600 0.1083 0.0652

Oracle 0.0680 -0.0004 0.0680 -0.0004 0.0680 -0.0004 0.0680 -0.0004 0.0680 -0.0004

100 40 C-Lasso 0.0712  0.0400 0.0754 0.0422 0.0761 0.0464 0.0753 0.0504 0.0772 0.0557
Post-lasso 0.0519 0.0136 0.0522 0.0129 0.0519 0.0122 0.0516 0.0112 0.0522 0.0108
C-Lasso BC 0.0614 0.0274 0.0632 0.0282 0.0637 0.0301 0.0634 0.0317 0.0645 0.0343

Oracle 0.0492  0.0007 0.0492 0.0007 0.0492 0.0007 0.0492 0.0007 0.0492 0.0007
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Table 4: PLS Estimation of ﬁl in DGP 3

C, 0.2 0.4 0.8 16 3.2
NT RMSE  Bias RMSE  Bias RMSE  Bias RMSE  Bias RMSE  Bias
100 10 C-Lasso 0.1331 -0.1216 0.1264 -0.1143 0.1189 -0.1028 0.1120 -0.0858 01557 -0.0561

Post-lasso 0.1011 -0.0863 0.1041 -0.0897 0.1059 -0.0866 0.1077 -0.0784 0.1573 -0.0560
C-Lasso BC ~ 0.1220 -0.1088 0.1157 -0.1022 0.1088 -0.0909 0.1033 -0.0740 0.1532 -0.0443
Post-Lasso BC 0.0922 -0.0745 0.0949 -0.0782 0.0971 -0.0751 0.0998 -0.0667 0.1548 -0.0441

Oracle 0.0928 -0.0855 0.0928 -0.0855 0.0928 -0.0855 0.0928 -0.0855 0.0928 -0.0855

100 20

C-Lasso 0.0782 -0.0711 0.0740 -0.0670 0.0671 -0.0603 0.0580 -0.0505 0.0711 -0.0254
Post-lasso 0.0539 -0.0431 0.0558 -0.0471 0.0558 -0.0482 0.0529 -0.0444 0.0713 -0.0233
C-Lasso BC  0.0723 -0.0643 0.0682 -0.0605 0.0614 -0.0540 0.0527 -0.0443 0.0691 -0.0191
Post-Lasso BC 0.0494 -0.0368 0.0508 -0.0410 0.0507 -0.0421 0.0479 -0.0382 0.0694 -0.0170

Oracle 0.0527 -0.0469 0.0527 -0.0469 0.0527 -0.0469 0.0527 -0.0469 0.0527 -0.0469

100 40

C-Lasso 0.0428 -0.0372 0.0405 -0.0351 0.0363 -0.0310 0.0321 -0.0270 0.0315 -0.0213
Post-lasso 0.0289 -0.0224 0.0295 -0.0236 0.0297 -0.0241 0.0293 -0.0238 0.0313 -0.0204
C-Lasso BC  0.0401 -0.0339 0.0378 -0.0319 0.0336 -0.0279 0.0295 -0.0239 0.0294 -0.0182
Post-Lasso BC 0.0266 -0.0193 0.0272 -0.0206 0.0273 -0.0210 0.0269 -0.0207 0.0294 -0.0173

Oracle 0.0285 -0.0236 0.0285 -0.0236 0.0285 -0.0236 0.0285 -0.0236 0.0285 -0.0236
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Monte Carlo Simulations

Table 5: PGMM Estimation of ﬁl in DGP 3

C)L 0.2 0.4 0.8 1.6 3.2

N T RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

100 10 C-Lasso 0.1823 -0.1065 0.1892 -0.1241 0.1980 -0.1417 0.2090 -0.1627 0.2271 -0.1817

Post-lasso  0.1304 -0.0352 0.1231 -0.0331 0.1161 -0.0311 0.1137 -0.0352 0.1202 -0.0427

C-Lasso BC 0.1494 -0.0698 0.1509 -0.0800 0.1516 -0.0897 0.1572 -0.1047 0.1729 -0.1206

Oracle 0.0664 -0.0013 0.0664 -0.0013 0.0664 -0.0013 0.0664 -0.0013 0.0664 -0.0013

