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Abstract

This paper provides a novel mechanism for identifying and estimating latent group struc-
tures in panel data using penalized regression techniques. We focus on linear models where
the slope parameters are heterogeneous across groups but homogenous within a group and
the group membership is unknown. Two approaches are considered — penalized least squares
(PLS) for models without endogenous regressors, and penalized GMM (PGMM) for models
with endogeneity. In both cases we develop a new variant of Lasso called classifier-Lasso (C-
Lasso) that serves to shrink individual coefficients to the unknown group-specific coefficients.
C-Lasso achieves simultaneous classification and consistent estimation in a single step and
the classification exhibits the desirable property of uniform consistency. For PLS estimation
C-Lasso also achieves the oracle property so that group-specific parameter estimators are as-
ymptotically equivalent to infeasible estimators that use individual group identity information.
For PGMM estimation the oracle property of C-Lasso is preserved in some special cases. Sim-
ulations demonstrate good finite-sample performance of the approach both in classification
and estimation. We apply our method to study the determinants of cross-country savings

rates and find two latent groups among 56 countries.
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1 Introduction

Panel data models are widely used in empirical analysis in many disciplines across the social
and medical sciences. The capacity to store and retrieve vast electronic datasets on individual
behavior over time has made these models a particularly prominent research vehicle in economics
and finance. Such data usually cover individual units sampled from different backgrounds and
with different individual characteristics so that an abiding feature of the data is its heterogeneity,
much of which is simply unobserved. Neglecting latent heterogeneity in the data can lead to many
difficulties, including inconsistent estimation and misleading inference, as is well explained in the
literature (e.g., Hsiao, 2003, Chapter 6). It is therefore widely acknowledged that an important
feature of good empirical modeling is to control for heterogeneity in the data as well as for potential
heterogeneity in the response mechanisms that figure within the model. Since heterogeneity is a
latent feature of the data and its extent is unknown a priori, respecting the potential influence
of heterogeneity on model specification is a serious challenge in empirical research. Even in the
simplest linear panel data models the challenge is manifest and clearly stated: do we allow for
heterogeneous slope coefficients in regression as well as heterogeneous error variances?

While it may be clearly stated, this challenge to the empirical researcher is by no means
easily addressed. While allowing for cross-sectional slope heterogeneity in regression may help to
avert misspecification bias, it also sacrifices the power of cross section averaging in the estimation
of response patterns that may be common across individuals, or more subtly, certain groups of
individuals in the panel. In the absence of prior information on such grouping and with data
where every new individual to the panel may bring new idiosyncratic elements to be explained,
the challenge is demanding and almost universally relevant.

Traditional panel data models frequently deal with this challenge by avoidance. Complete
slope homogeneity is assumed for certain specified common parameters in the panel. Under
this assumption, the regression parameters are the same across individuals and unobserved het-
erogeneity is modeled through individual-specific effects which are either fixed or random and
(typically) enter the model additively. This approach is an exemplar of a convenient assumption
that facilitates estimation and inference.

The cross section homogeneity assumption has been frequently questioned and rejected in
empirical studies. The following is only a partial list of work where homogeneity has been found
to fail. Burnside (1996) rejects slope homogeneity in the production function of US manufactur-
ing firms; Hsiao and Tahmiscioglu (1997) find parameter heterogeneity in investment functions
using the U.S. firm level panel data; Lee, Pesaran, and Smith (1997) find that the convergence
rates of per capita output to the steady state level are heterogeneous across countries; Durlauf,
Kourtellos, and Minkin (2001) find substantial country-specific heterogeneity in the parameters in
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provide a new approach to testing for economic growth convergence under heterogeneous technol-
ogy and explore these differences in the Penn World Table; Browning and Carro (2007) present
a selective overview on heterogeneity in microeconometric modelling and find that there is more
heterogeneity than econometricians usually allow for; Browning and Carro (2010) document het-
erogeneity in a dynamic discrete choice panel data model for consumer milk-type choices where
heterogeneity occurs in both the levels parameter and the state dependence parameter; Browning
and Carro (2014) show that individual unemployment dynamics are heterogenous even within a
homogeneous group of Danish workers in terms of their observed characteristics; Su and Chen
(2013) reject the null of slope homogeneity in an economic growth model for OECD countries
even after they control for unobserved heterogeneity through interactive fixed effects.

Despite general agreement that slope heterogeneity is endemic in empirical work with panels,
few methods are available to allow for heterogeneity in the slope parameters when the extent
of the heterogeneity is unknown. In the following discussion we group the methods that are
available into two broad categories and consider the different approaches pursued within them.
In the first category, complete slope heterogeneity is assumed and regression coefficients are taken
as differing across individuals. Several approaches are adopted in the literature. Perhaps the most
common method is to use a random coefficient structure in which the parameters are assumed to
be independent draws from a common distribution — see Hsiao and Pesaran (2008) for an overview
of the approach. The random coefficient model allows for estimation of the mean coefficient effect
but is uninformative about responses at the disaggregate level, thereby missing what is often
the object of interest. A second approach uses Bayesian methods to shrink the individual slope
estimates towards the overall mean — see Maddala, Trost, Li, and Joutz (1997). This approach is
based on the presumption that the slope parameters, while not precisely the same, are sufficiently
similar to warrant shrinkage toward the mean — a presumption that may be questionable in some
empirical applications. A third approach is to parameterize individual slope coefficients as a
function of observed characteristics — see Durlauf, Kourtellos, and Minkin (2001) and Browning,
Ejrnzes, and Alvarez (2010). Apparently, this approach depends crucially on the specification of
the functional coefficient and is subject to potential misspecification problems. A fourth approach
is to estimate the individual slope coefficients using heterogenous time series regressions for each
individual, which is only feasible in systems where the time dimension 7T is large. Even in this
case, there is a considerable debate on the options: whether to pool the data and obtain a single
estimate for the whole sample, whether to estimate the equations separately for each individual,
and whether to rely on the average response from individual time series regressions — see Pesaran
and Smith (1995), Baltagi and Griffin (1997), Hsiao, Pesaran, and Tahmiscioglu (1999), Pesaran,
Shin and Smith (1999), and the survey by Baltagi, Bresson, and Pirotte (2008).

The second category takes a totally different viewpoint on the nature of the heterogeneity
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adopted in which the panel structure models individuals as belonging to a number of homogeneous
groups or clubs within a broadly heterogeneous population. In this framework, the regression
parameters are the same within each group but differ across groups. Two essential questions
remain: how to determine the unknown number of groups (dubbed convergence clubs in the
economic growth literature); and how to identify the individuals belonging to each group. These
are longstanding questions of statistical classification in panel data. No completely satisfactory
solution has yet been found, although various approaches have been adopted in empirical research.
For instance, Bester and Hansen (2009) consider a panel structure model where individuals are
grouped according to some external classification, geographic location, or observable explanatory
variables. So the group structure is completely known to the researcher, an approach that is
common in practical work because of its convenience. In the economic growth literature, for
example, countries are often classified according to continental location or economic development
levels, which both lead to determinate group structures. In spite of its convenience, this approach
to panel inference is inevitably misleading when the number of groups and individual identities
are incorrectly classified.

Several approaches have been proposed to determine an unknown group structure in modeling
unobserved slope heterogeneity in panels. The first approach is to apply finite mixture models that
do not assume a known group structure. For example, Sun (2005) considers a parametric finite
mixture panel data model by employing a multinomial logistic regression to model membership
probabilities. Sun’s model comprises a heterogenous linear panel regression model that relates
the response variable to explanatory variables and a logistic regression that identifies individual
memberships. In a related thematic, Kasahara and Shimotsu (2009) and Browning and Carro
(2011) study identification in discrete choice panel data models for a fixed number of groups us-
ing nonparametric discrete mixture distributions. The second approach is based on the K-means
algorithm in statistical cluster analysis. Lin and Ng (2012) and Sarafidis and Weber (2011) pro-
pose to modify the K-means algorithm to perform conditional clustering to estimate linear panel
structure models but no asymptotic properties of that procedure or the estimators are derived.
Bonhomme and Manresa (2014) introduce time-varying grouped patterns of heterogeneity in lin-
ear panel data models, propose two classification algorithms that are also closely related to the
K-means algorithm, and study the asymptotic properties of the resulting estimators. Both Lin
and Ng (2012) and Bonhomme and Manresa (2014) assume that N and 7" pass to infinity jointly.
Lin and Ng (2012) propose another method to estimate a panel structure model by turning the
problem of parameter heterogeneity into the estimation of a panel threshold model with an un-
known threshold value and using the individual time series estimates of the parameters to form
threshold variables. Phillips and Sul (2007) develop an algorithm for determining group clusters
that relies on the estimation of evaporating trend functions to determine convergence clusters.

Again, joint limits as (N,T') — oo are used in the development of the asymptotic theory.



The present paper proposes a new method for econometric estimation and inference in panel
models when the slope parameters are heterogenous across groups, individual group membership is
unknown, and classification is to be determined empirically. Our modeling strategy therefore falls
within the second category discussed above. It is an automated data-determined procedure and
does not require the specification of any modeling mechanism for the unknown group structure.
The approach we suggest involves a new variant of Lasso (Tibshirani, 1996) technology that is
designed to classify parametric slope coefficients in a heterogeneous panel model into a group
structure in which both the groups and the elements in the groups are data-determined. Like
Lin and Ng (2012), Bonhomme and Manresa (2014) and Phillips and Sul (2007), we assume
that (N,T) — oo jointly (Phillips and Moon, 1999). But in our asymptotic theory 7' can pass
to infinity at a very slow rate, even a slowly varying rate such as O ((ln N )1+5) for any € > 0
in the case of uniformly bounded regressors, thereby opening up empirical applications of the
method to short wide panels. The methods proposed here have several novel aspects in relation
to earlier research and they contribute to both the Lasso and econometric classification literatures
in various ways, which we outline in the following paragraphs.

First, our approach is motivated by one of the key features of Lasso technology that enables
the method to deliver simultaneous variable selection and estimation in a single step. This
advantage is particularly useful when the set of unknown parameters is potentially very large
but may also embody certain sparse features. In a typical panel model structure, the effective
number of unknown slope parameters {f3,, ¢ = 1,..., N} is not of order O (N) as it would be if
these parameters were all incidental, but rather of some order O (Kj), where Ky denotes the
number of unknown groups within which the slope coefficients are homogeneous. Moreover, when
the number of groups is finite, Ky is fixed and so the order of unknown coefficients is then O (1)
as (NV,T) — oo. Hence, in many empirical applications the set of unknown slope parameters in
a panel structure model surely exhibits the desirable sparsity feature, making the use of Lasso
technology highly appealing.

Second, the procedures developed in the present paper contribute to the fused Lasso literature
in which sparsity arises because some parameters take the same value. The fused Lasso was
proposed by Tibshirani, Saunders, Rosset, Zhu, and Knight (2005) and was designed for problems
with features that can be ordered in some meaningful way (e.g., in time series regression where
the time periods have natural ordering). The method cannot be used to classify individuals
into different groups because there is no natural ordering across individuals and so a different
algorithm to locate common individuals is required. The present paper develops a new variant of
the Lasso method that does not rely on the order of individuals in the data and which therefore
contributes to the fused Lasso technology.

Third, standard Lasso technology involves an additive penalty term to the least-squares,

GMM, or log-likelihood objective function and when multiple penalty terms are needed, they



also enter the objective function additively. To achieve simultaneous group classification and
estimation in a single step our variant of Lasso involves N additive penalty terms, each of which
takes a multiplicative form as a product of Ky penalty terms. To the best of our knowledge, this
paper is the first to propose a mixed additive-multiplicative penalty form that can serve as an
engine for simultaneous classification and estimation. The method works by using each of the
K penalty terms in the multiplicative expression to shrink the individual-level slope parameter
vectors to a particular unknown group-level parameter vector, thereby producing a joint shrinkage
process. This process is distinct from the prototypical Lasso method that shrinks an individual
parameter to zero and the group Lasso method that shrinks a parameter vector to a vector of
zeros (see Yuan and Lin, 2006). To emphasize its role as a classifier and for future reference, we
describe our new Lasso method as the classifier-Lasso or C-Lasso.

Fourth, we develop a limit theory for the C-Lasso that demonstrates its capacity to achieve
simultaneous classification and consistent estimation in a single step. As mentioned in the Ab-
stract, the paper develops two classes of estimators for panel structure models — penalized least
squares (PLS) and penalized GMM (PGMM). The former is applicable to panel models without
endogenous regressors and with or without dynamic structures, while the latter is applicable to
panel models with endogeneity or dynamic structures. In either case, we show uniform classifi-
cation consistency in the sense that all individuals belonging to a certain group can be classified
into the same group correctly uniformly over both individuals and group identities with probabil-
ity approaching one (w.p.a.1). Conversely, all individuals that are classified into a certain group
belong to the same group uniformly over both individuals and group identities w.p.a.1. Under
some regularity conditions, such a uniform result allows us to establish an oracle property of the
PLS estimator that it is asymptotically equivalent to the corresponding infeasible estimator of
the group-specific parameter vector that is obtained by knowing all individual group identities.
Note that traditional Lasso only possesses the selection consistency and oracle property under the
so-called restrictive irrepresentable condition. This shortcoming of Lasso motivated Zou (2006)

1" Unfortunately, our

to propose the adaptive Lasso that possesses these attractive properties.
PGMM estimator generally does not have the oracle property despite the uniform selection con-
sistency of the C-Lasso. The uniform classification consistency also allows us to develop a limit
theory for post-C-Lasso estimators that are obtained by pooling all individuals in an estimated
group to estimate the group-specific parameters.

Fifth, C-Lasso enables empirical researchers to study panel structures without a priori knowl-
edge of the number of groups, without the need to specify any ancillary regression models to model
individual group identities, and with no need to make any distributional assumptions. When the

number Ky of groups is unknown, a BIC-type information criterion is proposed to determine
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the number of groups and it is shown that this procedure selects the correct number of groups
consistently. The same information criterion can also be used to determine a data-driven tuning
parameter for the PLS or PGMM estimation.

Sixth, while the focus of the present paper is linear panel data models, the methodology
developed here can be extended to nonlinear models such as discrete choice models, to semipara-
metric and nonparametric models, to models where only a subset of parameters are allowed to
be group-specific, and to models where one considers group-specific effects along the time dimen-
sion. Extension to panel data models with interactive-fixed effects is also possible and is presently
under way.

We envisage a large number of potential empirical applications of the C-Lasso approach within
economics and finance and more broadly across the social and business sciences. The following list
provides three distinct areas of application in international macroeconomics, microeconometrics,
and nonstationary panel econometrics.

1. Economic Growth Convergence: Much of the recent literature on economic growth
addresses sources of possible heterogeneity, including the occurrence of multiple steady states
and history-dependence in growth trajectories - see Deissenberg, Feichtinger, Semmler, and Wirl
(2004) and Durlauf, Johnson, and Temple (2005) and Eberhardt and Teal (2011) for overviews of
the relevant growth theory and empirics. Contingent upon historical conditions economic systems
may converge towards distinct steady states, the empirical manifestation of which are the so-called
convergence clubs that occur in cross-country growth studies. In an application to cross-country
growth, Phillips and Sul (2007a) evaluated evidence in support of panel data growth clustering,
locating three convergence clubs and one divergent group among 88 countries in the Penn World
Tables in terms of real per capita GDP over the period 1960-1996. Their methodology involved
a stepwise algorithm with multi-level decision making to isolate the convergence clubs. The
panel structure framework suggested in the present paper is a natural setting to consider growth
convergence and the C-Lasso procedure provides a one step classifier and estimation approach
with no sequential decision making. The method can also be used to isolate convergence clubs
and remaining divergent elements in the panel.

2. Subsample Studies of Stability: Much empirical research is concerned with studying
the stability of certain regression coefficients over subsamples of the data. In this work, the whole
sample is split into multiple subsamples and regression relationships are checked for coefficient
stability. The groupings may be arbitrarily selected or may be determined by covariates or
thresholds, each of which may have a significant impact on the findings. For example, in order
to test whether financing constraints affect investment decisions, Fazzari, Hubbard, and Petersen
(1988) divided a sample of firms into multiple groups based on empirical proxies such as the
dividend-income ratio. Similarly, in testing whether liquidity constraints affect consumption

decisions in PSID data, Zeldes (1989) uses two different wealth-to-income ratios as prescribed



variables to divide the sample into subsamples. Sample splitting techniques of this type are
inevitably vulnerable to the choice of prescribed driver variables. The methodology of the present
paper does not require driver variables or thresholds to determine regression stability.

3. Panel Unit Root Grouping: Several approaches are available for testing the presence of
unit roots in panel data. Two popular tests in applications are the Levin, Lin, and Chu (2002) and
Im, Pesaran, and Shin (2003) tests. Levin, Lin, and Chu (2002) devise an adjusted ¢-test for a unit
root for various panel data models, assuming that all individuals (countries, regions, industries,
etc.) have the same autoregressive (AR) coefficients while permitting individual specific effects
as well as dynamic heterogeneity across individuals. Im, Pesaran, and Shin (2003) propose a test
based on the average of the augmented Dickey-Fuller statistics computed for each individual series
in heterogenous panels. Both tests rule out the possibility that some individual series have a unit
root while others do not - precisely the empirical possibility that many argue is the most relevant
in practical work (e.g., Maddala and Kim, 1998). Our methodology is designed to directly address
this possibility and can be used to classify a subgroup of unit-root processes in the panel from a
wider class of stationary and nonstationary processes.

The rest of the paper is organized as follows. We study the C-Lasso PLS estimation and
inference of panel structure models in Section 2. PGMM estimation and inference is addressed in
Section 3. Section 4 reports Monte Carlo simulation findings. We apply our method to study the
determinants of cross-country savings rates in Section 5. Final remarks are contained in Section
6. Proofs of the main results in the body of the paper are given in Appendices A and B. The
supplementary Appendices C and D provide primitive conditions for some high level conditions
that are used in the body of the paper and bias correction for the C-Lasso estimates, respectively.

NOTATION. Throughout the paper we adopt the following notation. For an m x n real matrix
A, we write the transpose A’, the Frobenius norm |[|A]| (= [tr (AA')]]‘/Q), and the Moore-Penrose
inverse as AT. When A is symmetric, we use fi. (A) and g, (A) to denote the largest and
smallest eigenvalues, respectively. I, and 0,x1 denote the p X p identity and p x 1 vector of zeros.
1{-} denotes the indicator function. We use “p.d.” and “p.s.d.” to abbreviate “positive definite”
and “positive semidefinite”. The operator £ denotes convergence in probability, 5 convergence
in distribution, and plim probability limit. We use (N,7T) — oo to signify that N and T' pass
jointly to infinity.

2 Penalized Least Squares Estimation

This section considers panel structure models without endogeneity. It is convenient to assume
first that the number of groups is known and later consider the determination of the number of

unknown groups.



2.1 Panel Structure Models

The dependent variable y;; is measured for individual ¢ = 1,..., N over time ¢t = 1,...,7. The

generating mechanism is the panel structure model
Yit = By Tit + i + Uit (2.1)

where z;; is a p x 1 vector of exogenous or predetermined variables, u, is an individual fixed effect
that may be correlated with some components of z;;, u;; is the idiosyncratic error term with zero

mean, and (Y is a p x 1 vector of slope parameters such that
af ifi € GY
#=1 - (2.2)

0 ey 0
%, 1f2€GK0

Here oz? # of for any j # k, Uf:‘)ng = {1,2,...,N}, and G N G? = @ for any j # k. Let
N = #G% denote the cardinality of the set Gg. For the moment, we assume that the number
Ky of groups is known and fixed but that each individual’s group membership is unknown. In
addition, following Sun (2005) and Lin and Ng (2012), we implicitly assume that individual group

membership does not vary over time. Let

az(alv'"?aKo) andlBE(/Blv"wBN)‘ (23)

Let B; denote the parameter space of 3;.> We assume that B; are compact uniformly in i and
denote the true values of a and 3 as a® and B°, respectively. We are interested in developing
econometric methods to infer each individual’s group identity and to estimate the p x Ky matrix

a® of group-specific coefficients.