100 20 C-Lasso 0.0808 -0.0319 0.0858 -0.0478 0.0974 -0.0687 0.1114 -0.0888 0.1247 -0.1035
Post-lasso  0.0584 -0.0010 0.0565 -0.0031 0.0546 -0.0068 0.0538 -0.0109 0.0554 -0.0138
C-Lasso BC 0.0678 -0.0175 0.0690 -0.0275 0.0739 -0.0411 0.0814 -0.0548 0.0904 -0.0648

Oracle 0.0399 -0.0027 0.0399 -0.0027 0.0399 -0.0027 0.0399 -0.0027 0.0399 -0.0027

100 40 C-Lasso 0.0442 -0.0126 0.0447 -0.0198 0.0519 -0.0329 0.0646 -0.0491 0.0742 -0.0606
Post-lasso  0.0356 0.0025 0.0334 0.0006 0.0327 -0.0018 0.0325 -0.0037 0.0320 -0.0046
C-Lasso BC 0.0395 -0.0047 0.0384 -0.0094 0.0406 -0.0173 0.0459 -0.0268 0.0507 -0.0333

Oracle 0.0274 -0.0011 0.0274 -0.0011 0.0274 -0.0011 0.0274 -0.0011 0.0274 -0.0011
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Empirical Application

Motivation

@ Across countries savings rates vary widely: on average East Asia saves
more than 30 percent of gross national disposable income while
Sub-Saharan Africa saves less than 15 percent.

@ Understanding the disparate saving behavior across countries is of
long-lasting research interest in development economics. Theoretical
advancement and empirical studies have been accumulating over the
years; see Feldstein (1980), Deaton (1990), Edwards (1996)
Bosworth, Collins, and Reinhart (1999), Rodrik (2000), and Li,
Zhang, and Zhang (2007), among others.

@ Empirical research either employs standard panel data methods to
handle the heterogeneity, or relies on prior information to categorize
countries into groups. Classification criteria vary from geographic
locations to the notion of developed countries versus developing
countries (Loayza, Schmidt-Hebbel and Servén, 2000).

@ Here we apply the new methodology developed in this paper to revisit
this empirical problem.
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Empirical Application

Model

Following Edwards (1996), we consider the following simple regression
model

Sit = B;Sijt—1 + Bolie + Bs;Rie + By, Gie + 1; + uie, (15)

where

Sit is the ratio of savings to GDP,

Si+—1 : capture the persistence of the savings rate.

lir is the CPl-based inflation rate (measure the degree of the
macroeconomic stability)

Rj: is the real interest rate (reflects the price of money)

Gjt is the per capita GDP growth rate (conventional wisdom: across
countries higher saving rates tend to go hand in hand with higher income
growth, e.g., Loayza, Schmidt-Hebbel, and Servén, 2000)
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Empirical Application

Data

World Development Indicators: 1995-2000, 56 countries.

Table 6: Summary statistics for the savings data set

mean  median s.e. min max
Savings rate 22.099 20.790 8.833  -3.207 53.434
Inflation rate 7.724 4853 15342 -3.846 293.679
Real interest rate 7.422 5.027 10.062 -63.761 93.915

Per capita GDP growth rate 2.855 2971 3.865 -17.545  14.060
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Empirical Application

Data

12
I

Figure: The time series standard deviations of the saving rates for the 56 countries
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Empirical Application

Determination of the number of groups

@ Lu and Su’s (2014) LM test. Basic idea:

Hy (Ko) : K = Ko versus H; (Kp) : Ko < K < Kinax-

(16)

Suppose Knin < K < Kmax, where Ky, is typically 1.
First test: Hy(Kmin) against Hi (Kmin). If we fail to reject the null,

then we conclude that K = Kiin-

Otherwise, we continue to test Hy(Kmin + 1) against Hy (Knin + 1).
Repeat this procedure until we fail to reject the null Hy(K*) and

conclude that K = K*.

Table 7: Test statistics

c=1 c=1.5 c=2

Hy (Kp) 1 2 3 1 2 3 1 2 3
Statistics 3.040 1.397 0.715 3.040 1.265 1.069 3.040 2.396 1.411
p-values 0.001 0.081 0.237 0.001 0.102 0.142 0.001 0.008 0.079
Holm adjusted p-value 0.002 0.081 NA 0.0024 0.102 NA 0.002 0.008 NA
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Empirical Application

Two estimated groups:

@ Group 1 (36 countries): Armenia, Australia, Bangladesh, Bolivia,
Botswana, Cape Verde, China, Costa Rica, Czech, Guatemala,
Honduras, Hungary, Indonesia, Israel, Italy, Japan, Jordan, Latvia,
Malawi, Malaysia, Mauritius, Mexico, Mongolia, Panama, Paraguay,
Philippines, Romania, Russian, South Africa, Sri Lanka,
Switzerland, Syrian, Thailand, Uganda, Ukraine, United Kingdom;

@ Group 2 (20 countries): Bahamas, Belarus, Canada, Dominican,
Egypt, Guyana, Iceland, India, Kenya, South Korea, Lithuania,
Malta, Netherlands, Papua New Guinea, Peru, Singapore, Swaziland,
Tanzania, United States, Uruguay.
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Empirical Application

Table 8: Estimation results

Slope coefficients Common Group 1 Group 2
FE C-Lasso post-Lasso ~ C-Lasso  post-Lasso
B1 0.6203***  0.5510"**  0.5548™**  0.6090*** 0.6156***
(0.1330) (0.1090) (0.1057)  (0.1060)  (0.1057)
B 0.0303 —0.1154**  —0.1068**  0.2712***  0.2661***
(0.0484) (0.0464) (0.0458)  (0.0515)  (0.0514)
B3 0.0068 —0.0419 —0.0273 0.0525 0.0533
(0.0432) (0.0490) (0.0476)  (0.0406)  (0.0401)
Ba 0.1880***  0.2771***  0.3055*** 0.0625 0.0291

(0.0450)  (0.0470)  (0.0452)  (0.0459)  (0.0442)
Note: *** 1% significant; ** 5% significant; * 10% significant.
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(a) lagged savings rate (b) inflation rate
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Figure: Empirical distribution functions of the time series estimates of regression
coefficients for the two estimated groups (thin line: Group 1; thick line: Group 2)
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Panel Structure Models with IFEs

Panel Structure Models with Interactive Fixed Effects
(IFEs)
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Panel Structure Models with IFEs

e Model:
yit = ﬁ?/Xit + /\?/fto + €jt,
where )\? and £ denote an Ry X 1 vector of factor loadings and common
factors, respectively.

o Homogenous: % = p°. Bai (2009), Moon and Weidner (2010),
Greenaway-McGrevy et al. (2012), Lu and Su (2013), Su et al. (2013)...
Inference is misleading if the slopes are heterogenous.

@ Heterogenous: Pesaran (2006), Kapetanios and Pesaran (2007), Chudik
et al. (2011), Kapetanios et al. (2011), Pesaran and Tosetti (2011), Su and
Jin (2012), Ando (2013), Chudik and Pesaran (2013), Song (2013)...
Inefficient and slow convergence rate if the models have homogeneous slopes.
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Panel Structure Models with IFEs

e Penalized principal component (PPC) estimation
N
K K
NTK (B &.AF) = Qont (BAF) + N anil 18; — axll .
where Qont (B.AF) = NTZ 1 |Yi = XiB; — FA; || cand K is a

tuning parameter.
@ Concentrate A out:

NTK(ﬁ“F) Quvt (B.F) + ZH S llB— el (18)

where Qint (B.F) = W Y (Yi— XI,B,') Mg (Yi = Xip;) -

@ Further concentrate F out:

er(ﬁ“) vt (B) + ZH OB — ekl (19)

where Qu1 (B) = % ErT:ROJrl M, [ﬁ iy (Yi = XiB;) (Yi — Xiﬁ/)/} :
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Panel Structure Models with IFEs

o C-Lasso estimates: & = (&1, ..., &x) and B =(B,, ..., By)-

e Estimate (A,F) via PC analysis (e.g., Bai and Ng's (2002)) under the
identification restrictions: F'F/T = Ig, and A’A = diag:

A

F=FVyr, A= (A1 Az, ..., AN)

1 Y A AN
e L (Y= XB) (o= %B)
NT = ! !

(20)
where V7 is a diagonal matrix consisting of the Ry largest
eigenvalues of the above matrix in the square bracket, arranged in
descending order, and A; = T~1F/(Y; — XiB;).