2.2 Penalized Least Squares Estimation of a and 3

Our starting point is to develop PLS estimation of a and 3 when the elements of x;; are either
strictly exogenous or predetermined so that least squares criteria are appropriate. We first apply

ordinary least squares (OLS) regression, minimizing the following objective function?

T
QoNt (B, 1) = % SN (yie — Biwa — )’

i=1 t=1

When the B;’s are group-specific, we can also regard the respective parameter spaces B; to be group-specific.
STt B;’s are identical across 4, the approach will yield the well known within-group (WG) estimator or least

squares dummy variable (LSDV) estimator, or fixed effects Guassian maximum likelihood estimator (MLE) in the
literature; see, e.g., Kiviet (1995), Hahn and Kuersteiner (2002), and Alvarez and Arellano (2003). As will be clear,

this appraoch can be easily extended to nonlinear panel data models.



where = (i1, ltg, ..., pty) - Since the individual effects y; are not of primary interest, we concen-

trate them out and obtain the following concentrated function

1 N T
Ql,NT = N_ Z; Yit — B xzt y

~OLS R .1 B
giving the OLS estimates [, = (% Zle a:ita:;t> (% Zthl xityz-t> , where Z;; = i —
T @i and G = yir — T~V S0, Yar-
Motivated by the literature on group Lasso (e.g., Yuan and Lin, 2006), we next propose to

estimate B and o by minimizing the following PLS criterion function

)\1 K,
QlNT A1 (:3’ a) = Ql,NT (/3) + ﬁ Hk:01 ||/62 - ak:“ ) (2-4)
=1
where A\; = Ainy7 is a tuning parameter. Minimizing the above criterion function produces

classifier-Lasso (C-Lasso) estimates B and & of 3 and «, respectively. Let BZ and &y, denote the
i™ and k™ columns of B and &, respectively, i.c., & = (6, ..., dg) and B =(34, ..., By).

The penalty term in (2.4) takes a novel mixed additive-multiplication form that does not
appear in the literature. Traditionally Lasso includes an additive penalty term to the least-
squares, GMM, or log-likelihood objective function. When multiple penalty terms are needed,
they also enter the objective function additively. In contrast, the C-Lasso method has IV additive
terms, each of which takes a multiplicative form as the product of K separate penalties. Each of
the Ky penalty terms in the multiplicative expression shrinks the individual-level slope parameter
vector [, to a particular unknown group-level parameter vector ay. This approach differs from
the prototypical Lasso method of Tibshirani (1996) that shrinks a parameter to zero as well as
the group Lasso method of Yuan and Lin (2006) that shrinks a parameter vector to a vector of
ZETos.

Note that the objective function in (2.4) is not convex in 3 even though it is (conditionally)
convex in oy when one fixes o for j # k. In Section 4.2 we propose an iterative algorithm to

obtain the estimates & and 3.

2.3 Preliminary Rates of Convergence for Coefficient Estimates

We first present sufficient conditions to ensure the consistency of (8, &). Let a4y = wjy —
15T A 1T ~ o~ A 1T -~ ~ .
T ity Qigze = 7 g TitTy, and Qiza = 7 Y 4 Titly. We make the following assump-

tion.
ASSUMPTION AL (i) = S il = Op (1) for each i =1,..., N.

(ii) Q“;,g il Qizz > 0 for each i = 1,..., N. There exists a constant czz such that im y 7)o

=Irr

ming <i<N fin(Qizz) > czz > 0.

10



. 2
(ii) & X ||Quaa| = 0r (T7).
(iv) Nk, /N — 711 € (0,1) for each k=1,..., Ko as N — 0.
(v) At = 0 as (N, T) — oc.

Assumption A1(i) is rather weak and will be satisfied in most (stable) large dimensional linear
panel data models without endogeneity. Sufficient conditions for A1(i) to hold are % Zr‘tr:l TitUit,
% Zthl ui, and %Zthl ziy = Op (1) for i = 1,..., N. More primitive conditions for A1(i) to
hold include E (uy) = 0, E (ziu;i) = 0 and suitable moment and weak dependence conditions
on the process {(zi,uit),t > 1} that ensure CLT validity. Note that we do not require that
the panel model be dynamically correctly specified in the sense that E (u;|F;+—1) = 0 where
Fit—1 is the sigma-field generated by (@i, is—1,ui¢—1,...). Instead, we allow both conditional
heteroskedasticity and serial correlation in {u;,t > 1}.

Assumption A1(ii) contains two parts, the first part being standard and the second part
being a high-level condition. Appendix C.1 gives primitive conditions to ensure the second part.
Intuitively, these conditions impose some restrictions on the moments of z;, the dependence
structure on the processes {x;,t > 1}, and the relative rates at which N and T pass to infinity.
More specifically, under suitable weak dependence conditions, if Har:th2 exhibits only 2¢-th finite
moments for some ¢ > 1, then we need a stringent (lower rate) condition on the expansion of
T, viz., T/N¢ — ¢ € (0,00] for some € > 1/(2¢ — 1). On the other hand, if ||z;||* has finite
exponential moments with an index parameter 7 as specified in Assumption C1(iv), then only
T/(In N )(1+v)/ 7 — oo is required for sufficiency. In the extreme case, if x;; is uniformly bounded
(i.e., v = 00), it simply suffices that T/In N — oco.

A1(iii) can be easily verified via the Markov inequality. A1(iv) implies that each group has an
asymptotically non-negligible membership number of individuals as N — oco. This assumption can
be relaxed at the cost of more lengthy arguments, in which case the estimates of ozg, k=1,.., Ky,
will exhibit different convergence rates. A1(v) implies that the penalty term cannot be too large.

The following theorem establishes the consistency of the PLS estimates {f3;} and {é} .

Theorem 2.1 Suppose that Assumption Al holds. Then
(i) B; — B = Op (T2 + \) fori=1,2,..,N,
. 2
(ii) % SN, B - 8| = 0p (171).

(m) (d(l), ey &(Ko)) — (Oé(l), ...,049(0) =0Op (T71/2)
where (&(1), -, Q(k,)) 8 a suitable permutation of (G, ..., ik, )-

REMARK 1. Parts (i) and (ii) of Theorem 2.1 establish the pointwise and mean-square con-
vergence of Bl Part (iii) of Theorem 2.1 indicates that the group-specific parameters a9, ..., a%
can also be estimated consistently by &1, ..., &k, subject to permutation. As expected and con-

sonant with other Lasso limit theory, the pointwise convergence rate of Bz depends on the rate

11



at which the tuning parameter A\; converges to zero. Somewhat unexpectedly, this requirement
is not the case either for mean-square convergence of Bl or convergence of &y. Apparently if
A =0 (T*1/2) , we get the usual v/T-convergence rate for the Bz
For notational simplicity, hereafter we simply write &y, for d;, as the consistent estimator of
ag, and define
Gy, = {z €{1,2,...N}:j3, = ak} for k=1,..., Ko. (2.5)

2.4 Classification Consistency

This section studies classification consistency. Roughly speaking, a classification method is con-
sistent if it classifies each individual to the correct group w.p.a.l. For a rigorous statement of this

property we define the following sequences of events
EA’]CNT,Z‘ = {Z §é Gk | 1€ Gg} and FkNT,i = {Z ¢ Gg ‘ 1€ ék} s (26)

where i = 1,...,N and k = 1,..., Ky. Let Ek:NT = UiecgEkNT,i and FkNT = UieGkaNTJ' The
events Fpny7m and Fjpnyr mimic Type I and II errors in statistical tests: Epnr denotes the error
event of not classifying an element of Gg into the estimated group Gy; and Fynr denotes the
error event of classifying an element that does not belong to Gg into the estimated group Gy.
To achieve uniform consistency in estimation both error types must be controlled. We use the

following definition.

Definition 1. (Uniform consistency of classification) We say that a classification method
is individually consistent if P (EA’;CNTO — 0 as (N,T) — oo for each i € G? and k = 1,..., K,

and P (FkNT’Z) — 0 as (N,T) — oo for each i € Gy and k =1, ..., Ko. It is uniformly consistent
if P (U, Binr) = 0 and P (U, Fvr ) — 0 as (N, T) — o.
To establish consistency of the PLS classifier we add the following assumption.

ASSUMPTION A2. (i) TA; — 0o and TA} — ¢p € [0,00) as (N,T) — oc.
(ii) For any ¢ > 0, N maxj<;<ny P (HT*1 Zthl TipUie|| > c\//\_1> — 0 as (N,T) — oo.

Assumption A2(i) is required for individual consistency of the PLS classifier. Assumption
A2(ii) is a high level assumption that ensures the uniform consistency of the classifier. In Ap-
pendix C, we verify this condition for strong mixing processes with geometric decay rates under
certain moment conditions. In particular, if (a) |2 , |wi|, and ||z;zui|| have finite 2¢'™™ moments,
then A2(ii) will be satisfied provided

A > max{T ' In N, T2(NT)Y/(InT)*(In N)?}; (2.7)
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(b) if ||zit]| , |wit|, and ||zijzuie|| have exponential moments with an index parameter «y, then A2(ii)

will be satisfied provided
A1 > max{T ' In N, T72[In(NT)]23+)/7}, (2.8)

In either case, we need TA; > In N. If T' o N for some €; > 1/(¢ — 1) in case (a) and TN
for some €2 > 0 in case (b), then we can easily verify that T'A\; > In N would also be sufficient
to ensure A2(ii). Combining this requirement with A2(i) suggests that under certain conditions
on the moments and on the related rates at which N and T pass to infinity, it suffices to require
that

A1 o< T7% for any a € [1/4,1). (2.9)

The following theorem establishes uniform consistency for the PLS classifier.

Theorem 2.2 Suppose that Assumptions A1-A2 hold. Then
(i) P (U2, Brvr) < S0 P (Binr) = 0 as (N, T) — o,
(Zl) P (UfilpkNT> S ZkK:()lP (FkNT> — 0 as (N, T) — OQ.

REMARK 2. Theorem 2.2 implies that all individuals within a certain group, say Gg, can
be simultaneously correctly classified into the same group (denoted Gk) w.p.a.l. Conversely, all
individuals that are classified into the same group, say Gy, simultaneously correctly belong to
the same group (Gg) w.p.a.l. Let Gy denote the group of individuals in {1,2,..., N} that are
not classified into any of the Ky groups, i.e., Gy = {1,2,...,N} \(Uf:(’l@k) Define the events
HinT = {i € éo}. Theorem 2.2(i) implies that P (UlgiSNﬁiNT> < Zf:‘)l P(EkNT) — 0. That
is, all individuals can be classified into one of the Ky groups w.p.a.1l. Nevertheless, when 1" is not
large, it is possible for a small percentage of individuals to be left unclassified if we stick with
the classification method defined in (2.5). To ensure that all individuals are classified into one
of the Ky groups in finite samples, one need only slightly modify the classifier to achieve it. In
particular, we classify i € Gy, if Bl = @y, for some k =1, ..., Ko, and i € G; for some | = 1, ..., Ko
if

O |

5—041”)

b} and 31 =an} <o
k=1

Since the event 25:01 1{3; = a;} = 0 occurs with probability tending to zero uniformly in i, we
can ignore it in large samples in subsequent theoretical analysis and restrict our attention to the
previous classification rule in (2.5) to avoid confusion. That is, G, = {i € {1,...,N} : 3, = @}
for k=1,..., K.

Let Ny = S°N | 1{i € G}4}. The following corollary indicates that we can estimate the number

of individuals within each group consistently.

Corollary 2.3 Suppose that Assumptions A1-A2 hold. Then Ny — Ni = op (1) for k=1,..., Ky.
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2.5 The Oracle Property and Asymptotic Properties of Post-Lasso

To establish the oracle property of the PLS estimates {a4} , we add the following assumption.

ASSUMPTION A3. (i) For each k = 1,... Ko, & = wbp Yieo oy Fudly — Bk > 0 as
(N,T) — oc.

(ii) For cach k = 1,... Ko, o= Y0 Sty @atle = Bovr = N (0,%) as (N,T) — oo
where Byt = \/% ZieGg Zthl E (zits) is either O or O(\/W) depending on whether x;
18 strictly exogenous.

Assumption A3 is a convenient high level condition. It can be verified under various commonly
occurring primitive conditions. For example, if (a) {(x;, ui)} is a stationary strong mixing process
with a geometric mixing rate along the time dimension and is independently and identically
distributed (IID) along the cross section dimension for all individuals within the same group G,
(b) x;; and x;u; have finite two-plus moments, and (¢) E (z4;) = 0 and E (u;) = 0, then A3 is
satisfied with Byyr = 0, @, =Var(z;), and ¥ = limp_o % Zthl Zstl E (wix} uiruis) for any
1€ Gg. Apparently, condition (c) rules out the case of dynamic panel data models. If z;; contains
lagged dependent variables (e.g., y;+—1), it is well known that the fixed effects within-group (WG)
estimator has asymptotic bias of order O (1/T") in homogeneous dynamic panel data models. This
suggests that Byyr = O (\/W ) in dynamic panel data models and bias correction is required
for statistical inference unless T' passes to infinity faster than Nj. Matters of bias correction and
some explicit formulae in this case are discussed below in Remark 5 and Appendix D.1.

The following theorem gives the oracle property of the Lasso estimator {dg}.

Theorem 2.4 Suppose that Assumptions A1-A8 hold. Then /N;T (ézk — ag) - @glﬁkNT 5

N(0, &, 10, @, 1) for k=1,..., Ko.

REMARK 3. If each individual’s group membership is known, the WG estimator of ag

. o, \! - _ _ D
is ap = (ZieG% Zthl l‘itl‘;t) Ziecg Zle ZitTit, and then +/N,T (ak —042) — O Bnr =

N (0, CID,lellk(I),;l) under Assumption A3. Theorem 2.4 indicates that the PLS estimator &y
achieves the same limit distribution as this oracle WG estimator with knowledge of the exact
membership of each individual. In this sense, we say that the PLS estimators {dj} have the
asymptotic oracle property. In the Appendix, we prove the above theorem by inspection of
the Karush-Kuhn-Tucker (KKT) optimality conditions for minimizing the objective function in
(2.4) based on subdifferential calculus (e.g., Bertsekas, 1995, Appendix B.5). We then show that
VN, T (dk — 042) = VN, T (dék — a%) + op (1), where g, Is the post-Lasso estimator of af
given by

-1
T T
ag, = Z Zfiti';t Z Zfitﬂit- (2.10)

iEék t=1 iEék t=1

14



The following theorem reports the asymptotic distribution of dék.

Theorem 2.5 Suppose that Assumptions A1-A8 hold. Then /NyT <dék — a%) — (i)/;lBkNT 5
N(0, &, 10, @, 1) for k=1,..., Ko.

REMARK 4. The proof of the above theorem is based on the uniform classification consistency
results in Theorem 2.2. In a totally different framework, Belloni and Chernozhukov (2013) study
post-Lasso estimators which apply OLS to the model selected by first-step penalized estimators
and show that the post-Lasso estimators perform at least as well as Lasso in terms of rate of
convergence and have the advantage of having a smaller bias. It would also be interesting to
compare the high-order asymptotic properties of & and dék given that they share the same
first-order asymptotic distribution. But that analysis goes beyond the scope of the current paper.
We do compare the performance of the post-Lasso estimators and the C-Lasso estimators in

simulations reported below.

REMARK 5. As mentioned above, Byyr = 0 in Assumption A3(ii) under strict exogene-
ity. In the case of dynamic panel data models, we have to obtain a consistent estimate of
benT = @;HB%MVT in order to perform inference. Various methods have been proposed to es-
timate by in the literature under conditions that are typically simpler than the latent structure
model considered here. These methods generally involve first stage consistent estimates that are
subsequently plugged-into analytic formulae for the asymptotic bias function to achieve the cor-
rection. For example, Kiviet (1995) and Hahn and Kuersteiner (2002) derived bias formulae for
the WG estimator of a common autoregressive coefficient in first-order autoregressive (AR(1))
panel data models with exogenous regressors and propose ways to correct the bias such as the
use of plug-in corrections. Phillips and Sul (2007b) provide explicit asymptotic bias formulae for
linear dynamic panel regression estimators where the models may or may not exhibit unit roots,
incidental trends, exogenous regressors, and cross section dependence, all of which lead to different
formulae. Lee (2012) considers bias correction for WG estimators in higher-order autoregressive
models with exogenous regressors where the lag order is possibly misspecified. Other methods,
such as median unbiased estimation, indirect inference (Gourieroux, Phillips, and Yu, 2010), and
X-differencing (Han, Phillips, and Sul, 2014) have been used in dynamic panel data models to
avoid bias problems. To conserve space, we refer the readers directly to those papers for details
of these particular formulae and the correction procedures employed. In the present case, since
the formula for bynr = iﬁ;lBkNT is known and can be explicitly represented in cases such as
the presence of lagged dependent variables in z;;, we can also use a plug-in estimator to achieve
bias correction. The approach is similar to that proposed in Hahn and Kuersteiner (2002) and
recently reviewed in Moon, Perron, and Phillips (2014). However, in the present model the bias

term Bpyr = ﬁ ZieGg Zthl E (z440;) inevitably reflects the latent structure of the model
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and thereby involves further complications. For instance, in the panel AR(1) model there is no
longer a single common AR coefficient as in Hahn and Kuersteiner (2002). Implementation there-
fore requires plug-in estimates of each of the common autoregressive coefficients that appear in
the group structures {G } iy - 1t follows that consistent group structure estimation by {C’k}kK_Ol
is necessary for the plug-in mechanism to be feasible. To fix ideas, suppose the model (2.1) has

the panel AR(1) form
it = BYyit—1 + 1 + uie, |BY| < 1 for all 4, uy ~ iid (0,07) (2.11)

with latent structure (2.2) giving 89 = of for i € GY. Since E (uj—1-juis) = 0?1 {t = s + 1+ 5},

we have for ¢ € Gg

T T T .
ZE(yitqﬁit) = Z (yit—1uis) = =T Z Z (o) B (usp—1—juis)
t=1 t,s=1 j=0
T T—s—1 T T—s
j 1 1-— (ao)
_ OV = g2 k
1% X Z
B o2 _i o2 o2 11_(0)T
T1-af 1—agT: T o1-a T 1-T 1-af
so that
N, o2 1
BkNT_”NT%tzlE Yit—1Uit) Tl—a2+0<\/ﬁ>'

Further, as (N, T) — oo we have

e (%)2
so that
2
. _ N 0 N1 - (o) 1
VNT <a —ak> O By = \/NkT(aGk—ozk>+1/ T +0 (o5
N 0 1+042
= /N.T aék_ak+ T —|—Op(1)
B N©0,1- (), (2.12)

since ¥y, = o/ (1 — (o) ) here. As in Hahn and Kuersteiner (2002), (2.12) suggests a simple

bias correction within Gk, viz.,

l+ag  T+1 1
kE __ A a —
i e + T k=1,..., Ky, (2.13)
giving bias corrected estimators for the latent structure panel AR(1) model (2.11). Of course,

A, = %, T

formula (2.13) gives appropriate bias correction only in the stationary case where ‘a%! < 1 for all

k. For the general case, see the supplementary Appendix D.1 for the bias correction.
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2.6 Determination of the Number of Groups

In practice, the exact number Ky of groups is typically unknown. We assume that the true
number of groups is bounded from above by a finite integer K. and study the determination

of the number of groups via some information criterion. Consider the following PLS criterion

A N
QN (B.0) = Qur (8) + 5 ST 118 — el (2.14)
1=1

where 1 < K < Kpax. By minimizing the objective function (2.14), we obtain the C-Lasso
estimates {3; (K, A1), dy (K, M)} of {8;, 1}, where we make the dependence of §3; and éj, on
(K, A1) explicit. As above, we can classify individual i into group Gy (K, A1) if and only if

~

51‘ (K, /\1) = éék (K, )\1), i.e.,

Gr (K, ) = {z € {1,2,..., N} : B (K, \) = éu (K, Al)} fork=1,...,K.  (2.15)
Let G (K, A1) = {G1 (K, \1),...,Gx (K, \)}. Based on (2.15), define the post-Lasso estimate of

ozg by
Jr

T T
R B SHD 3L D Sl o A 210
i€GR(K ) =1 i€GR(K ) t=1
where AT denotes the Moore-Penrose inverse of A. Let &QG(K,)\l) = ﬁ Zle Zieék(K,Al) Z?:l

~ oA /A
9t = Qg k)
following information criterion:

#4]2. We propose to select the number of groups by choosing K to minimize the

IC) (K, M) = In [&é(K,M)} + pinppK, (2.17)

where p; 7 i a tuning parameter. Similar information criteria are used to choose tuning para-
meters by Wang, Li, and Tsai (2007), Liao (2013), and Lu and Su (2013) for shrinkage estimation
in various contexts and have been found to work satisfactorily.

We proceed to describe the asymptotic properties of (2.17). First, some notation. Let K =
{1,2, ..., Kimax}. We divide K into three subsets Ky, K_ and K as follows

KOZ{KGK:K:K()},K_Z{KGIC:K<K0}, andIC+:{K€IC:K>K0}.

The sets Ko, K_ and K denote subsets of K in which true, under-, and over-fitted models
are produced. Let GF) = (Gka, -, Gk i) be any K-partition of the set of individual indices
{1,2,..., N} . Let Gk denote the collection of such partitions. Let &QG(K) = ﬁ Zszl ZieGK,k Zthl

+
- A . A T ~ - T ~ - .
(it — a/GK,k@’itP; where &gy, = (ZiGGK . Yot mitx§t> ZiGGK X > i1 Zitit. The following as-
sumptions are useful in the asymptotic development.
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ASSUMPTION Ad. As (N,T) — oo, mini<p<x, infeum g, 0om — o2 > o3, where 0§ =
PN 1) 00 RT Lir Dt By

ASSUMPTION A5. As (N,T) — 0o, pinp — 0 and pynp0%p — oo where Syp = NY2TY2 jif
Bint = 0 and min(N/2T1/2 T otherwise.

Assumption A4 is intuitively clear and applies under primitive conditions in a variety of
models, such as panel autoregressions. It requires that all under-fitted models yield asymptotic
mean square errors that are larger than o3, which is delivered by the true model. A5 reflects
the usual conditions for the consistency of model selection. The penalty coefficient p; yp cannot
shrink to zero either too fast or too slowly.

The following theorem justifies the use of (2.17) as a selector criterion for K.
Theorem 2.6 Suppose that Assumptions A1-Ab5 hold. Then

P (Kelén{ﬂ@r IC) (K, \) > IC, (Ko,)\1)> —1as (N, T) — oc.

REMARK 6. Let K (\;) = argminj<x<g,,.. /C1 (K, A1). As Theorem 2.6 indicates, as long
as A1 satisfies Assumptions Al(v) and A2, we have P(K (\) = Kg) — 1 as (N,T) — oc.
Consequently, the minimizer of IC; (K, A1) with respect to K is equal to Ky w.p.a.1 for a variety
of choices of A;. In practice, it is desirable to have a data-driven method to choose the tuning

parameter A\q. For this purpose, define
ICT (A1) =IC1 (K (A1), \1).

The tuning parameter can then be chosen as A = argminy, ep, IC7 (A1), where Aj = {1 : A\
x T~ for any a € [1/4,1)} provided some conditions on the moments of |||, |uit| and |||
and on the relative rates at which N and T pass to infinity are satisfied — see the remark after

Assumption A2.

2.7 Extensions

Several major extensions of the C-Lasso methodology to other models and contexts are worth

mentioning. We discuss four possibilities below.

1. Mixed Panel Structure Models: Consider the case where some of the parameters in
Y are common across all individuals whereas others are group-specific. Write 89 = (B?(’l), ?(’2))’

x’, ). The panel

where 5?1 = 5?1) for all i = 1,..., N. Partition z;; conformably as z; = (x it(2)

(1)
structure becomes

Yit = 5?{)%:(1) + ﬁ?(’g)l‘it(z) + pi + it (2.18)
where 6?(2) =af if i € GY where k =1, ..., Ky and G?,...,G[}(O form a partition for {1,2,..., N}.
The model (2.18) is closely related to the model studied by Pesaran, Shin, and Smith (1999)
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in which long-run coefficients are constrained to be identical across individuals while short-run

coefficients may be heterogenous. In this case, the PLS objective function becomes

Q% (BB @) = Qur (B B) + 5 anol o -af,  (219)

where Q1 nT(8(1), B2 ) D S S (yzt = B1)Tita) — 5§(2)~’fz‘t(2)>2 s B2y = (Brys - Bn2)s
and Ty = Ty -1 ZS 1 Tis(r) for 1 = 1,2. Our previous analysis can now be followed to
establish umform consistency for the classifier and the oracle property for the resulting estimators
of ,8?1) and ag’s

2. Nonlinear Panel Data Models: Bester and Hansen (2009) consider estimation of non-
linear panel data models with common and group-specific parameters where the group structure
is completely known, e.g., based on some external classification or geographic location. They
provide conditions under which their group effects estimators of the common parameter are as-

ymptotically unbiased. To fix ideas, consider minimizing the following objective function

1
QN (0, ) NTE;;% wit, 0, ;) (2.20)
(]
where 6 is a finite dimensional common parameter, pu=(jq, ..., un), ¢ = —In f, and f (wy, 0, p;)

is the density function of w; with respect to some measure. Here the p,; denote time invari-
ant individual-specific effects that are held constant according to an observed group structure:
W) = af if i € GY where k = 1,..., Ky and {G?,...,G%O} forms a partition for {1,2,...,N}.*
Interestingly, the PLS C-Lasso method can be extended to study such nonlinear panel data mod-
els straightforwardly without the need to know each individual’s group membership. The PLS

objective function here takes the form

QlNT,\1 (0, ) = Q1N (0, ) +—ZH 2 i — ol - (2.21)

One can readily modify our numerical algorithm to estimate both the common parameter 8 and
the group-specific parameters {042}. The uniform consistency of the C-Lasso classifier and the
oracle properties of the parametric estimates can also be established.

3. Group Patterns of Heterogeneity: Bonhomme and Manresa (2014) consider a linear

panel data model with grouped patterns of heterogeneity that take the following form

Yir = 0% it + pg,; + i, (2.22)

4In traditional nonlinear panel data models, the individual effect 1; is a scalar, but our theory allows it to be a

vector. The aj’s are referred to as the group (fixed) effects in the literature.
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where the group membership variables g; € {1, ..., Ko} map individual units into groups. They
propose to estimate the group membership along with the common parameter ° in the model
based on some variants of the K-means algorithm and establish the asymptotic distributions for
the resulting estimators. In view of the fact that p,, has a factor structure pg, = X, fy where
fr = (1g, - tigcy)’s i = (0,...1,...0)" with 1 in the k™ position if i € G for k = 1,..., K and

zeros elsewhere, we may embed (2.22) in the more general model
yir = 0%z + N ) + i, (2.23)

where \) = oV if i € GY where k =1,..., Ky and {GO, ...,G[}(O} forms a partition for {1,2,..., N}.
In the economic growth literature, f; represents unobserved global shocks to the economy, and
/\? the marginal effects of the shocks to country i’s economic growth. It is sensible to assume
that the marginal effects are identical for countries that exhibit similar features. To estimate
(2.23) with the unknown group structure, we propose a two-step approach. In the first step, we
follow Bai (2009) and obtain the Gaussian quasi-maximum likelihood estimates é, 5\1, and ft of
0°, )2, and £ under the identification restrictions that 7! Z?:l fifl = I, and N~! Zi\; LA

is diagonal. In the second step, we consider the following regression
yir = 0%z + )\?lft + Uit (2.24)

by imposing the unknown group structure: )\? = ag if 1 € Gg where k£ = 1,..., Kyg. The PLS
objective function is similar to that in (2.19). In this framework, we can readily show that C-
Lasso yields uniform consistency for the classification and the oracle properties of the estimators

of 6° and ag just as if we were able to observe the exact group structure.

4. Granger-causality, Unit Root, and Cointegration in Heterogenous Panels: The
C-Lasso methodology can also be extended to analyze Granger-causality, unit roots, and cointe-
gration in heterogenous panels. In Granger-causality analysis we may consider either completely
homogenous or completely heterogenous relationships. The former may produce misleading con-
clusions if the causal or non-causal relationship is heterogeneous; the latter may yield imprecise
estimates and low power in hypothesis testing. An intermediate specification is to allow the re-
lationship to be group-specific. Similar remarks hold for panel unit root and cointegration tests
— see Breitung and Pesaran (2008) for an overview on this. As usual in nonstationary settings,
careful attention must be given to allow for different convergence rates for different parameters
in such systems (Phillips and Moon, 1999).

The C-Lasso approach is also well suited to testing for structural change in heterogeneous
panel data models, to nonparametric and semiparametric panel data models, and to models with
heterogeneous parametric or nonparametric time trends (e.g., Kneip, Sickles, and Song 2012,

Zhang, Su, and Phillips 2012). We can expect C-Lasso to deliver substantial efficiency gains in
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some of these cases where there is only partial heterogeneity in the structure. These and other

applications of the methodology will be examined in separate studies.

3 Penalized GMM Estimation of Panel Structure Models

This section considers penalized GMM estimation of panel structure models when some regressors
are lagged dependent variables or endogenous. As before, we first assume that the number
of groups is known and then consider the determination of the number of groups when that

information is unknown.

3.1 Penalized GMM Estimation of o and 3
We consider the first differenced system
Ayir = BY Azt + Auiy, (3.1)

where, e.g., Ay = yit — Yir—1 for t = 1,...,T and 7 = 1,..., N, and we assume that we have
observations on ;0 and z;9. Let z;; be a d X 1 vector of instruments for Ax;; where d > p. Define
Ay; = (Ayi, ..., Ayir)', with similar definitions for Az; and Au;.
We propose to estimate 8 and a by minimizing the following penalized GMM (PGMM)
criterion function®
v,
Q5N (B:@) = Qavr (B) + 2 D TL®, [18; — cue, (3.2)
i=1
where Qo nr (8) = + SN, [% S zie (Ays — 5£Affit)} , Wint [% S zie (Ays — BéAm)} , Wint
is a d X d matrix that is p.d. asymptotically and Ay = Aoy is a tuning parameter. Minimizing
the above criterion function produces the PGMM estimates & and B Let BZ and &j denote the
i and k™ columns of B and &, respectively, so that & = (aq, ..., &k, ) and 3 E(Bl, ...,BN).
As before, the objective function in (3.2) is convex in oy but not in B when one fixes «; for
j # k. With minor modifications, the numerical algorithm described in Section 4.2 can be used

to obtain the estimates & and B .

3.2 Preliminary Rates of Convergence for Coefficient Estimates

We first present sufficient conditions to ensure the consistency of (B, a). Let QLZAI = % Z;f:l Zit
A 1 T A 1 T A 1 T
X (Al"it),a Qi,sz =T Zt:l ZitAyita Qi,zAac =T Zt:l E[zit(Axit)/L and Qi,sz =T Zt:l E[zitAyit]-
5We were unable to establish asymptotic theory for the case where the criterion Q2 7 (8) is replaced by the fully

~ !
pooled criterion Q2,n1 (8) = [ﬁ SN ST 2 (Ayi — B;Amit)] Wit [ﬁ SN ST i (Ayie — B:Axn)] ,
where Wy is a d X d symmetric p.d. matrix. Use of the criterion Q2 n7 (8) means that the PGMM estima-

tor has the oracle property only in some specical cases.
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Let &; = (Ayar, (Azg), 2l) s p (&, B) = zit (Ayar — B'Axy) , and p; 7 (B) = ﬁ S i{p (4. B)
—E[p (&, B)]}- We make the following assumption.
ASSUMPTION BL1. (i) E[p (§,87)] =0 for each i=1,...,N and t =1,...,T.

. _ _ 2

(i) supges, ||Pir (B)H = Op(1) and %Zf\il Hpi,T (@‘)H = Op(1) for any B; € B; and
i=1,.. N.

(iii) Qi,zAz = Qi,zAm +op (1) for each i = 1,...,N and lim inf (N, 7)—00 MiN1 << N ,umin(Q;’ZAI
Qi,zAa:) - QQ > 0.

(iv) There exist nonrandom matrices W; such that maxi<i<n [|[Wint — Wi|| = op (1) and

lim inf y_ 0o minlgiSN :umin(Wi) =cy > 0.
(v) Ny/N — 1, € (0,1) for each k=1, ..., Ky as N — oc.
(vi) A2 = 0 as (N, T) — oo.

Assumption B1(i) specifies moment conditions to identify 5. B1(ii) is a high level condition
because we do not specify the data structure (or instruments) along with either the cross section
or time series dimension. Its first part can generally be verified by applying Donsker’s theorem to
specific cases. For example, if there exists F;;, a o-field, such that {&,,, Fi} is a stationary ergodic
adapted mixingale with size —1 (e.g., White, 2001, pp. 124-125), and Var(w’ﬁLT (By) = w'Eiw e
(0,00) as T — oo for some p.d. matrix ; and any w € R? with [|w|| = 1, then p; 7 (5;) 4N (0,%;)
and the first part of B1(ii) follows. In conjunction with B1(i), B1(iii) provides a rank condition
for the identification of 6?. It may also be used to establish the mean square convergence of BZ as
it implicitly requires that Qi,zAa: is of full rank uniformly in 7. B1(iv) is automatically satisfied if

one sets Wiyt = I, the dx d identity matrix. Conditions B1(v)-(vi) parallel the earlier conditions
Al1(iv)-(v).

Theorem 3.1 If Assumption Bl holds, then
(i) B; — B = Op (T=Y2 4+ Xp) fori=1,..,N,
. 2
(ii) % SN, |3 - 89| = 0p (171).
(iii) (Gq1), s (kp)) — (@F, .., 0%, ) = Op (T-1/2),
where (&1), .-, (k,)) 5 a suitable permutation of (a1, ..., Ak, )-

REMARK 7. Parts (i) and (ii) of Theorem 3.1 establish the pointwise and mean-square con-
vergence of BZ Part (iii) indicates that the group-specific parameters {a(f, ey a(}(} can also be
estimated consistently by {&1, ..., &k, } subject to permutation. For notational simplicity, here-

after we simply write &y for & (y) as the consistent estimator of a%, and define

Gr = {z €{1,2,...N}: B, = ak} for k=1, ..., K. (3.3)
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3.3 Classification Consistency

Define the following sequences of events:
Eynri={i ¢ Gr | i€ G} and Fynr = {i ¢ GR | i € Gy}, (3.4)

where i =1,...,N and k =1, ..., Ky. Let EkNT = UieG’gElkNT,i and FkNT = UieékaNTyi‘ We add
the following assumption.

ASSUMPTION B2. (i) Thy — oo and TA3 — ¢ € [0,00) as (N,T) — cc.
(ii) For any ¢ > 0, N maxj<;<ny P (HT*1 Zthl zit Auge|| > c\//\_2> — 0 as (N,T) — .

Assumptions B2(i)-(ii) parallel A2(i)-(ii). Like the case of A2(ii), one can also verify B2(ii)
under some primitive conditions on the process {ziAu;, t > 1}. The required moment conditions
are now imposed on |[|z;Auy||. Following the remark after Assumption A2, for a large range
of moment conditions on ||z;;Au;|| and the relative rates at which N and T pass to infinity, it

suffices to require that
Ao o< T7% for any a € [1/4,1). (3.5)

Uniform consistency of the classification is established in the next theorem.

Theorem 3.2 If Assumptions B1-B2 hold, then
(i) P <UkK:01EkNT> < Zfzol P (Ek:NT) — 0 as (N,T) — oo,
(i) P <UkK:°1FkNT> < 25:01 P (FkNT> — 0 as (N,T) — oc.

REMARK 8. Remark 2 also holds for the above theorem with obvious modifications. In
particular, let Gy denote the group of individuals in {1,2,..., N} that are not classified into
any of the Kq groups, i.e., Go = {1,2,..., N} \(Uiiolék) Define the events H;yr = {i € Go}.
Theorem 3.2(i) implies that P(Ui<i<yHint) < 25:01 P(Eynt) — 0. That is, all individuals can
be classified into one of the Ky groups w.p.a.l.

Let Ny = Zfil 1{i € G}}. Following the proof of Corollary 2.3, one can also prove that Ny

consistently estimates N.

Corollary 3.3 Suppose that Assumptions B1-B2 hold. Then Ny — Nj = op (1).

3.4 Improved Convergence and Asymptotic Properties of Post-Lasso

To obtain an improved rate of convergence for {&;} we provide more specific conditions with the

following assumption.

2

ASSUMPTION B3. (i) For each k = 1,..., Ko, N%Ziec:g = op (1) and

Wint & Wi > 0 for i € GY.

Qi,zAx - Qi,zAx
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(i) For each k =1,..., Ko, Ay = NL,Q ZieG% Q;ZAII/IQQZ»,ZAQZ — A >0 as (N,T) — oo.

(iii) For cach k = 1,..., Ko, - Sseqn @h.aaWint Loy zaluse — Benr = N (0,Cy) as
(N,T) — o0

Assumptions B3(i)-(iii) can be verified under various primitive conditions. For example, B3(i)
can be verified by the Markov inequality under (standard) conditions that (a) B || zi(Azy )| >
0 for some o > 0 and (b) {(Axi, zit, Aug), ¢t > 1} is strong mixing for each ¢ with mixing co-
efficients «; (1) that satisfy Nik ZZEGO > i (T) (2+9)/7 < 0. If, in addition, (¢) {(Azmj, zit)}
is also stationary along the time dimension and IID along the individual dimension for all indi-
viduals within the same group GY, and (d) W; = W for all i € GY, then B3(ii) is satisfied with
Ay, = {E [zi(Azit) ]} WE [2i(Az;)'] for any i € GY. To verify B3(iii), for simplicity we assume
that Wy = I; and make the following decomposition

\/W Z Qz ZAx Z ZztAult

i€GY

= 1/2T3/2 Z ZZE A.’EzszzszztAuzt)

GGOS 1t=1

1/2T3/2 Z ZZE A'xzszls ZZtA'Ufzt

eGOS 1t=1

NIP73/2 2T3/2 2 Z Z {[Aziszis — B (Amiszs) ] zitDuir — B (AwiszjezieAuae) §

ieG s=1 t=1
Bipnt + VinT + RinT, say, (3.6)

where Biym and Vinyp contributes to the asymptotic bias and variance, respectively, and Rpn7
is a term that is asymptotically negligible under suitable conditions. Then B3(iii) will be satisfied
with Winr = Lo if Vinr = s Sieay Sioa QoA % N (0,Cy) and Ry = op (1),
both of which can be verified by strengthening the conditions in (a)-(c). Note that A;lBkNT
signifies the asymptotic bias of &;, which may not be vanish asymptotically but can be corrected;
see Appendix D.2.6

The following theorem establishes the asymptotic distribution of the C-Lasso estimators {dy}.