e Numerical difficulty: Non-convex/nonsmooth
o Asymptotic properties:

o Uniform classification consistency (v/)

o Oracle property (/)
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Conclusions and Future Work

Conclusions and Future Work
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Conclusions and Future Work

Conclusions

@ Propose a novel approach to study panel structure model motivated
by the Lasso principle
@ Penalized least squares estimation: work for static or dynamic panel
data models without endogeneity
e uniform selection consistency
e oracle property
o IC for determining the number of groups
o Penalized GMM estimation: work for panel data models with
endogeneity or dynamic panel without endogeneity
e uniform selection consistency

e oracle property in special case
o IC for determining the number of groups

@ Extension to panel data models with cross sectional dependence

@ Determining the number of groups
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Conclusions and Future Work

Future Work

@ Parametric framework

Panel data models with interactive fixed effects
Quantile regression models

Non-linear panel data models

Panel unit root and cointegration analysis
Panel trend/cotrend modeling

@ NP and SP framework: easy for sieve estimation
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Thanks!
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Supplement 1: Penalized Least Squares Estimation

Numerical Algorithm

A

1 Start With &(O) = (&go), .. A(O)) and B(O) = (B(O), ,‘BE\?)) such that

Z: 1||5 5( ||790foreachk_2 K
2 Given &) = (&)Y af ) and BV = (B LBy,
o In Step r > 1, we first choose (B, 1) to minimize

r, )\ N A(r—1 ~(r—
QUr (B.01) = Qur (B)+ x 18, — el TS || B &y Y|

~

and obtain the updated estimate (ﬁ ) of (B.a1).
o Next choose (B, a2) to minimize
Qe (Ba2) = Quar (B)+ 5 2 18; ol B - af"
1 ~(r—1
XHI@él 2 ﬁ(r ) - "‘i )H

to obtain the updated estimate (,B(r'z),&gr)) of (B, az).
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Supplement 1: Penalized Least Squares Estimation

Numerical Algorithm

@ Repeat this procedure (B, ak,) is chosen to minimize

Qun (Boaky) = Quar (B)

MY A(r.Ko—1 (r
00 Y 1B — | T [ - 2
i=1

to obtain the updated estimate (B( DAcE(O)) of (ﬂ, IXKO) . Let
)

B = B and a0 = a7, ... &),

3 Repeat step 2 until a convergence criterion is met.
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Supplement 2: Penalized GMM Estimation

Assumptions

I__et O"'ZAX - % Zthl i (Dxie)', Qi,zA_y = % ZtT:1 ZitAyit,
Qi zax = %ZZ—:I [th(AX/t> ], and Qizay = + Zt 1 E[zitAyi]. Let
&r = (Ayir, (Bxi)', 2},)" . Define p (&, B) = zit (Ayir — B'Axit) and

;
pur (B) = 1T Y6 (€ )~ Elp (@ B}

ASSUMPTION BL. (i) E [p (&, 5?)}

(i1) supgep, 0 7 (P ) Op (1) and § YL 1Hp,r(ﬁ I = 0p (1) for any

B;,€Biandi=1,..,N.

(i) Qi ,ax = Qizax +0p (1) foreachi=1,...,N and

lim inf(N,T)—»oo minls,-SN Hmin (OI{,ZAXinZAX) =cCp > 0.

(iv) There exist W; such that maxi<;<n ||Wint — Wi|| = op (1) and
liminfy_ ¢ minlg,-gN ]/lmin(VV,') =cy > 0.

(v) Nk /N — 14 € (0,1) foreach k =1, ..., Ky as N — oo.
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Supplement 2: Penalized GMM Estimation

Improved Convergence and Asymptotic Properties of Post-Lasso

ASSUMPTION B2. (i) TAy — co and TA3 — ¢y € [0,00) as
(N, T) — o0.

(i) For any ¢ > 0, Nmaxy<i<y P (H Ty zieAuy
(N, T) — oo.

. = = 2
ASSUMPTION B3. (i) - Lo || Qizax — Qizax|” = 0p (1)
(II) /_4/( = NLkZiGGE Q,{’ZAXVVI'OI',ZAX — Ac>0as (Nv T) — .
ASSUMPTION B4. (i) W\ & Wk > 0.as (N, T) — co.
(i) QZ(Z)X’NT LN QZ(Z)X where QZ(Z)X has rank p.