Theorem 3.4 Suppose that Assumptions B1-B8 hold. Then /NiT (&k - ag) — f_l,;lBkNT 5
N(0, A PCLALY) for k=1, ..., Ko.

STf Conditions (a)-(b) after Assumption B3 are satisfied and E ||zt Auit [>T > 0, one can simply apply Davydov’s
inequality to obtain ||Brnr|| = ||E (Bent)|| < T\/ﬁ ZzEGO Zt ) ZZII |E [Aziszhszit Aui] || = O ((N/T)*l/z) 7
which is o(1) if 7> N and usually not asymptocially negligible otherwise. For general choices of Wiy, it may be
difficult to verify Assumption B3(iii).
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REMARK 9. In contrast to the PLS case, the PGMM estimators {&;} may fail to possess
the oracle property. If the group identities were known in advance, one could obtain the GMM

estimate & of 042 by minimizing the following objective function

!/

T T
Qnr (k) = ﬁ DOz (Ayie — ajAwmi) Wi ﬁ SNz (Ayi — of Ay |
i€eGY t=1 i€GY t=1

(3.7)
where for each k =1, ..., Ko, W](V% isadxd symmetrlc positive definite matrix. Let Q SACNT =
ﬁ ZzeGO Zthl Zit (Amz‘t), and Qsz,NT = W Zieag Zt:l zitAy;. Then &y = [QSZ);,NTWJ(\%
Q JAz, NT] QSX;} NTWJ(\f%Q(ZkA)y’ N7 We can readily show that the asymptotic distribution of &y
is typically different from that of & under some regularity conditions. See also the remark after

Theorem 3.5 below.

When the individuals have group identities that are unknown, we can replace Gg by its C-Lasso
estimate G in the GMM objective function (3.7) and obtain the post-Lasso GMM estimator of
042 given by

RN,
Osz QzAa: QzAa: Q,(ZA)xWNTQsz

~(k T
where QiA)x = NkT ZzeGk Zt 1 Zit (Az;;)" and Qsz = ﬁ Zieék > i1 ZitAyir. To study the
asymptotic normality of a Qg,, we add the following assumption.

ASSUMPTION B4. (i) For each k= 1,..., Ko, W B W®) > 0 as (N, T) — .

(ii) ngx’NT 5 ngx where QikA)x has rank p.

(i) w7 Diey i1 ZitAuit 2N (0, V).

Assumption B4 is standard in the literature on GMM estimation. The assumption can be
verified under various primitive conditions that allow for both conditional heteroskedasticity and

serial correlation in {z;Au;}. The following theorem establishes the asymptotic normality of

{ag, }-

Theorem 3.5 Suppose that Assumptions B1-B4 hold. Then /NiT (&g, — a?) 2 N (0,82%)
k k k) 171

where O = | QUL WHMQ! A’J QW w®QR, [QRWMQR, | and k =1,.... Ko.

REMARK 10. As in the proof of Theorem 2.5, one can apply Theorem 3.2 and demonstrate
that

VN T (a - ak> VT (61 — o) +op (1).

That is, the post-Lasso GMM estimator dék is asymptotically equivalent to the infeasible esti-
mate &, which an oracle could obtain with knowledge of each individual’s group identity. To

obtain the most efficient estimator among the class of GMM estimators based on the moment
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(k)

conditions specified in Assumption B1(i), one can set W.;. to be a consistent estimator of Vk_1

The procedure is standard and we omit the details for brevity.

REMARK 11. If Winr = WJ(\f:)F, Qiznn = Qg@x for each i € GY in Assumptions B3(i)-(ii),
and By = 0 in Assumption B3(iii), then Ay = Qi@;w(k)Qilzx, Cy = Qi@;W(k)QkW(k)QQIXW
and /N, T (dk — 042) O N (0,9%) . That is, in this special case, the C-Lasso estimator &z also
has the oracle property. But as remarked before, Byyr = 0 would typically require T > N, a
condition that we do not usually want to impose. For this reason, we recommend the post-Lasso

estimator &g, for the general case.”

3.5 Determination of the Number of Groups

When the true number of groups Ky is unknown, we continue to assume that it is bounded from

above by a finite integer Kpax. We consider the following PGMM criterion function

A N
QS (B.0) = Qovr (B) + 2 DT, 18 — . (3.8)
1=1

where 1 < K < Kpax. Minimizing the above objective function, we obtain the C-Lasso estimates
{BZ (K, ),y (K, )\2)} of {B;,ar}, where we make the dependence of §; and é; on (K, o)
explicit. As above, we classify individual i into group Gy (K, \2) if and only if Bz (K, \) =
ag (K, Xo), i.e

G (K, o) = {z € (1,2, N} : B, (K, \) = . (K, AQ)} for k=1,..., K. (3.9)

Let G (K,\1) = {G1(K,\1),...,Gx (K,\)}. Based on (3.9), we define the post-Lasso GMM

estimate of 042 by

5 _ | (K k) K k) (K k)
Ozék(K)\z) - [QzAa: QzAx QiAz NTQsz ) (310)
K.k) T ~ (K k T
where QU3 = ﬁziegmm > i zit (Azir) QiAy) = ﬁZieék(K,,\z) > i1 ZitAyit, and
W(k) is defined as before but with £k =1,2, ..., K.

1 K T ~
Let JG(K/\ )y = NT > et Zieék(K,Az) i1 [Ayie — alc?k(K,/\l)AxitF' We propose to select K
to minimize the following information criterion:

I1C, (K7 )\2) In [ G(K)\ )} +p2NTpK7

where pyy7 is a tuning parameter. As before, for any G(5) = (Gki,--,GrKk) € Ok, de-
fine 6’?;(}() = ﬁ Zszl Zz‘eGK,k Zthl[Ayit — &/CJK,QAxitPa where &g, is analogously defined
as dék(K,AQ) with G}, (K, \2) being replaced by G k.

TOf course one cannot choose W;nr to be group-specific (i.e., WJ(Vk%) because we do not know the group structure.
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To proceed, we add the following two assumptions.
ASSUMPTION B5. As (N, T) — oo, mini< g, infgmcg, 02 = Tau > 0k wWhere o%, =
PLM(N, 1) 00 7T YL Yy (Auir)®.
ASSUMPTION B6. As (N,T) — oo, payr — 0 and poyyNT — 0.

Assumptions B5-B6 parallel earlier Assumptions A4-A5. The following theorem proves con-

sistency of this choice of K as the minimizer of ICy (K, A2) with respect to K.

Theorem 3.6 Suppose that Assumptions B1-B2 and B4-B6 hold. Then

P (Kelén{ﬂ@r I1Cy (K, \o) > ICy (Ko,)\g)> —1as (N,T) — oo.

REMARK 12. The remark after 2.6 also holds here after obvious modifications. To obtain a

data-driven choice of the tuning parameter Ao, define
K (\g) = arg n}%n I1Cy (K, o) and IC5 (A2) = ICy (K (A2), A2) .

We can select the tuning parameter as 5\2 = argminy,ep, 1C5 (A2), where Ay = {Xg o T for
some a € [1/4,1)} provided some conditions on the moments of ||z;Au;| and on the relative
rates at which IV and T pass to infinity are satisfied. See the remarks after Assumptions A2 and
B2.

4 Simulation

In this section, we evaluate the finite-sample performance of the C-Lasso and post-Lasso estimates.

4.1 Data Generating Processes

We consider three data generating processes (DGPs) that cover static as well as dynamic panels.
Throughout these DGPs, the fixed effect p; and the idiosyncratic error u;; follow the standard
normal distribution and are mutually independent all across ¢ and ¢t. The observations in each
DGP are drawn from three groups, with the proportion of the numbers of observations Ny : Na :
N3 =0.3:0.3:0.4. We try six combinations of the sample sizes with N = 100, 200 and 7" = 10,
20, 40.

DGP 1 (Static panel with two exogenous regressors.) The observations (y;, z;;) are generated
from the panel structure model (2.1) where 2 = (i1, it2)', i1 = 0.2p; + €1, Tipo =

0.21; + €2, and e;1 and e are each IID N (0,1) and mutually independent. The true

wan-((3) () (2))
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DGP 2 (Static panel with endogeneity.) We maintain the panel structure model (2.1) with two
regressors in x;. iz ~ N (0,1) is independent of the idiosyncratic shock w;; while x4 is
generated from the following underlying reduced-form equation: x;; = 0.2u; + 0.52541 +
0.5z12 + 0.5¢;¢, where z;;1 and z;2, the two excluded instrumental variables, are each 11D
N (0,1), mutually independent, and independent of w;; and e;;. Endogeneity arises since
the reduced-form error term e;; and the structural-equation idiosyncratic shock u;; follow a

bivariate normal distribution:

()= (%)

The econometrician observes (yit, Tit, zit) With z; = (z41,xi2) and zix = (241, zit2)’. The

true coefficients are

wan-((2) () (2))

We set the gaps between the groups of the coefficients larger than those in DGP1 to com-

pensate for the weaker signal strength caused by instrumentation.

DGP 3 (Panel AR(1) with two exogenous regressors.) The model is
_ 0 0 0 0
Yit = Bavit—1 + BTz + BisTis + p1,(1 — Bi1) + i,

where ;0 and x;43 are two exogenous regressors. They follow the standard normal distrib-
utions, mutually independent, and are independent of the error term. For each 4, the initial
value is y;0 = 6?21‘@02 + 5?3%03 + 1; + w0 so that the i-th time series is strictly stationary

with mean p;. The true coefficients are

0.8 0.6 0.4
(a?,ag,ag) = 04 1, 1 ) 1.6
0.4 1 1.6

The choices of the lag term coefficients represent strong, moderate, and weak persistence,
respectively. The choices of the coefficients of the exogenous regressors balance the different

signal strength that stems from the dynamic structure.

4.2 Numerical Algorithm

Here we propose a numerical algorithm to obtain the PLS estimates & and B in Section 2. Similar
algorithm applies for he PGMM estimation.

The iterative numerical algorithm for the PLS estimation goes as follows:
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1. Start with arbitrary initial values &(© = (ézgo), s ézgg())) and B( (ﬁﬁo), ...,B(O)) such that
SV HBZ(»O) - éag))H # 0 for each k =2, ..., Ko.%
2. Having obtained &~ = (&gr_l) A%O ) and ,3 (BY*”, ...,B%il)), in step r > 1,

we first choose (3, a1) to minimize

(7“ 1) &g‘—l)

9

N
” A
Qe (B.a1) = Quar (8) + 5 D I1A; — on| T,
=1

(T71)’ &(T)

and obtain the updated estimate (3 1) of (B,a1). Next choose (3, a2) to minimize

K
szygl 2 ‘

Qﬁ?f}w (B,a2) = Q1nT (B Z 13

k

B(T 1 &(T—I)H

to obtain the updated estimate (B(T’2), dg)) of (B3, az) . Repeat this procedure until (8, ax,)

is chosen to minimize

N

" _ ~(rk ~(r
QNN (8, axy) = Qur (8 Z — o T 37 - &)
=1

to obtain the updated estimate (13(”(0)
(@7, ....a0).

aKO

A (r) ~ (r,Ko)

L&) of (Boax,). Let B = B

and &) =

3. Repeat step 2 until a convergence criterion is met, e.g., when

O e
Zi\fl ’ 5 — B H szol 041(:) . agr I)H
(r=1) < €to and ) < €tols
>N, ) B H +0.0001 Ko d,(j*”H +0.0001

where €, is some prescribed tolerance level (e.g., 0.0001). Define the final iterative estimate

of v as & = (ng),. (R)) for sufficiently large R such that the convergence criterion is

met. The final iterative estimate of 3 is defined as 3 = (By, ..., B) where

Ko
B, = Z (R)l {ﬁ(RZ) ,(fR) for some | =1, ...,Ko}

k=1
~(R.K, Ko ~(R,l
_|_5§ Ko) [1 — Zl {BE 2 = &,(CR) for some [ =1, ...,Ko}] (4.1)
k=1

(B,0)

th

column of 3 for [ = 1,2,..., K. Intuitively, individual i is

— ol

~ (R,
where [35 D denotes the i
A ~(R, .. .
classified to group Gy, if 3; ) for some [ = 1, ..., Ky; otherwise it is left unclassified

so that f3; is defined as BzR KO).

~ (0
8Under the condition that T diverges to the infinity, we can obtain the preliminary consistent estimate BE ) as

~OLS ~(0
B; . In addition, one can simply set a( )5 as zero or the average of ,81( )’s
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Table 1: Results of classification
[ 0.2 0.4 0.8 1.6 3.2
N T P(E) P(F) P(E) P(F) P(E) P(F) P(E) P(F) P(E) P(F)
DGP1 100 10 0.1805 0.0901 0.1899 0.0954 0.2236 0.1115 0.2777 0.1305 0.4216 0.1897
PLS 100 20 0.0593 0.0289 0.0585 0.0292 0.0576 0.0290 0.0805 0.0396 0.1304 0.0598
100 40 0.0103 0.0049 0.0098 0.0046 0.0093 0.0045 0.0094 0.0048 0.0149 0.0070
200 10 0.1691 0.0848 0.1771 0.0894 0.2097 0.1054 0.2766 0.1322 0.3976 0.1746
200 20 0.0586 0.0284 0.0556 0.0275 0.0552 0.0277 0.0719 0.0362 0.1338 0.0613
200 40 0.0092 0.0044 0.0083 0.0040 0.0081 0.0039 0.0078 0.0040 0.0141 0.0066

DGP2 100 10 0.2082 0.0993 0.2001 0.0974 0.2024 0.1004 0.2145 0.1076 0.2527 0.1274
PGMM 100 20 0.1027 0.0485 0.0958 0.0462 0.0888 0.0437 0.0878 0.0440 0.0996 0.0504
100 40 0.0321 0.0152 0.0307 0.0147 0.0266 0.0130 0.0230 0.0115 0.0227 0.0116
200 10 0.2037 0.0980 0.1982 0.0971 0.1968 0.0984 0.2113 0.1071 0.2482 0.1257
200 20 0.1020 0.0483 0.0942 0.0456 0.0872 0.0432 0.0841 0.0424 0.0942 0.0480
200 40 0.0332 0.0158 0.0299 0.0144 0.0266 0.0130 0.0222 0.0111 0.0212 0.0109

DGP3 100 10 0.2063 0.1038 0.1839 0.0908 0.1913 0.0937 0.2305 0.1092 0.4058 0.1715
PLS 100 20 0.1000 0.0501 0.0826 0.0404 0.0750 0.0357 0.0800 0.0391 0.1968 0.0886
100 40 0.0277 0.0137 0.0222 0.0106 0.0183 0.0085 0.0158 0.0072 0.0373 0.0177

200 10 0.2025 0.1026 0.1714 0.0853 0.1709 0.0844 0.2079 0.0998 0.3539 0.1498

200 20 0.0983 0.0490 0.0794 0.0386 0.0703 0.0333 0.0716 0.0347 0.1451 0.0657

200 40 0.0255 0.0126 0.0209 0.0100 0.0173 0.0080 0.0151 0.0069 0.0220 0.0103

DGP3 100 10 0.3173 0.1566 0.2991 0.1482 0.2924 0.1437 0.3016 0.1471 0.3379 0.1650
PGMM 100 20 0.1688 0.0833 0.1525 0.0753 0.1405 0.0683 0.1335 0.0629 0.1422 0.0665
100 40 0.0729 0.0355 0.059 0.029 0.0495 0.0239 0.0436 0.0203 0.0421 0.0189
200 10 0.3151 0.1557 0.2919 0.1449 0.2789 0.1381 0.2876 0.1415 0.3243 0.1597
200 20 0.1714 0.0847 0.1503 0.0745 0.1345 0.0655 0.1288 0.0609 0.1363 0.0638
200 40 0.0731 0.0356 0.0575 0.0284 0.0486 0.0236 0.0426 0.0199 0.0406 0.0183

Obviously, each iteration step r has Ko substeps and we can use 7.k to denote substep k
within step r. Note the objective function Q X NT (B, o) is convex in (8, o) in each substep 7.k.
So the above iteration procedure has fast implementation in practice. Moreover, in view of the
fact that

(r, KO) & (r)

Ko) Ar— 1) & (r— T, A1) (r T, ) ~(r
QU (B D) > QW (B a7 > - > QU (B W)=, B",.a"),

the convergence of (,B(T), &) is readily established and simulations confirm that convergence is

rapid, usually occurring after just a few iterations.

4.3 Classification and Point Estimation

In this section, we assume that we know the number of groups, and focus on the pointwise
classification error and the point estimation. We estimate the parameters in DGP 1 with PLS,
in DGP 2 with PGMM, and in DGP 3 with both PLS and PGMM. The tuning parameter \; is
set to be C’,\s%/T_l/2 for j = 1,2, where s2 is the sample variance of §;; for PLS or the sample
variance of Ay;; for PGMM, respectively. C); is a sequence of geometrically increasing constants;

here we try five values for C) : 0.2, 0.4, 0.8, 1.6, and 3.2. Regarding the initial values, we set
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d,(CO) = d,(CO) =0 and {BZ(-O) N, or {B,EO) N | to be the within-group estimates.”

The bias of the estimators for the dynamic model in DGP 3 is corrected via the one-sided
kernel as discussed in Appendix D.1 and D.2 with a tuning parameter Mp = 2 X LTl/ 4J ,
where |a] denotes the integer part of a real number a. For the PGMM estimation, we use
(Yit—2, Yit—3, Azit2, Axyz) as the instruments for (Ay; -1, Azie, Aziz) in the first-differenced
model. We lose three observations in PGMM: one for the lagged regressor, and two for the con-
struction of the instruments. On the other hand, we only lose one observation in PLS for the
lagged regressor. We generate T+ 3 observations for each group in the simulation, and it provides
T + 2 effective observations to PLS and T effective observations to PGMM.

We run 500 replications for each scenario. Table 1 reports the classification results. As is
discussed in Remark 2, we classify all observations into the group whose &y, is the closest to BZ
We summarize the pointwise classification error by the average over ¢ = 1,..., N, as we have
no space to report for each individual 4. The values in the table are the means of the average
classification errors P(E) = + SN P(Eynry) and P(F) = + SN | P(Fjn7i) where P denotes
the empirical mean across the 500 replications.

In Table 1 the classification errors quickly shrink toward 0 as 7' increases. In particular,
when T = 40 the PLS classification errors P(E) and P(F) typically take on values 0.5-3%, and
PGMM classification errors are also small. The results are not sensitive to the choice of the
tuning parameter via Cy. In DGP 3 where both PLS and PGMM are applied, PLS appears
more accurate than PGMM. This is expected since (i) PLS utilizes more effective number of
observations; (ii) PLS does not incur extra randomness from instrumentation; (iii) we do not
have an optimal weighting scheme, so that we use the simple equal weighting for the PGMM, i.e.,
by setting W; 7 = I; throughout.

We now move on to the point estimation. Tables 2-5 report the root-mean-squared error
(RMSE) and the bias of the estimates of the first element 3, in ; in each model.!? Since each
DGP has three groups of different coefficients, the outcomes of the coefficient estimation are not di-
rectly comparable across groups. Due to space limit, we weight the RMSEs and the biases by their
proportion in the population. For example, RMSE(Bl) is calculated as % ZkK:O1 NLRMSE(éy 1)
with &y, 1 being the first element in ¢y, and so is the bias. For the bias corrected estimates in
DGPs 2 and 3, we use the formulae detailed in Appendix D.

The general pattern in Tables 2-5 is clear. First, the RMSEs and biases of all C-Lasso

estimators shrink toward zero when T’ increases and N remains fixed. Second, the post-Lasso

9We experimented with /3’50) = /3’50)

classification and estimation results. This suggests that the algorithm is insensitive to the initial value at least

~ (0

=1 for all 7 and d,(co) = qy, ) — 0 for all k. The latter choice delivers similar

under the sensible choices, although the high-dimensionality hinders a straightforward visualization of the shapes

of the objective functions with respect to the parameters.
10T he results of the estimation of the other coefficients are available upon request.
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Table 2: Estimation of ﬁi’l in DGP 1 by PLS
(&) 0.2 0.4 0.8 1.6 3.2
N T RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias
100 10 C-Lasso 0.1010 0.0364 0.1116 0.0364 0.1303 0.0293 0.1780 -0.0150 0.3206 -0.0968
Post-lasso  0.0907 0.0282 0.1035 0.0293 0.1274 0.0254 0.1788 -0.0162 0.3216 -0.0984
Oracle 0.0583 -0.0033 0.0583 -0.0033 0.0583 -0.0033 0.0583 -0.0033 0.0583 -0.0033
100 20 C-Lasso 0.0590 0.0154 0.0560 0.0183 0.0507 0.0154 0.0690 0.0054 0.0856 0.0012
Post-lasso  0.0450 0.0066 0.0467 0.0092 0.0470 0.0090 0.0687 0.0038 0.0846 0.0012
Oracle 0.0399 -0.0021 0.0399 -0.0021 0.0399 -0.0021 0.0399 -0.0021 0.0399 -0.0021
100 40 C-Lasso 0.0347 0.0096 0.0348 0.0047 0.0305 0.0053 0.0301 0.0023 0.0347 0.0011
Post-lasso  0.0292 0.0012 0.0293 0.0002 0.0291 0.0010 0.0290 0.0008 0.0337 0.0010
Oracle 0.0281 -0.0010 0.0281 -0.0010 0.0281 -0.0010 0.0281 -0.0010 0.0281 -0.0010
200 10 C-Lasso 0.0767 0.0312 0.0856 0.0319 0.1017 0.0256 0.1457 -0.0004 0.3127 -0.0985
Post-lasso  0.0630 0.0225 0.0759 0.0237 0.0963 0.0210 0.1441 -0.0009 0.3137 -0.1001
Oracle 0.0410 0.0019 0.0410 0.0019 0.0410 0.0019 0.0410 0.0019 0.0410 0.0019
200 20 C-Lasso 0.0491 0.0152 0.0424 0.0151 0.0366 0.0137 0.0501 0.0102 0.0930 -0.0032
Post-lasso  0.0320 0.0056 0.0327 0.0067 0.0329 0.0077 0.0473 0.0089 0.0916 -0.0031
Oracle 0.0280 0.0007 0.0280 0.0007 0.0280 0.0007 0.0280 0.0007 0.0280 0.0007
200 40 C-Lasso 0.0276 0.0122 0.0259 0.0048 0.0222 0.0062 0.0210 0.0036 0.0233 0.0016
Post-lasso  0.0204 0.0023 0.0203 0.0012 0.0202 0.0018 0.0204 0.0021 0.0222 0.0016
Oracle 0.0193 0.0004 0.0193 0.0004 0.0193 0.0004 0.0193 0.0004 0.0193 0.0004

estimates generally outperform the C-Lasso estimates in terms of biases and RMSEs. Third, Table
3-5 suggest that bias correction works in the right direction even though the bias corrected C-
Lasso estimates may still be outperformed by the post-Lasso estimates or their corrected versions.
Fourth, the estimation of a dynamic panel is challenging: in comparison with other DGPs, the
oracle estimator in Table 4 exhibits a relatively large bias and it leads to a large RMSE. The bias
problem is mitigated in Table 5 when we introduce instruments.

Throughout Tables 2 and 4 the finite-sample performance of the post-Lasso PLS is close to
that of the oracle estimator, which demonstrates the practical relevance of the oracle property.
The RMSE of post-Lasso generally remains the smallest in comparison with C-Lasso and bias-
corrected C-Lasso in PGMM, in which the oracle property is missing. We recommend the post-

Lasso estimator for practical use.

5 Empirical Application

Understanding the disparate saving behavior across countries is of long-lasting research interest in
development economics. Theoretical advancement and empirical studies have been accumulating
over the years; see Feldstein (1980), Deaton (1990), Edwards (1996) Bosworth, Collins, and
Reinhart (1999), Rodrik (2000), and Li, Zhang, and Zhang (2007), among others. Empirical
research either employs standard panel data methods to handle the heterogeneity, or relies on

prior information to categorize countries into groups. Classification criteria vary from geographic
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Table 3: Estimation of 3;; in DGP 2 by PGMM

[\ 0.2 0.4 0.8 1.6 3.2
N T RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias
100 10 C-Lasso 0.1906 0.1093 0.1907 0.1242 0.2018 0.1388 0.2096 0.1490 0.2220 0.1581
Post-lasso 0.1416 0.0152 0.1368 0.0251 0.1413 0.0325 0.1421 0.0381 0.1533 0.0443
C-Lasso BC 0.1603 0.0684 0.1586 0.0811 0.1679 0.0928 0.1737 0.1009 0.1858 0.1085
Oracle 0.0993 -0.0001 0.0993 -0.0001 0.0993 -0.0001 0.0993 -0.0001 0.0993 -0.0001
100 20 C-Lasso 0.1179 0.0560 0.1176 0.0683 0.1182 0.0799 0.1239 0.0898 0.1321 0.0985
Post-lasso 0.0838 0.0138 0.0815 0.0181 0.0810 0.0200 0.0826 0.0212 0.0871 0.0216
C-Lasso BC 0.0986 0.0374 0.0978 0.0464 0.0986 0.0539 0.1021 0.0600 0.1083 0.0652
Oracle 0.0680 -0.0004 0.0680 -0.0004 0.0680 -0.0004 0.0680 -0.0004 0.0680 -0.0004
100 40 C-Lasso 0.0712 0.0400 0.0754 0.0422 0.0761 0.0464 0.0753 0.0504 0.0772 0.0557
Post-lasso 0.0519 0.0136 0.0522 0.0129 0.0519 0.0122 0.0516 0.0112 0.0522 0.0108
C-Lasso BC 0.0614 0.0274 0.0632 0.0282 0.0637 0.0301 0.0634 0.0317 0.0645 0.0343
Oracle 0.0492 0.0007 0.0492 0.0007 0.0492 0.0007 0.0492 0.0007 0.0492 0.0007
200 10 C-Lasso 0.1606 0.1139 0.1726 0.1285 0.1797 0.1424 0.1897 0.1525 0.1989 0.1585
Post-lasso 0.0963 0.0230 0.1034 0.0282 0.1063 0.0371 0.1117 0.0417 0.1201 0.0436
C-Lasso BC 0.1255 0.0739 0.1355 0.0843 0.1415 0.0961 0.1497 0.1038 0.1575 0.1078
Oracle 0.0687 0.0007 0.0687 0.0007 0.0687 0.0007 0.0687 0.0007 0.0687 0.0007
200 20 C-Lasso 0.0961 0.0588 0.1000 0.0708 0.1029 0.0820 0.1071 0.0902 0.1118 0.0949
Post-lasso 0.0572 0.0169 0.0581 0.0207 0.0578 0.0225 0.0582 0.0220 0.0601 0.0197
C-Lasso BC 0.0755 0.0410 0.0784 0.0495 0.0805 0.0566 0.0829 0.0610 0.0859 0.0628
Oracle 0.0501 -0.0007 0.0501 -0.0007 0.0501 -0.0007 0.0501 -0.0007 0.0501 -0.0007
200 40 C-Lasso 0.0642 0.0386 0.0627 0.0411 0.0649 0.0443 0.0636 0.0486 0.0661 0.0539
Post-lasso 0.0411 0.0106 0.0377 0.0097 0.0374 0.0084 0.0370 0.0075 0.0373 0.0072
C-Lasso BC 0.0513 0.0250 0.0490 0.0258 0.0495 0.0269 0.0489 0.0286 0.0501 0.0313
Oracle 0.0346 0.0006 0.0346 0.0006 0.0346 0.0006 0.0346 0.0006 0.0346 0.0006

33



Table 4: Estimation of 3;, in DGP 3 by PLS

(&) 0.2 0.4 0.8 1.6 3.2
N T RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias
100 10 C-Lasso 0.1331 -0.1216 0.1264 -0.1143 0.1189 -0.1028 0.1120 -0.0858 0.1557 -0.0561
Post-lasso 0.1011 -0.0863 0.1041 -0.0897 0.1059 -0.0866 0.1077 -0.0784 0.1573 -0.0560
C-Lasso BC 0.1220 -0.1088 0.1157 -0.1022 0.1088 -0.0909 0.1033 -0.0740 0.1532 -0.0443
Post-Lasso BC 0.0922 -0.0745 0.0949 -0.0782 0.0971 -0.0751 0.0998 -0.0667 0.1548 -0.0441
Oracle 0.0928 -0.0855 0.0928 -0.0855 0.0928 -0.0855 0.0928 -0.0855 0.0928 -0.0855
100 20 C-Lasso 0.0782 -0.0711 0.0740 -0.0670 0.0671 -0.0603 0.0580 -0.0505 0.0711 -0.0254
Post-lasso 0.0539 -0.0431 0.0558 -0.0471 0.0558 -0.0482 0.0529 -0.0444 0.0713 -0.0233
C-Lasso BC 0.0723 -0.0643 0.0682 -0.0605 0.0614 -0.0540 0.0527 -0.0443 0.0691 -0.0191
Post-Lasso BC 0.0494 -0.0368 0.0508 -0.0410 0.0507 -0.0421 0.0479 -0.0382 0.0694 -0.0170
Oracle 0.0527 -0.0469 0.0527 -0.0469 0.0527 -0.0469 0.0527 -0.0469 0.0527 -0.0469
100 40 C-Lasso 0.0428 -0.0372 0.0405 -0.0351 0.0363 -0.0310 0.0321 -0.0270 0.0315 -0.0213
Post-lasso 0.0289 -0.0224 0.0295 -0.0236 0.0297 -0.0241 0.0293 -0.0238 0.0313 -0.0204
C-Lasso BC 0.0401 -0.0339 0.0378 -0.0319 0.0336 -0.0279 0.0295 -0.0239 0.0294 -0.0182
Post-Lasso BC 0.0266 -0.0193 0.0272 -0.0206 0.0273 -0.0210 0.0269 -0.0207 0.0294 -0.0173
Oracle 0.0285 -0.0236 0.0285 -0.0236 0.0285 -0.0236 0.0285 -0.0236 0.0285 -0.0236
200 10 C-Lasso 0.1297 -0.1235 0.1218 -0.1154 0.1113 -0.1040 0.0976 -0.0855 0.1241 -0.0532
Post-lasso 0.0941 -0.0859 0.0971 -0.0900 0.0952 -0.0865 0.0899 -0.0761 0.1244 -0.0520
C-Lasso BC 0.1180 -0.1106 0.1105 -0.1032 0.1004 -0.0921 0.0874 -0.0736 0.1201 -0.0412
Post-Lasso BC 0.0847 -0.0741 0.0872 -0.0785 0.0854 -0.0751 0.0807 -0.0644 0.1206 -0.0400
Oracle 0.0898 -0.0859 0.0898 -0.0859 0.0898 -0.0859 0.0898 -0.0859 0.0898 -0.0859
200 20 C-Lasso 0.0748 -0.0703 0.0705 -0.0661 0.0634 -0.0595 0.0541 -0.0501 0.0540 -0.0331
Post-lasso 0.0491 -0.0418 0.0512 -0.0462 0.0517 -0.0474 0.0484 -0.0441 0.0538 -0.0312
C-Lasso BC 0.0687 -0.0636 0.0645 -0.0596 0.0575 -0.0532 0.0484 -0.0439 0.0507 -0.0268
Post-Lasso BC 0.0444 -0.0356 0.0460 -0.0400 0.0463 -0.0413 0.0430 -0.0379 0.0507 -0.0249
Oracle 0.0492 -0.0460 0.0492 -0.0460 0.0492 -0.0460 0.0492 -0.0460 0.0492 -0.0460
200 40 C-Lasso 0.0399 -0.0364 0.0377 -0.0346 0.0335 -0.0305 0.0295 -0.0265 0.0267 -0.0221
Post-lasso 0.0259 -0.0216 0.0266 -0.0230 0.0268 -0.0234 0.0266 -0.0233 0.0264 -0.0212
C-Lasso BC 0.0370 -0.0332 0.0348 -0.0314 0.0307 -0.0274 0.0267 -0.0234 0.0243 -0.0190
Post-Lasso BC 0.0234 -0.0185 0.0241 -0.0199 0.0242 -0.0203 0.0240 -0.0202 0.0240 -0.0181
Oracle 0.0261 -0.0231 0.0261 -0.0231 0.0261 -0.0231 0.0261 -0.0231 0.0261 -0.0231
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Table 5: Estimation of 3;; in DGP 3 by PGMM

[ 0.2 0.4 0.8 1.6 3.2
N T RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias
100 10 C-Lasso 0.1823 -0.1065 0.1892 -0.1241 0.1980 -0.1417 0.2090 -0.1627 0.2271 -0.1817
Post-lasso 0.1304 -0.0352 0.1231 -0.0331 0.1161 -0.0311 0.1137 -0.0352 0.1202 -0.0427
C-Lasso BC 0.1494 -0.0698 0.1509 -0.0800 0.1516 -0.0897 0.1572 -0.1047 0.1729 -0.1206
Oracle 0.0664 -0.0013 0.0664 -0.0013 0.0664 -0.0013 0.0664 -0.0013 0.0664 -0.0013
100 20 C-Lasso 0.0808 -0.0319 0.0858 -0.0478 0.0974 -0.0687 0.1114 -0.0888 0.1247 -0.1035
Post-lasso 0.0584 -0.0010 0.0565 -0.0031 0.0546 -0.0068 0.0538 -0.0109 0.0554 -0.0138
C-Lasso BC 0.0678 -0.0175 0.0690 -0.0275 0.0739 -0.0411 0.0814 -0.0548 0.0904 -0.0648
Oracle 0.0399 -0.0027 0.0399 -0.0027 0.0399 -0.0027 0.0399 -0.0027 0.0399 -0.0027
100 40 C-Lasso 0.0442 -0.0126 0.0447 -0.0198 0.0519 -0.0329 0.0646 -0.0491 0.0742 -0.0606
Post-lasso 0.0356 0.0025 0.0334 0.0006 0.0327 -0.0018 0.0325 -0.0037 0.0320 -0.0046
C-Lasso BC 0.0395 -0.0047 0.0384 -0.0094 0.0406 -0.0173 0.0459 -0.0268 0.0507 -0.0333
Oracle 0.0274 -0.0011 0.0274 -0.0011 0.0274 -0.0011 0.0274 -0.0011 0.0274 -0.0011
200 10 C-Lasso 0.1666 -0.0979 0.1711 -0.1168 0.1788 -0.1386 0.1916 -0.1582 0.2059 -0.1783
Post-lasso 0.1062 -0.0297 0.0972 -0.0275 0.0912 -0.0276 0.0909 -0.0312 0.0915 -0.0380
C-Lasso BC 0.1324 -0.0640 0.1305 -0.0743 0.1327 -0.0879 0.1408 -0.1018 0.1497 -0.1171
Oracle 0.0476 -0.0009 0.0476 -0.0009 0.0476 -0.0009 0.0476 -0.0009 0.0476 -0.0009
200 20 C-Lasso 0.0764 -0.0326 0.0800 -0.0487 0.0910 -0.0700 0.1056 -0.0903 0.1167 -0.1039
Post-lasso 0.0463 -0.0021 0.0417 -0.0037 0.0408 -0.0075 0.0401 -0.0116 0.0401 -0.0143
C-Lasso BC 0.0612 -0.0191 0.0603 -0.0289 0.0657 -0.0428 0.0737 -0.0564 0.0809 -0.0657
Oracle 0.0287 -0.0010 0.0287 -0.0010 0.0287 -0.0010 0.0287 -0.0010 0.0287 -0.0010
200 40 C-Lasso 0.0395 -0.0138 0.0395 -0.0214 0.0466 -0.0348 0.0591 -0.0511 0.0689 -0.0621
Post-lasso 0.0269 0.0011 0.0235 -0.0007 0.0233 -0.0028 0.0231 -0.0049 0.0227 -0.0055
C-Lasso BC 0.0320 -0.0066 0.0304 -0.0114 0.0333 -0.0194 0.0392 -0.0289 0.0441 -0.0349
Oracle 0.0192 -0.0010 0.0192 -0.0010 0.0192 -0.0010 0.0192 -0.0010 0.0192 -0.0010
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locations to the notion of developed countries versus developing countries (Loayza, Schmidt-
Hebbel and Servén, 2000). Here we apply the new methodology developed in this paper to revisit

this empirical problem.

5.1 Model and Data

Following Edwards (1996), we consider the following simple regression model
Sit = B1iSig—1 + Boilit + B Rit + By Gie + py + wit, (5.1)

where Sj; is the ratio of savings to GDP, I;; is the CPI-based inflation rate, R; is the real interest
rate, Gy is the per capita GDP growth rate, pu; is the fixed effect, and wu;; is the idiosyncratic error
term. Inflation characterizes the degree of the macroeconomic stability, and the real interest rate
reflects the price of money. The relationship between the savings rate and GDP growth rate has
been well documented, and the latter was found to Granger-cause the former (Carroll and Weil,
1994). The lagged dependent variable is added to capture the persistence of the savings rate.

Our data are obtained from the widely used World Development Indicators, a comprehensive
dataset compiled by the World Bank.!'? We extract all countries that have complete information
for all the variables in (5.1). We find that for many countries the time series of real interest
rates are often short in comparison with other variables. Under the dynamic specification, the
time span 1995-2000 gives a balanced panel of 57 countries, each consisting of 15 time series
observations. When summarizing the descriptive statistics, we find that Bulgaria’s 1997 economic
collapse led to a hyperinflation of CPI 1058.3, which significantly pulls up the overall mean and
the standard deviation. We thus remove Bulgaria from our sample. Table 6 reports the basic
descriptive statistics for the remaining 56 countries. It suggests that the data exhibit noticeable
heterogeneity.

Figure 1 shows the sample standard deviations of the savings rates across countries. The
maximal standard error among the 56 countries is 16.7 times larger than the minimal. Unlike
the standard FE estimation, the coefficients estimated by PLS as in (2.4) are scale-invariant to
neither the dependent variable nor the explanatory variables, due to the presence of the penalty
term. When we face this real data, we normalize the data and modify the penalty to enforce
scale-invariance. First, after demeaning we standardize each explanatory variable by dividing
the within-country standard deviation, so that the standard deviation is 1 for each transformed
explanatory variable in each country. The transformation also makes the coefficients comparable—

they can be interpreted as the ceteris paribus effect of a one-standard-deviation change of that

"ISee http://data.worldbank.org/data-catalog/world-development-indicators.
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Figure 1: The time series standard deviations of the savings rates for the 56 countries

explanatory variable on the dependent variable. Second, we modify (2.4) to be

=|

)\ N
Qunr(B) + 55 3 (60 KO (18, — aul- (5.2)
=1

1/2
where &; = <T‘1 Zle gg) . The estimate from the above criterion function is scale-invariant
to the dependent variable. It is easy to show that the asymptotic theory established early on

continue to hold with these modifications.

5.2 Classification and Estimation

Before estimation, we must determine the number of groups. A practical guidance is provided
by Lu and Su’s (2014) residual-based LM test. The tuning parameter for the PLS estimation

is chosen to be \; = cr—1/2

, where c¢ takes three values, namely, 1, 1.5 and 2, to examine the
sensitivity of the test to the choice of the tuning parameter. Table 7 reports the test statistics as
well as the p-values for testing the null hypothesis: Hgy : Ko = 1, 2, and 3, sequentially. Under
the null, the test statistic converges in distribution to a standard normal random variable. To
take account the issue of multiple testing, the table also reports the conservative Hohm adjusted
p-values. The null is rejected if the adjusted p-value is smaller than the given nominal significance
level a.