D
(iii) \/ﬁ ZieGE ZtT:I zigAu — N (0, Vi) .

> c\/)\2> — 0 as
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Supplement 2: Penalized GMM Estimation

Improved Convergence and Asymptotic Properties of Post-Lasso

Theorem
Suppose that Assumptions B1-B3 hold. Then
VNeT (& —a9) — A Byt 2 N(0, ALLGALY) fork =1, .., K

Theorem
Suppose that Assumptions B1-B4 hold. Then
VNeT ((xG —lxk) L N(O Q) where

=il
0, = [QUwW® %] ™ QU W vw ) [l W ]
and k =1, ..., Kp.

ES
>
|
e
\

.

o Note that /N, T <ch — ak) =+/N, T (ak — zxk) +op(1). That
is, the post-Lasso GMM estimator &, is asymptotically equivalent to
the infeasible estimate &.
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Supplement 3: Determining the number of groups

@ Basic idea:
Hy (Kp) : K = Ko versus Hy (Kp) : Ko < K < Kinax- (21)

e Suppose Knin < K < Kmax, where Kin is typically 1.

o First test: Ho(Kmin) against Hi (Kmin ). If we fail to reject the null,
then we conclude that K = Kiin-

o Otherwise, we continue to test Ho(Kmin + 1) against Hy (Kmin + 1).

o Repeat this procedure until we fail to reject the null Ho(K*) and
conclude that K = K*.

@ Estimation:
r Al
Z(.ylt ,B th Uit = yir — ,B,‘Xit - ]:l,

o Koy = 1:Set B. = B, the within-group estimator of the homogeneous
slope coefficient. Note that we also suppress the dependence of fi; on
Ko.
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Supplement 3: Determining the number of groups

Motivation for the test:

e = (vie—yi) — (Xie — )_(i)/,B,-
= up— 0+ (X — X;)' (B) —B;) . (22)
where, e.g., 7 = T2 Y11 yir. Under the null hypothesis, j; is a
consistent estimator of [5? and j; should be close to u;;. By the

assumption, x;; should not have any predictive power for u;;. This
motivates us to run the following auxiliary regression model

ﬁ/tIUi+¢§X/t+ﬂit, i=1,...N, t=1,...,T, (23)
and test the null hypothesis

Hy:¢, =0foralli=1,..,N.
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Supplement 3: Determining the number of groups

@ We construct an LM-type test statistic by concentrating the intercept
v; out in (23). Consider the Gaussian quasi-likelihood function for j; :

N

=Y (o — MoXigp;)' (0 — Mo Xigp;)

i=1

where ¢ = (¢, ... q>,V) 0 = (g, ..., iy7)’, and
Xi = (Xit, ..., XiT ) Define the LM statistic:

LMyt (Ko) = (T—l/zm)/ (_T—1825(0)I> (T—1/2M(())>_

0 o ¢ o
(24)
We can verify that
N 1
LMyt (Ko) Z (X MoX;) ™ X{ Mo 0. (25)
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Supplement 3: Determining the number of groups

Let h; s denote the (t,s)'th element of H; = MoX; (X! Mo X;) 1 X! My. Let
Q; = E(TIX!MoX:), XE =X — TV 2 E(Xis), and

b = Q; 1/ZXJr Define
N T
Byt = 2ZZU, hi + and
i=1t=1
N T IS
Wwr = AT 2N'Y. Y E lueby Y bisuis |
i=1t=2 s=1

Suppose Assumptions A.1-A.3 hold. Then under Hy (Kp) ,

JNT (Ko) = (N_l/zLMNT (Ko) — BNT) /\/ VNT L N(O, 1).

Feasible version:
Int (Ko) = (N7Y2LMyT (Ko) — Byt (Ko)) 74/ Vit (Kp).

, Shi, and Phillips (SMU and Yale) Identifying Latent Structures in Panel Data July 9, 2014 70 / 70



	Identifying Latent Structures in Panel Data
	Outline of the Presentation
	The Model and Literature
	Penalized Least Squares Estimation
	Penalized GMM Estimation
	Monte Carlo Simulations

	Empirical Application
	Conclusions and Future Work