We first consider testing Hy : Ky = 1, the null hypothesis of one group. In this case, there is
no need for group classification and the test statistic does not depend on the choice of the tuning
parameter A;. The adjusted p-values are all less than 0.01, which provides strong evidence that
the slope coefficients are not homogeneous across the 56 countries under our investigation. We

then test the hypothesis Hy : Ky = 2. Interestingly, at the 5% nominal level, we fail to reject
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Table 6: Summary statistics for the savings data set

mean median  s.e. min max
Savings rate 22.099 20.790 8.833 -3.207 53.434
Inflation rate 7.724 4.853 15.342 -3.846  293.679
Real interest rate 7.422 5.927 10.062 -63.761 93.915

Per capita GDP growth rate 2.855 2971 3.865 -17.545 14.060

Table 7: Test statistics

c=1 c=15 c=2
Null hypotheses KOZ 1 KOZ 2 KOZ 3 KOZ 1 K(): 2 KOZ 3 KQZ 1 K(): 2 KOZ 3
Statistics 3.0400 1.3975 0.7154 3.0400 1.2656 1.0695 3.0400 2.3961 1.4114
p-values 0.0012 0.0811 0.2372 0.0012 0.1028 0.1424 0.0012 0.0083 0.0791

Holm adjusted p-values 0.0024 0.0811 NA 0.0024 0.1028 NA  0.0024 0.0083 NA

Hy: Ky =2 when ¢ =1 and 1.5, and but reject Hyp : Ky = 2 when ¢ = 2 based on the adjusted
p-values. If we move one-step further and consider testing Hy : Ko = 3, then we fail to reject the
null hypothesis of three groups at the 5% significant level for all three choices of ¢. Therefore,
we may conclude that we have 2 or 3 groups in the data. Below we follow the majority rule and
report the estimation outcomes for the two-group case with ¢ = 1.5. In this case, our C-Lasso

method classifies the 56 countries into the following two groups:

e Group 1 (36 countries): Armenia, Australia, Bangladesh, Bolivia, Botswana, Cape Verde,
China, Costa Rica, Czech, Guatemala, Honduras, Hungary, Indonesia, Israel, Italy, Japan,
Jordan, Latvia, Malawi, Malaysia, Mauritius, Mexico, Mongolia, Panama, Paraguay, Philip-
pines, Romania, Russian, South Africa, Sri Lanka, Switzerland, Syrian, Thailand, Uganda,
Ukraine, United Kingdom;

e Group 2 (20 countries): Bahamas, Belarus, Canada, Dominican, Egypt, Guyana, Iceland,
India, Kenya, South Korea, Lithuania, Malta, Netherlands, Papua New Guinea, Peru, Sin-

gapore, Swaziland, Tanzania, United States, Uruguay.

Here the data determine the group identities. Interestingly, some geographic features are
still salient. For example, we observe the dominance of Asian countries in Group 1. Group 1
accommodates 13 Asian countries whereas Group 2 contains only 3. Except South Korea and the
city state Singapore, Group 1 includes all Eastern Asian and Southeastern Asian countries in our
sample (China, Japan, Indonesia, Malaysia, Philippines, and Thailand).

Table 8 reports the results for the PLS-based C-Lasso and post-Lasso estimation, in com-
parison with those for the single-group FE estimation. The estimates are bias-corrected and
the standard errors (in parentheses) are calculated based on the asymptotic variance-covariance
formula. Compared with Edwards (1996), the FE results re-confirm the significance of lagged

savings and GDP growth rate as well as the insignificance of inflation and interest rates in the
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Table 8: Estimation results

Slope coefficients Common Group 1 Group 2
FE C-Lasso  post-Lasso  C-Lasso  post-Lasso
51 0.6203*** 0.5510*** 0.5548***  0.6090***  0.6156***
(0.1330) (0.1090) (0.1057)  (0.1060) (0.1057)
B 0.0303 —0.1154**  —0.1068**  0.2712***  0.2661***
(0.0484) (0.0464) (0.0458)  (0.0515) (0.0514)
B 0.0068 —0.0419 —0.0273 0.0525 0.0533
(0.0432)  (0.0490)  (0.0476)  (0.0406)  (0.0401)
Ba 0.1880*** 0.2771*** 0.3055***  0.0625 0.0291

(0.0450)  (0.0470)  (0.0452)  (0.0459)  (0.0442)
Note: *** 1% significant; ** 5% significant; * 10% significant.

determination of savings rate. This also lends support to the conventional wisdom that across
countries higher saving rates tend to go hand in hand with higher income growth (e.g., Loayza,
Schmidt-Hebbel and Servén, 2000). The C-Lasso and post-Lasso estimation delivers some inter-
esting findings. First, even though the coefficient of the real interest remains insignificant at the
10% level in both estimated groups, it takes negative sign in Group 1 and positive sign in Group
2. Second, the coefficient of inflation rate becomes significant at the 5% level in both groups but
has opposite signs, and the positive effect of the inflation rate in Group 2 is much larger than the
negative effect in Group 1, resulting in an overall positive but insignificant effect in the pooled FE
estimation. Third, the coefficient of the GDP growth rate is significant only in Group 1 at the 1%
level but not significant in Group 2 even at the 10% level, which suggests that the conventional
wisdom is not a universal fact.

Figure 2 plots the empirical distribution functions (EDFs) for the time series estimates of the
four slope coefficients based on the two estimated groups of countries. The thin and thick lines
are associated with Groups 1 and 2, respectively. Admittedly, given the 15 observations for each
country, the time series regression estimates are not precise, but the general pattern in Figure 2 is
clear. In the top-left panel for the coefficients of lagged savings rate, almost all countries exhibit
a positive coefficient estimates, and the two EDFs are close to each other. Similar remarks also
hold for the real interest rate. Nevertheless, the stories for the inflation rate and GDP growth
rates are quite different. The top-right panel shows that roughly 2/3 of the countries in Group 1
receive a negative estimate for the coefficient of inflation rate whereas only 10% of the countries
in Group 2 claim the negative coefficient estimates; Group 2’s estimate appears to first-order
stochastically dominate that of Group 1’s. The bottom-right panel reveals that the GDP growth
rate for the countries in Group 1 tend to have a larger effect on the savings rate on average than
that for the countries in Group 2. In sum, the EDF plots in Figure 2 suggests that the inflation

rate and GDP growth rate are the two main variables that separate the two groups.
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(a) lagged savings rate (b) inflation rate
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Figure 2: Empirical distribution functions of the time series estimates of regression coefficients

for the two estimated groups (thin line: Group 1; thick line: Group 2)
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6 Conclusion

In this paper we propose a novel approach to identifying and estimating latent group structures
in panel data. We focus on linear panel data models where the slope parameters are heterogenous
across groups but homogenous within a group and the group identity is unknown. We propose
PLS and PGMM classification and estimation methods and both classification methods enjoy the
desirable property of uniform consistency. The PLS estimation method also boasts the oracle
property while the PGMM estimation method typically does not. Post Lasso estimates are also
studied and a BIC-type information criterion is proposed to determine the number of groups.
Simulations are conducted to demonstrate the finite sample performance of our methods. We ap-
ply our method to study the determinants of cross-country savings rates and find strong evidence

that the slope coefficients are heterogeneous and form two distinct groups.
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APPENDIX

A  Proof of the Results in Section 2

Proof of Theorem 2.1. Let Qin7,i (5;) = % Zthl (it — ,Béa?zt) and leNT A (Bs, ) = Qinti (B)
FMITE |8; — o] - Let b = 8; — 82 and b; = 3; — 8. Note that

T T
1 A .
Qint,i (B;) — Qint,i (B i Z Ui — xzt -7 Zﬁ?t = b;Q; z3bi — 20;Q; za- (A1)
=1 t=1
By the triangle and reverse triangle inequalities,
e, i || = T2, 167 = |
o ()|
+ ’HkK:01 2 Az - akH Hﬁ? - aKoH { BZ - 04K0—1H - H/B? - aKg—lHH
+...

+ e, 189 — o {

< &Nt (a)‘ 3,

Bi— |~ 180 - e}
(A.2)

where ¢yt (o) = Hf:(’_l AZ — ozkH + HkK:°1_2 Ai — akH HB? — O‘KoH + ...+ Hi{ZOQ Hﬁ? — ak|
Op (1).By (A.1)-(A.2) and the fact that Q&fjg)ml(ﬁi, a)—ngjg)Tm (B, &) <0, we have ¢; 3 b; ’ <
(”2Qi’jﬁ + éint (&) )\1> bi|| where Cigi = ,U,min(QAi’j-j-). Then, by Assumptions A1(i)-(ii)
R ( HQz,a”:a + GNT (ﬁt) )\1> =0Op (T71/2 + )\1) . (A.3)
(ii) By Minkowski’s inequality and the result in (i), as (N,T) — oo
(@) < 1 {3 — 80 + 10— )+t { 0~ ol 12 -
+.. +H 2o (187 = e
= S - 189 - a0
< Cgonr (o - By < Ckont (@) (1 By ) : (A.4)
Ko—1—s

where ay’s are finite integers and Cx, N7 (@) = max)<j< N MaXi<s<k<Ko—1 Hj_; Qs Hﬁ? — akH

KO,I,S . . A
= MaXj<i<K, MaX]1<s<k<Ky—1 szlaks HO&? —akH = O(l) as Ko is finite. Let CKO =
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-1

o A
< s o
< e 12]|Qua

=1,T%

Cxonr (&) . Combining (A.3)-(A.4) yields ||b;

that

+ C’KOAl} . It follows

bi

a 2_ _1 9
+Crohi| = 0p (T71 4 13)

1 & 2< Qa;iiNT 21N2A

N; - (1_2@{ )‘IQT}NT> NZ [ HQma
by Assumptions A1(ii)-(iii), where cM NT = MiN1<i<N & 77
= Op ( ) . Let B8 =B%+T~2v where v =(v1, ..., vx)
is a p x N matrix. We want to show that for any given ¢* > 0, there exists a large constant
L = L (€*) such that, for sufficiently large N and T" we have

We now demonstrate + Zi:l

P {le]ivnfl . QNpa, (8°+T72v, &) > QIR (8° ,aﬂ)} >1-¢. (A.5)
i=111Vi
2
=O0p (T

This implies that w.p.a.1 there is a local minimum {3, &} such that N~ Zf\il b
regardless of the property of &. By (A.1) and the Cauchy-Schwarz inequality

[Qiii% (B +T72v &) - QY (B°,a°)]

N
1 R 2VT A M K
= N E 1 i Qi 7Vi — ~ g 1 0;Qi g + N - 1 1,2,
1= 1= 1=

1 & 1 & P
2 2
> Qa‘ci,NTNZ”UiH _2{NZ”WH } {—
i=1 =1 —

= Dinr — DonT, say.

i Ok

|
1/2
}

By Assumptions A1(ii)-(iii), czz 7 is bounded below by ¢zz > 0 in large samples and % Zf\il Qi z

= Op(1). So Dy N7 dominates Doy for sufficiently large L. That is T[QINT ™ (,30 + T2y, éz) —
2

Qg%oj)q A (Bo,ao)] > 0 for sufficiently large L. Consequently, we must have N ! Zf\i 1110

Op (T71).
(iii) Let Pyt (B, ) = + S0 T, ||8; — ag|| . By (A.2) and (A.4), as (N, T)— oo,

1N
@x 2|

‘PNT(Ba a) — Pyr (8, a)‘

IN

Cront (@) N

Cront ( {

By (A.6), and the fact that Pyp (50, ao) =0 and that PNT(B, &) — PNT(,B, a’) <0, we have

IN

1/2
} +O0p(T™) = Op(T~Y?)(A.6)

~

0 > Pyr(B,&) - Pyr(B,a°) = Pyr (8° &) — Pyr (8°,a°) + Op(T71/?)

N
1
- NZ 2187 a| + Op(T )

N]_ K
= I,
N

~ N

|| et o1 6y — ol || +OR(TY2YAT)

éék — a1H +_Hklf<01 N
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By Assumption Al(iv), Ny/N — 7, € (0,1) for each £k = 1,..., Ko. So (A.7) implies that
HK:° — a?H =0Op (T_1/2) for [ = 1,..., Kp. It follows that (d(l), ...,&(KO)) — (a?, ...,a?{o) =
Op (T712). M

Proof of Theorem 2.2. (i) Fix k € {1,...,Kp}. By the Consistency of éj and f3;, we have

B—al—>a —af #0foralli € GY i — Qy 0 for all i € GY
k l

and [ # k. Now, suppose that Hﬁz — akH # 0 for some i € Gg. Then the first order condition

(with respect to ;) for the minimization problem in (2.4) implies that

T
-2 - - /6 O[ K, ~ N
Op = —= > (Jie — #4B) + VT Z e {1
\/thl ]1‘/8_&]“ !
2 & Aé

- - A 16ki s
= — Z%‘tuit + | 2Qizs + ———1, | VT <5i - ak)

VT = i~ @kH

Ko IB O[
+2QiaaVT (ag — BY) +VTA Y Aifnfol 1 ||Bi =
j=1#k ||Bi — &;j ‘
Ko
= —Bia+Bia+Bis+ Y Buy, say, (A.8)
=Lk

3; — ole — ck = H ”#k Hoag — a?H >0 fori € Gg by Theorem 2.1.
Clearly By = Op( ) by Assumption A1(i) and Bjzs = Op (1) by Theorem 2.1(iii) as i €
GY. One can also show that Bis; = VTMOp(T™Y/2 + )\1) = Op(1) for each i and j by
Theorems 2.1(i) and (iii) and Assumption A2(i). Let R; = B3 + Zg]‘(:ol,j;ék BMJ. Noting that
. ' . ’
(ﬁi—@k) i2 > 2 55 ‘ +VT Mg, ( —dk> R;

R ’ .
_ ‘(ﬁl - dk) R;| > (ﬁl - dk> Biy/2 as (N, T) — oco. It follows that for all i € GY

. _ 1Ko
where ¢g; = II,2°, LIk

A~

~ !
— g, = Op (A1), we have </Bi - 54k> B2

P(EAkNT,Z-) = P (z Grlie Gg) =P <Bi1 = Bj» + Rz)
B

< P< Z'( z_&k)/EiQ"i_(Bz_dk)/Ri)
< POBi—akH Bl > (BZ—@k>,B¢2—‘(5i—dk>1Ri>
< P ( ‘le > Qi,gz;zﬁ‘ Bz o7 ’ + \/AT)\lékz

-]
< P (‘ Bl > ,/ZQijiié;ﬁ-T)\l) ~0as (N,T) — oo,

where the second and fourth inequalities follow from the Cauchy-Schwarz and triangle inequal-

ities, and Cauchy-Schwarz inequality, respectively, and the last convergence result follows from
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Assumptions A1(ii) and A2(i) and the fact that ¢; T ) for i € GY. Consequently, we may con-
clude that w.p.a.1 the differences /3;—éy, must reach the point where ||3; — ay|| is not differentiable
with respect to 3; for any i € GY. That is P (‘ B, — dkH =0]ie Gg) — las (N, T) — oc.

For the uniform consistency, observe that P(UfﬁlEkNT) < Zf:‘)l P(EkNT) < Zf:(’l ZieG%
P(ExnT,i) and

Ko Ko
Z Z P (EkNT,z‘) < Z Z P (HBil > QQi,jjék:T)\l>
k=1ieG? k=1ieG?
T -
1 - gi,jj'ckiAl
< N@%\rp( T;fﬁituit > — 5 )
— 0as (N,T) — oo by Assumption A2(ii). (A.9)

This completes the proof of (i).
(ii) By pretending each individual’s membership is random, we have P (Z € Gg) = Ni/N —
T € (0,1) for £ = 1,..., Ky and can interpret previous results as conditional on the group

membership assignment. By Bayes theorem,

P(Eynri) = 1-PlieGY|ieGy)

- S s Pli € Gili € GY)P (i € GY) (A.10)
P(ieGrlie GOP (i € GY) + 310 Pl Grlie GNP (i€ GY)

For the numerator, we have by (A.9)
Ko ) Ko R
D P(ieGkh’eG?)P(ieG?) <(FKo-1)Y ZP(z’géGm'eG?) —o(1).
I=11#k jc@y, =1 ieG?

In addition, noting that P(i € Gyli € G%) =1 — P(i ¢ Gili € GY) = 1—o0(1) uniformly in i
and k by (i), we have that P(i € Gyli € GR)P (i € G9) + 3 |, P(i € Gili € G)P (i € GY) >
P (i € G}) /2 wp.a.l. It follows that

Ko Ko
P (Uli(:oleNT> < Y r <FkNT> <>y <FkNT,i)
k=1 k=1icc,
K R ,
2= ik 2aiecy, T (Z € Gili G?) P(ieGy)

minlSiSN minlngKO P (Z S Gg) /2

1
__o(l) —0(1). ®
mlnlgkgKo Tk/2

Proof of Corollary 2.3. Noting that N, = SN 1{i € Gi}, N, = SV 1{i € GY}, and 1{i €
Gy —1{i € G} = 1{i € G)\GY} — 1{i € GO\G}}, we have Ny — N, = SN [ [1{i € GL\GY}—
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1{i € GY\G}]. Then by the implication rule and Markov inequality, for any € > 0,

P(’Nk—Nk’226> < P(ﬁ:l{zeGk\G }>e>+P<§:1{ieGg\@k}Ze)

i=1 1=1
1o 1o

= -y r (FkNT,i> +-> P <EkNT,i> :
¢ ¢ia

By (A.9), Zfil P(Epnr) = 25:01 e P(En7;) = 0(1). By the proof of Theorem 2.2(i),
Zf\il P(Fynri) = Zsz‘)l icCy P(Fpnti) = 0(1). Consequently, P(|Ny — Ni| > 2¢) = 0(1) and
the conclusion follows. H

Proof of Theorem 2.4. To study the oracle property of the Lasso estimator, we utilize condi-
tions from subdifferential calculus (e.g., Bersekas (1995, Appendix B.5)). In particular, necessary
and sufficient conditions for {3;} and {a;} to minimize the objective function in (2 4) is that
for each i = 1,..., N (resp. k = 1,..., Kp), Opx1 belongs to the subdifferential of QINT A (B, )
with respect to 8; (resp. o) evaluated at {8;} and {dy}. That is, for each ¢ = 1,...,N and
k=1,..., Ky, we have

T
—2 - (. Al .
Opx1 = WZ:% <yz~t —Bifﬁit) Zew 12114 — ¢, and (A.11)
0p><1 = Zezknl 1,14k Q| (A'12)
where é;; = ||5 - || & ’ =0.Fixk € {1,..., Ko} . Observe
%
that (a) ||3; — éu ‘ = 0 for any i € Gy, by the definition of Gy, and (b) 3; — &l L ad —a #0
. A . N . A N i — G Qp—a;
for any i € G}, and [ # k. It follows that ||é;;]| < 1 for any i € G}, and é;; = HB —ocJH = T&=al

w.p.a.1 for any i € G, and j # k. This further implies that w.p.a.1

Ko
~ K, — G, Ko ~ ~
Z Z einlzoLl#J O‘ZH = Z Z ”ak TE—T Hl 112 |G — Gull = 0 and

ie@k jzlv]#k ZEGk] 1 #
and
N
5 Ko o A _
Zeikﬂlzl,z# Bi—au| = Z ezkHz 1,1k &g — éull + Z ezkHz 1,1£k O‘IH
i=1 icGy, i€Go
0
. Ko n N
+ Z Z CirIl 2%y 16 — du|
J=1Li#k ieq;
. K N R PR » R
= Z eikleol,l;ék lla — &l + Z ei]le:OI,l;ék i — o)l =0.
ieék iEéo
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Then by (A.11) we have % Zieék Zle Tit (Tit — Q) + )‘—]\} > icCo éikH{ioLl;ék 3, — le —
0,x1. It follows that

-1

1 T 1 T
b = ~NT E Zi'itj;t NT E Zi'it?jit

i€Gy, =1 i€Gy, =1
~ =~
+ NT Z intwit Z eIl 12k O‘IH =ag, + Ry, say.
ieGy =1 zeGo

In view of the fact that, ezkﬂl itk alH =# 0 only if ¢ € Gy, we have for any € > 0

P (\/WHRku > e) < fVi‘ Sp (z e Goli € Gg) < i Sp (z ¢ Ciuli € Gg) —0(1) by (A.9).
k=1ieGY k=1icG9

So HﬁkH = op ((N T)_l/ 2) . Then the limit distribution result follows from Theorem 2.5 below.

Proof of Theorem 2.5. Noting that g = @}, + &, (ﬁ? — o) + @y, we have

-1

v/ N T (&ék — ozg) = NkT Z Zl‘ltl‘zt \/W Z Z'xztuzt

ZGGk t=1 ZGGk t=1
S~ 0 0
+ g E Tyl E E TaZy (B — o) .
NkT i /—N i i
7,EG]€ t=1 k ZEGk t=1

By Assumption A3 and Slutsky theorem, it suffices to prove the theorem by showing that (i)
. T ~ ~ T ~ -~ .. _ T
SENTL =TT Lieciy dot=1 TitTh = WT 2oieq) Dot TurTigtop (1), (i) Sinte = 73mp Lica, 2i-1
. T ~ - . T <2
Talit = ez 2oieq) ot Tttt + op (1), (i) Sints = g Died, Do Tielyy (87 — of)
= op (1) and (iV) SkNT4 = (Sk_]\lle ‘I)_I)IBKNT = op (1)
Using the fact that 1{i € G4} = 1{i € G? W+ 1{i € Gk\G }—1{i € GY \Gk} we have

SkNTl__ZZ TipThy = NT Z meti“;t NT Z Z%t%t—SkNTn—SkNTu

icGy t=1 i€Gr\GY =1 i€GI\Gy, =1

Let € > 0. By Theorem 2.2, P (||SpnT11] >€) < P(Fin7) — 0, and P (||SknT 2] > €) <

P(EkNT) — 0. Then (i) follows. Analogously, writing Skn72 — \/ﬁZieGg Zthl Tty =

ﬁ Zie@k\gg S Bt —ﬁ Eiegg\@k ST Euitie = Skt 21— Skn 29, we have P(|| Sk a1 |

> ¢) < P(Fynr) — 0 and P (||Spnr2zl >€) < P(Exnr) — 0. Then (ii) follows. Noting

that Y — ol = 0if i € G, P(||Sknrsl >¢€) < P(Exnt) +P(EFint) — 040 = 0. Lastly,
P (|Sknral > €) < P(Epnr) + P(Finr) —»0+0=0. 1

47



Proof of Theorem 2.6. Using Theorems 2.2 and 2.5 and Assumption A5, we can readily show
that

10} (Ko, A1) = In [&% 2 ko m} + puvrpKo
= ; Z ; <ylt (Ko Al)xit)Q +o(1) Ln (0‘%) .
i€Gr(Ko,A\1)

We consider the cases of under- and over-fitted models separately.
Case 1: Under-fitted model. In this case, we have K < K. Noting that

. | K ro,o 2
Tekn) WZ Z Z(yit_aék(fﬂh)xiO

kE=1ieG(K,A) =1

2
> pin FOD S SIUEEANEN NPT
= 1<K<K0G(K)eg NT Yi Gror™? 1ISK<Ko GK)eGy G
k=1li€Gg  t=1

we have by Assumptions A4-A5 and the Slutsky Lemma

A P
1<1}ﬂ<1<nK0 IC) (K, \) > 1<%1<DK0 G(I%nefg IH(O'ZG(K)) + pinvrpK = In(g?) > In(od).

It follows that P (minK697 IC’1 (K, /\1) > 101 (K(), /\1)) —1

Case 2: Over-fitted model. Let K € Q. By Lemma A.1 below and the fact that 6%7p; N7 —

oo under Assumption A5, we have

P <Kr%gl+ 1C4 (K )\1) > IC, (Ko,)\1)>

JR— h 2
=P <1?euslzl+ [5NT m( TG(KxM) /UG(KO A )) + 0nrpinT (K — Ko)} > 0)

KeQy
— las (N,T) —oc.

= F < min Sxr <A2G(K,A1) G(Ko,)\l)> / GKor) T §Xrpint (K — Ko) +op (1) > O>

Lemma A.1 Suppose that the conditions in Theorem 2.6 hold. Let 5%, = ~ ZZ 1 Zt L2
= Op (6n7) -

Then Max K, <K< Kmax G‘(le) O'GO

Proof. When K > K, following the proof of Theorem 2.1, we can show that

Noting that 6?, t = 1,..., N, only take Ky distinct values, the latter implies that the collection
{ak,k = 1,..., K} contains at least K distinct vectors, say, Q(1)s -+ Q(K,), Such that agy —

N
_ Op(T—1/2 + A1) for each i and % ZHkK:l HB? _ é‘kH _ Op(T_1/2),
i=1
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ol = Op(T~'/?) for k = 1,..., Ko. For notational simplicity, we rename the other vectors in

the above collection as &g 41, -+, Q(k). As before, we classify i € Gy, (K, \1) BZ — &(k)H =0

fork=1,...K,and i € Go (K, A1) otherwise. Using arguments like those used in the proof of

Theorem 2.2, we can show that

Z P (EAkNTJ’) =o0(l) for k=1,..., Ky and Z P <FkNT,z') =o0(l) for k=1,..., Kp.
ieG? i€Gr (K1)

The first part implies that 3.~ | P (2 € Go (K, \)UGgy+1 (K, M) U--- UGk (K, )\1)) =o0(1).

Using the fact that 1{i € G}} = 1{i € G} + 1{i € Gx\G?} — 1{i € GY\G4}, we have
6G(K,/\1) = 37 S D icCr(KoA) Sy [t (k)]> = Diny+ Danr — Dynt + Dan, where iy (k) =
git—&/@k(K,Al)jit’ Dint = ﬁ 2521 i€GY Zthl [t (k)]Q s Dant = ﬁ EkK=O1 i€ (KM)\GY Zf:l
(it (k)]2 s D3Nt = ﬁ Zszol ZieGg\ék(K,Al) Zfﬂ [thit (k)]2 yand Dynt = ﬁ ZkK:KoJrl Zz‘eék(K,Al)
Zle [di (K)]? . Following the proof of Theorem 2.5, we can show that &ék(K,)\l) —a=0p (5N1T)
for k = 1,..., Ky. In addition, we can readily show that Dinyp = 5%;0 + Op (5]_VQT) . For Doy,
Ds3n7, and Dyn, we have that for any € > 0, P(DQNT > 5;\,%6) < ZZK:Ol P(FkNT) — 0,

P (Dsnt > d35€) < 10 P(Egnr) — 0, and P (Dant > Sne) < 0N P(i € Uy 1<i<ic G, (K, A1)
— 0. It follows that &2@( Ko = 520+ Op (03%) for all Ko < K < Kpay. ®

B Proof of the Results in Section 3

We start by proving a useful technical result and then proceed to prove the main results.

Let Vin (8;) = [§ Xim1 £ Gits B Wint [ 2121 p (Ears B)], and Vi (8;) = {3 21—y Blo (50, 8,)1Y
Wit St Blp (€5, 8:)) - Let Rir (8;) = [ 1= {p (€5 8,) =B [p (&, BN Wil Xtz {p (&5, 8:) —
Ep (& B}

Lemma B.1 Suppose Assumption Bl(iv) hold. Then c[3V;(8;) — Rizr (8;)] < Vinr (8;) <
e[2V; (B;) +2Rir (8;)] for all B; € B; w.p.a.1, where ¢ and € are some generic positive constants
that do not depend on v with 0 <c <1< ¢ < o0.

Proof. Noting that Wy = W; 4+ op (1) uniformly in ¢ under Assumption B1(iv), we have
w.p.a.l

1 I
¢ [sz(gitaﬁ)
t=1

/

<Vinr (B;) L¢

T T !
2:: gzb T z:: gztnﬁz ] .

T
Z gztaﬁz ]
i)

for all B; € B;. By the positive definiteness of W,; and the matrix version of the Cauchy-Schwarz

inequality, we can readily show that

(a—b)W;(a—0b)> %a'Wia — Wb and (a —b)' W; (a — b) < 2a/Wia + 20'W;b
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for any conformable vectors a and b. Taking a = % Zthl Elp (&4, 5;)] and b= % Zthl{P (&0 Bs)—
E[p (&, 8;)]}, we have

e T - .
T ;P (&> Bi) | Wi T ;P & Ba)| = 5V (8i) = Rir (B;) , and (B.2)
_ . T iy _ . T - )

T2 P& B)| Wi | Z D o B)| < 2Vi(B) +2Rir (B,). (B.3)
L7 =1 |4 =

Combining (B.1)-(B.3) yields the desired results. m

Proof of Theorem 3.1. (i) Let QQZ\(})TAZ (B, o) = Vinr (B;) + )\QH 0 18; — okl By the

definition of B and & and the fact that QQNT o B, a) =% ZZ 1 QQzNT o (B, o) , we have
Q2inT s (B &) — Qaint s (B, d)
- Vv 3 A mx 0 =
= Vinr(B;) = Vint (89) + A2 {Hk 1 (|8i — akH I, || 87 — OékH} <0. (B.4)
By Lemma B.1 and Assumptions B1(i) and (iv), we have that Viy7(8;) > 3 Vi(B;) — Ry 7] and
VinT (ﬂ?) <e¢ [2‘7 (60) + 2R2T} = QERQT w.p.a.1l, where RiT = RiT(ﬂ) and R RZT(BO)
It follows that c[3Vi(B,) — Rir] — 26Ky + o {T, ||3; — & | - <, 187 - akH} < 0, which

can be rewritten as

V(ﬁ) <z [QCR rtcRir — N (Hk 1’

- OékH — I [|57 - @kuﬂ (B.5)

Using arguments like those applied to obtain (A.2) and (A.4), we have

‘HkK: ’~ ak” — 1L, [157 — ak”’ < Cronr ( )( 3, i 2)- (B.6)
Noting that % Z?:l Elp (&, 8:)] = _Qi,zAz (Bi - B?) , we have
nax Vi(B;) = max (ﬁ — B?)I Q2 WiQi 00 (B — 5?) > civr max (B.7)

where ¢y = MiNi<i<N fmin <Q;7ZAxWiQi,zAz> satisfies that liminf(MT)Hoo CINT = Cwlg > 0

by Assumptions B1(iii)-(iv). Combining (B.5)-(B.7) yields
)

B = 8

2 2 0 ~ ~ ~
i < E 2CR1"T + QRi,T + )\QCKO ’ i

GNT )

or equivalently, (¢inr — é)\QC~'K0)
C’ = Cg,nt (&) . It follows that

AN
IS b

[2ER2T +cRi7 + X2aCk,

} , where

B B 2 B B 1/2
%)\20]{0 + |:(§>\QCKO> + %(QlNT — é)\QCKO) (QER?’T +QRZ‘,T>]

2 <Q1NT - é)‘QéKo)

= Op (ManT) 5

(B.8)

50



where 7oy = T2 4+ \y. Further, noting that %Zﬁl R?T = Op (1) and %Zfil(R?,T)Q =

Op (1) under Assumptions B1(ii) and (iv), we can readily show that %Zﬁl

Op (n3n7) - As in the proof of Theorem 2.1(ii), we can further demonstrate that ZZ 1 ’
—0p (171).
The proof of (iii) is completely analogous to that of Theorem 2.1(iii), now using the facts that

‘PNT(B, o) — Py (ﬁo, a)‘ =0Op (T_l) and that 0 > PNT(B, Q) — PNT(B, CXO). |

i

Proof of Theorem 3.2. (i) Fix k € {1,..., Ko} . By the consistency of & and j3; with af for
# 0 for

all 1 € G% and | # k. Now, suppose that HBZ — Qy, ’ - Then the first order

condition (with respect to ;) for the minimization problem in (3.2) implies that

7 ~ P 0 0
zEG,wehaveﬁi—quozk—al

51‘—541‘

=]

0 = —QQQ’ZAIWiNT\/l— Zzzt (Ayzt Bi szt) + VT Z )17%11{{01 1]

j=1 51_0@”

A2Cr; ~ -
= QQZ Az zNT\/—ZZztAuzt-i- ZQi AT zNTQz zAzx % ﬁ(ﬁi—ak>

i-a]
Ko
mwwmmmm%ﬁ&z@%wm a
J=1.j#k - C“JH
Ko
= —Ba+ B+ Bis+ Z Biyj, say,
=157k

~  _ 1Ko
where ¢g; = II;2°, |k

3 —alH — ck _Hl LIk Hak Qg H > (0 for any 7 € GO by Theorem 3.1.

As in the proof of Theorem 2.2, we can readily show that B;; = Op (1), B3 = Op (1),
and Bi4,j = V/TX20p (T*1/2 + /\2) = Op (1) for each i € Gg and j = 1,..., Kgy. Let R, = Bis +
Z]Kﬁl’j#k Bi4,j and §y; = ,U/min(Q;zAa;WiNTQNi,zAx)- Noting that (Bl — &k)léig > 251,
Tt and | (5, =)' R = Op () wethave (5, =) B (3= 1) R = (5, ) B2
as (N,T) — oo. It follows that by Assumption B2(i)

- 2
Bi_akH

P(Epnri) = ¢ Grlie Gk;) (Bu = Bia + Ri)
< P(’ Bz_ak Bal| > ’(Bi_&kyézﬂ‘i‘(/éi_&k),éi)
< (-l =6ay )
- H Ball > 5 VT g

7
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<P (HBH Z \/281@5]@11)\2) — 0 as (N,T) —

where we use the fact that é; — ) fori € GY and 4y, L Lanin (@ i anaWi Qiznz) > umln(Q;ZAin,zAx)
tonin(W3) > 0 by Assumptions B1(iii)-(iv). It follows that P< =0]i¢€ Gg) — 1 as
(N,T) — oo. Now, observe that P(Ur%, Exyr) < 352 P(Ervt) < 3120 Yieqn P(Einr,i) and

i — Qg

§2P<EkNT,i) < §2P<

‘Bu >/ 28iékz‘T/\2>
k=1ieG? k=1ieG9
T
. 1 o
< N@%’%P Qi,ZAsz’NTf;zitAuzt > 1/ 01:Crira/2
1 & 81k
1iChiA2
< Nlrgniag}J(VP TzzitAuit > Tm

— 0 by Assumption B2(ii),

~ ~ 2 _
where do; = Q;,zAzVViNTH i tI‘( zzAxWWQz zAx) < [Mmax (Wz)]2 HQi,ZA:L‘HZ < 00 by As-
sumption B1(iii)-(iv). Consequently, we have shown (i).

(ii) The proof of (i) is almost identical to that of Theorem 2.2(ii) and is omitted. H

Proof of Theorem 3.4. The proof follows closely from that of Theorem 2.4 and we only sketch
it. Based on the subdifferential calculus, the KKT conditions for the minimization of (3.2) are
that for each: =1,..., N and £k =1, ..., Ko,

T
~ 1 ~ -
Opx1 = —2Q§,ZMW¢NTWZ% (Ayz‘t—ﬁiA%t) Zezg 1112 az‘ ; and
t=1
I
1 ~ K % ~
Opx1 = Ni_zleikﬂl_ol’lik B; — aul|

where é;; = Hg’—_?‘ﬁ i

B~ | 5 —&jH:O. Fix k € {1,.., Ko} . As in
the proof of Theorem 2.4, we can show that NT ZzGGk i2Az WinT Zt 1 Zit (Ayie — OzkA:czt)

_2
ZzeGo Cik Hz 1,14k

alH = 0px1 w.p.a.l. It follows that

-1

~ 1 ~ ~
Ak = N Z Q;,zAa:VViNTQi,zAm T Z Q¢ ZAx Wint Z ZztAyzt
1€Gy lEGk
1 ~ ~
N Z QQ,ZA.’JZVI/’L'NTQ’L',ZAZ' Z e,kHl 1,12k alH = alk + le say.

i€Gy, zeGo
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By Theorem 3.2, we can readily show that P <\/NT HﬁkH > e) = o0(1) for any € > 0, and

-1

\V NkT (alk - ak; Z Qz zAx ’LNTQ’L zAx \/W Z Qz 2Ax 1NT Z ZztAuzt+0P ( ) .

zeGO i€GY

Under Assumptions B1(iv) and B3(i)-(ii), we have Nik ZieG% invamWiNTQi,zAx = Nik Zz’eGg Q;,zAx
W;Qi .az +op (1) = Ag + op (1). Then the result follows from Assumption B3(iii) and Slutsky

theorem. W

Proof of Theorem 3.5. Following the proof of Theorem 2.5, we can readily show that

V/N.T (&Gk - 042) = [sz sz} 2'2; NT\/_ QzAu +op (

k k k) / k
= [QzAx NT ](VI)“QiA)x,NT} QZA:I: NTW](V% NkTQgA)u,NT +op (1) ’

~(k
where QiA)u = NkT ZzeGk Zt 1 ZitAuy and QzAu NT = ﬁ ZieGg ZZZI zitAuge. The results
then follow from analogous arguments as used in the proof of Theorem 2.5, Assumption B3, and
Slutsky theorem. H

Proof of Theorem 3.6. The proof is analogous to that of Theorem 2.6 and is omitted. B
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THIS APPENDIX PROVIDES SOME ADDITIONAL RESULTS FOR THE ABOVE PAPER.

C Some Primitive Assumptions and Technical Lemmas

This appendix presents some primitive assumptions to ensure that the high level conditions
in Assumptions A1(ii) and A2(ii) hold for non-dynamic panel data models. Then we discuss
primitive conditions to ensure that they hold for dynamic panels. The verification of Assumption
B2(ii) is similar.

ASSUMPTION C1 (i) For each i =1, ..., N, {(it,wir) : t = 1,2, ...} is strong mizing with mizing
coefficients {a; (-)}. a(-) = maxj<i<n o; () satisfies a (1) < cop” for some co = O (1) and
p €(0,1). E(xjui) =0 for each i and t.

(it) There exists a constant czz such that 0 < czz < Mini<i<n Pmin(Qiz3)-

(iii) Either one of the following two conditions is satisfied: (a) sup;s, sup;s; B ||z ||*? < C
and sup;s; supys; B ||ziui]|* < C for some ¢ > 1 and C < oo; (b) There exist three constants
Cazs Cou,and ¢, such that sup;s; supys; Elexp(cy ||a:ZtH27)] < Oy, sup;>q supss1 B [exp(caq [|icui||7)]
< Cy, and sup;sq supysq B lexp(cy |lui]?)] < Cy for some Cy < 0o and vy € (0, o0).

(w) T satisfies one of the following two conditions: (a) T/N¢ — (0,00] for € > 1/(2q — 1) if
C1(iii.a) is satisfied; (b) T/(In N)YAN/Y — oo if C1(iii.b) is satisfied.

(v) T satisfies one of the following two conditions: (a) TA {(In N)"'+T(NT)~Y¢(InT)*(In N) 2]}
— oo if Cl(iii.a) is satisfied; (b) TA{(In N)~! 4+ T[In(NT)] 204N/ = oo if C1(iii.b) is satis-
fied.

C1(i) requires that each individual time series {x; : t = 1,2,...} be strong-mixing with geo-
metric mixing rate. If {z;;} are identically distributed for all individuals within the same group,
then the sup max;<;<n is effectively taken with respect to the Ky groups. C1(ii) requires that
the matrices @Q; 7z be positive definite uniformly in ¢ and the uniformity is required only over the
K groups in the case of group-wise identical distributions. The conditions stated in Assumption
C1(iii) pertain to two specific cases related to the moments of ||zy||* and zjuy : part (a) only
requires finite 2¢-th moments whereas part (b) requires the existence of exponential moments.
By the Markov inequality, part (b) implies that

P(HﬂcitH2 Zv) < exp <1_ (ﬁ)S |

where K = max (1,In C,,) . That is, the distribution of ||z||? has to decay exponentially fast. The
case 7 = oo in part (b) corresponds to the case where ||z;|| is uniformly bounded. Similar remarks



hold for ||z us || and ||ui|| . When combined with C1(i), the conditions in C2(iii) allow us to apply
some exponential inequalities for strong mixing processes; see, e.g., Merleveéde, Peilgrad, and Rio
(2009, 2011). C1(iv) and (v) are needed to verify Assumption A1(ii) and A2(ii), respectively.

Lemma C.1 Let {&,t=1,2,...} be a zero-mean strong mizing process, not necessarily station-
ary, with the mizing coefficients satisfying o (1) < cqp” for some cq >0 and p € (0,1).

(i) If supy<i<r [§4] < Mr, then there exists a constant Cy depending on c and p such that
forany T > 2 and € > 0,

P Cpe?
>e| <exp| — 5 5 5 |
vgT + M7 + eMp (InT)

where U(% = SUP¢>q [Var(ft) =+ 2Z§it+1 | Cov (ftafs)” .

(i) If sup;>1 P (|&] > v) < exp (1 — (v/b)") for some b € (0,00) and v € (0,00], then there
exist constants C1 and Cy depending only on b, cq, p, and v such that for any T > 4 and
e > Co(InT)" with ng, Cy > 0,

P <(T+1 e ¢
) 4 >e| <(T'+1)exp e +exp<—T—C,2>.

T
> ¢
t=1

Proof. (i) Merlevede, Peilgrad, and Rio (2009, Theorem 2) prove (i) under the condition
a (1) < exp (—2c¢r) for some ¢ > 0. If ¢, = 1, we can take p = exp (—2¢) and apply the theorem
to obtain the claim in (i). Other values of ¢, do not alter the conclusion.

(ii) Merlevede, Peilgrad, and Rio (2011, Theorem 1) prove a result that is more general than
that in (ii) under the condition « (7) < exp (—¢1771) for some ¢, v, > 0. If ¢, =1 and v, = 1,
we can take p = exp (—2c;) and apply the theorem to obtain the claim in (ii). Other values of ¢,
do not alter the conclusion. m

T

> ¢

t=1

Lemma C.2 Let Q33 =T Zthl ZiZl,. Suppose that Assumptions C1(i)-(iit) hold.
(i) If C1(iv) holds, then mini<i<n fimin(Qizz) = MIN1<<N figin (Qizz) — op (1)
(11) If C1(v) holds, then N maxi<,<ny P (’ %ZtT:l Tirliit ‘ > c\//\_1> — 0 as (N,T) — oo.

Proof. (i) By the Weyl inequality and the fact that |p,.. (A)] < [|A| for any symmetric
matrix A, we have

Ponin (@i 52) = fnin (@i 27) — H@m — Qi sz

We are left to show that maxi<;<nN HQWZ& - Qiﬂ“@ =op (1) . Noting that Qz‘ji =71 Zle fitj;‘t =

71 23:1 Tyl —T;. T, it suffices to show that (il) maxj<j<ny HT‘l Zle[xitx;t — E (zixl,)] H =
op (1) and (i2) maxj<i<n HT‘l ZtT:1[33it —-E (xn)]H = op (1). We only prove (il) as the proof of
(i2) is analogous.

We first consider the case where Assumption Cl(iii.a) hold. Let nyp = (N T)l/ (29)  Let Lep
be an arbitrary p x 1 vector with [|tsy|| = 1 for s = 1,2. Let ¢; = oy, [ziea}, — B (ziraly)] top,

Crie = Wy ity it — B (@) 1i)] 12p and Cop = 04y, [y Lip — B (wipa) 1ir)] top, Where 1 =



1{[|zul® < nyr} and Ty = 1 — 1. Note that (; = iy + Coip- Let vf = supysy[Var(Cry) +
2520, 11Cov(Cyr, Cpis)] and 02 = supN>1 maxj<;<y v?. The moment conditions in C1(iii.a) and
Davydov inequality ensure that 2 = O (1). By the Boole inequality and Lemma C.1(i), for any

€ >0,
< >
(1%%\[ Z ] = ) = st ( =1 N TE)
C()T2€2
< N —
- 1SN P ( 02T + 4niip + 2T enyr(InT)?

CoT?e?
exp | — m e +InN
02T +4(NT)/142Te(NT)/**" (InT)?

— 0OasT — oo.

By Assumption Cl(iii.a), the Boole and Markov inequalities, and the dominated convergence

theorem,
o)

Noting that ¢1, and ¢, are arbitrary unit vectors, we infer that max;<j<ny H % Z;f:l [z, — B (xial,)] H
= op (1). Then (i) follows.
Next consider the case where Assumption C1(iii.b) holds. By the Boole inequality and Lemma
C.1(ii), for any € > 0,
> Te)

T
1;@ >

IN

Z <27,t

P ( max max ||z > 77NT> < NT max max P <Hxlt|| > UNT)

max
1<i<N 1<i<N 1<t<T 1<i<N 1<t<T

NT
—— max max [ [Hxit||4q 1 {||$th2 > 77NTH —0as T — 0.
77]\(/1T 1<i<N 1<t<T

T
> Cu
t=1

P(max T 6) < NmaxP(
1<i<N 1<i<N

(Te)’Y/(lJrV) (T6)2
< = _
< N max, (T'+1)exp ( o + exp TC,
v/(147) 2
< exp —L—Fln(Tle)—HnN + exp —T—e—i-lnN
01 C2

— 0OasT — oo,
provided 7" >> (In N)*/7_ 1t follows that maxj<;<nN H% 23:1 [Tirwyy — B (vix))] H =op(1).

(i) Noting that 7! Zle Tty = T71 Zle TitUi — Ti.U;., we prove (ii) by showing that (iil)
N maxi<ien P(|[T71 iy wivuirl | 2 ev/Ar) — 0, (ii2) Nmaxicien P(I[T71 0 [2ie — B ()]
> /A1) — 0, and (ii3) N maxi<;<y P(||T71 35, ui]| > ev/A1) — 0. We only outline the proof
of (iil) as the other two claims can be proved analogously. If Assumption C1(iii.a) holds, by letting
Sit = thplriui— B (Tipuir)], St = thp[Tiruwir Lie —B (ziuirlir)] and oi = 0 [wirwir i —B (TirwiLit)]



where now 1; = 1 {||zjsui| < nyp} and 1;; = 1 — 1, we have

Z Slit

>c\/_) < NmaxP(

1<i<N

>cT\/_>

( max
1<i<N
C2COT2)\1
exp | — +In N
( 02T + 4 (NT)Y9 4 2¢T/ X1 (NT)V 2D (InT)2

— 0OasT — oo,

<

> C\/>\1> < NTmaxi<j<y max, _,_, P (||zivit| > nyp) — 0 as

= Sup > Maxi<i<y sup;>q[Var(siig) + 2302, 1 Cov(siit, S1is)] = O (1) under
Assumption Cl(iii.a). Similarly, if Assumption C1(iii.b) holds, then

T Z Sit
E Sit

1 T
and P <max1§i§N ‘T > i1 S2it

T — oo. Here v?2

. c\/—)

max
1<i<N

1<i<N

< NmaXP(

>cT\/_>

(CT\/)\T)V/(H'Y) (cT\/)Tl)2
< Nlrénizgziv (T'+1)exp (— Ch + exp — 76
T/\ v/ (14+7) 2
< exp (—(C \/_é) +In(T+1)+InN | +exp <—CT)\1+lnN>
1 2

— QasT — oo,

provided TA1 {(In N)~' + T[In(NT)]2HN/7} = 0. m

Evidently Lemma C.2(i) ensures the second part of Assumption Al(ii) and Lemma C.2(ii)
ensures Assumption A2(ii). These results rely on the use of Bernstein-type inequalities for strong
mixing processes that are not necessarily stationary.

To verify Assumptions A1(ii) and A2(ii) for dynamic panel data models, we need to distinguish
two cases based on whether we treat the fixed effects y; in (2.1) as random or not. If we follow
Hahn and Kuersteiner (2011) and assume that the individual fixed effects are nonrandom and
uniformly bounded, then we can assume that {(z;Au;),t > 1} is strong mixing for each ¢ and
verify the assumptions as above. On the other hand, if we assume that p,’s are random fixed
effects, then the notion of strong mixing is generally no longer appropriate for dynamic models.
To appreciate the point, take the simple panel AR(1) model as an example:

Yit = Poyi,t—l + 125 + Uit 1= 1, ...,]\/v7 t= 1, e ,T, (Cl)

where zj = y;;—1 and an example of the IV for Ay, ;1 would be 2z = y; ;2. Even if {uy, t > 1}
is a strong mixing process, {yi,t > 1} is generally not so if y; is stochastic as the dependence
between y;; and y;s is not asymptotically vanishing as |t — s| passes to infinity. In this case, as
Hahn and Kuersteiner (2011) suggest, it is natural to adopt the concept of conditional strong
mixing (see, e.g., Prakasa Rao, 2009) where the mixing coefficient is defined by conditioning on
the fixed effects. Su and Chen (2013) adopt the latter approach in their study of panel data



models with interactive fixed effects and show that the well known Davydov and Bernstein-type
inequalities that hold for strong mixing processes also hold for conditional strong mixing processes.
A conditional version of the results in Lemma C.1 are also satisfied where all probabilities are
defined by conditioning on the o-field generated by (pg, ..., tty). Then one can verify Assumptions
A1(ii) and A2(ii) by following analogous arguments as used in the proof of Lemma C.2(ii).

D Bias Correction

D.1 Bias Correction for the PLS C-Lasso Estimator
Recall from Theorems 2.4 and 2.5 that the bias takes the form

=1
benT = @) Bin,

. o— 1 T ~ =1 T 1
where ®;, = N.T ZieG% > iy Titkly, and By = 1/2T1/2 ZZGGO ZS L B (2istiis) = —71/%3/2 ZieGg

23:1 Z?:l B (wisuit) as B (zitui) = 0. Let s = yir — itaé — f1; and fi; = T Zt 1 (it — taék)
for all i € Gj.12 We propose to estimate by by

bent = (i)EIBk:NT
h &):;ZAZT 5 dB :_ézAZT ZTk (t, s) wisil;
where @u =TT 2uicGy 2at=1 TitTiy ANd BNT N2z 2eicCy, Zus=1 2ap=1 "My (1 8) Tistit-
k
Here kpy, (t,s) = k?MT (|t — s|) and k?wT (u) denotes the Bartlett kernel:
Kip (w) = (1= Ju| /Mr) 1 {|u| < Mr}.

Note that we allow dynamic misspecification here. If one is sure that the model is dynamically
correctly specified in the sense that E (u;|F;¢—1) = 0 where Fii—1 = o(ujr—1, Uit—2,...; Tit,
Zit—1,...), one can use the one-sided kernel: ks, (¢,s) = k}JT (s —t), where

kth (u) = (1 —u/Mp)1{0 <u< Mr}.
Other choices of kernels are possible. So the bias-corrected PLS C-Lasso estimator is given by

(© _ 1
N T

214
@ "Byt

Similarly, we can obtain the bias-corrected estimator for the post-Lasso estimator ézék.

Let ||All, = {E||A[|*}*/ for any a > 1. Let C denote a generic positive constant that does
not depend on N and T. We add the following assumption.

ASSUMPTION D1. (i) For each i =1,...; N, {(zi,ui) : t = 1,2,...} is strong mz’xz’ng with mizing

coefficients {cv; (-)} such that o; (1) < cqaip” for some cq; < 00 and p € (0,1). ZzeGk c((f‘f /o)
=0(1).

120bserving that éx — a2 = Op ((NkT)fl/2 —&—T*l) and dék —al = 0p ((N;eT)*l/2 +T71) , one can use
either estimator in the definition of the residuals. We recommend using the post-Lasso estimator &@k because of
its better finite sample performance.



(ii) Let x; = (w31, ...,w7) and u; = (i1, ..., u;r) . (x5,u;) are independent across i € Gg
where k=1, ..., Ky.
(iii) max; ;B ||z ||*? < C < oo and max;; B |juy||*? < C < oo for some ¢ > 1.

2g—1
i) As (N, T) — 00, My — 0o, M2/T — 0, M2Ny /T3 — 0, and N._*TV2 S o a; (My) 2
T T k i€GY
— 0 for each k=1, ..., Kp.

Assumption D1(i) assumes the usual mixing condition. D1(ii) assumes cross sectional inde-
pendence to simplify the proof which can be relaxed at the cost of lengthy arguments. D1(iii)
assumes moment conditions. The last condition in D1(iv) can be easily ensured under D1(i)
because for any Mp > In(N/2T1/2) (e.g., Mp = (11{1(]\/1/2T1/2))1+€ for some € > 0),
we have

29
(2¢—1)Ing

1/2 1/2 Z 2q 1)/(2q) 1 2q 1)/ 1/21/2 My (2¢—1)/(29)
T (Mr) < > e N2 TY2p
i€GY ieG
= O(1)exp <ln <N2/2T1/2> + W lnp> — 0.

The first three requirements in D1(iv) can be easily satisfied too. For example, if N oc T for
some a < 3, it suffices to set My oc TV/® for some b > max{2, 2/ (3 — a)}.

Proposition D.1 Suppose that the conditions in Theorem 2.4 hold. Suppose Assumption D1
holds. Then é;lﬁkNT — (i)lzlﬁkNT =op (1) .

Proof. Noting that éfl]ﬁkNT — i),;lBkNT = (i),;l - (i)];l)BkNT + (‘i),;l - @El)(]@kNT —BinT)
+0, Y Binr — Brnr), @1 = O(1), and Byyr = O (s/Nk/T> , it suffices to show that (i) &y —

®;. = op(vyr) and (ii) IB%kNT — Byt = op (1), where vy = min(1, \/T/Ng).
We first prove (i). Note that

(i)k — (I)k = —_— Z Z.’L‘thzt N T Z sztwlt

zeG t=1 zGGOt 1
- S5 S M Ny
— it ’Lt itbgt
NT ieG, i€Gy) t=1 NeNeT ieGY t=1

= &1+ Dpo, say.

By Corollary 2.3, we can readily show that ®; 2 = Op(N, ) =op (VNT) For any € > 0, we have
by the proof of Theorem 2.2, P ([|Pg1 = vnre) < P(FkNT) + P(Epnt) = 0(1). Tt follows that

d), — &y = op (UnT) -



We now prove (ii). We first make the following decomposition:

Binr — Benr = 1/2T3/2 > ZZkMT (t, s) wishit — 1/2T3/2 > ZZE TisUit)

ZEGkS 1t=1 Gosltl

S D9 SUTIEERIEE Ve 59 9) SETENE

ZEGOS 1t=1 ZeGosltl
+0P(1)

= 1/2T3/2 Z ZZkMT t 3 Tis (Uit uzt)

GOS 1t=1

1/2T3/2 Z ZZkMT t 3 *xzsuzt E(xisuit)]

GGOS 1t=1

Nk—l/2 B Nk_l/2

w37 Z gy (t,8) B (@i5uit)
Z-egg s=1 t=1

1/2T3/2 Z ZZ [1- kMT (t,s)] E(xisuir) + op (1)

€GO s=1 t=1

= Bnra + Benra + Binrs + Brnra +op (1), say,

where the op (1) term arises due to the replacement of Gy by Gg and this can be easily justified by
using the uniform classification consistency result and arguments as used in the proof of Theorem
2.5. We prove (ii) by demonstrating that Bynr s = op (1) for s =1, 2, 3, and 4.

We first study Bjnr1. Noting that i = v —xétdék — [l = Yit —:r;téaék —% ZtT:l(yit—x;tdék)
and y;; = :Egtozg + p; + uip for ¢ € Gg, we have that for ¢ € Gg

T
7y L= ! &n I N i
Uit — Uit = Yit — xitO‘Gk yzt taG — Uit = xit(ak - aGk) — U,
here @; = = >";_, uir. Th
where @; = 7 >, uit. Then

Binta

1/2T3/2 Z ZZkMT (t,s wlsxzt( Qg — @ék)

GGOS 1t=1

1/2T3/2 Z ZZkMT (t,s) wist;

Gosl

=1
= DBpn7i (1) — Bent (2), say.



In view of the fact that &5 — af = Op (NyT)~Y2 4+ T71) and Nj = Ny (1+0p (1)), we have

|Bivra (D] = 1/2T3/2 550 by (69) (ol — i)

GGOS 1t=1

NkTQ Z Z me Zt“

i€GY [s—t|<Mr

NkT1/2
¢ 1/2 Hak ag,

IN

— N*120, ((z\/k:/“)*l/2 + T )op (M7 /T)

= Op (1 + N;/QT’1/2> Op (Mz/T) = op (1)

where we use the fact that ﬁ ZieG% > 1s—t<my 1TisTi|| = Op (Mr/T) by moment calculation
and Markov inequality. Let Brn71 (2) = m Ziecg Z;F:l Zthl kay (t,s)w'zist; where w
is any p x 1 nonrandom vector such that ||w|| = 1. Then by Assumptions D1(i), (iii) and (iv),

T T T

}E [BkNT,l (2)] ‘ < 1/2T5/2 Z Z Z Z kMT t S }E w xzsuzr)’

leGOS 1t=1r=1

T T T
e 2 30 Sk 6) [l g o)

EGO s=11t=1r=1

1/2
oN )1 Lan/eo ()1 S preslern/e)
— T3/2 Nk ‘ A (67X .

ieGy, t,s,r: |s—t|<Mrp
— N*77320(1) 0 (Mp) = O <MTN;/2T_3/2> —o(1).

Similarly, by Assumptions D1(i)-(iv),

T T
Var (BkNT,l (2)) = ﬁ Z Var (Z Z Z k‘MT (t7 3) w/xisuz'r>

ZGG% s=1 t=1 r=1
1 T T 2
B NkT5 Z B (Z Z Z kMT (t7 S) w xzs“zr)
e s=1t=1r=1

= 3 T5 S kg (b te) ko (tas ts) B (/i ity @it i, )
k i€GY 1<ty t2,....te <T'

- NkT5 Z Z ‘E (wlwit2uit3 wlwitsuiteﬂ

ZEGO 1<ty,to,....te <T
* |t1—ta| <M, |ta—ts| <My

= O (M3/T)=0(1).

Consequently, Bin7,1 (2) = op (1) . This, in conjunction with Corollary 2.3, implies that Byyr1 (2)
= op (1) as w is arbitrary. Thus we have shown that Byy71 =op(1).



A ) = 1/2,51/2 & _
For Binr2, note that Bynro = Bk:NT,2Nk/ /Nk/ = Bint2 (14 0p (1)) , where Byt =
N;/21T3/2 Zz‘eGg 25:1 Zf:l kMT (75, 5) [iﬂisuit - E(:Elsuzt)] By construction E(BkNT’Q) = 0. By

Assumptions D1(ii)-(iii) and Jensen inequality,

Var (w'Binr2) = NkT3 > Var ZZkMT (t, s) W' [misuir — B (zisAugy )]
zeGO s=1 t=1

T T
= NkT3 > ZZZZI{:MT (t, 8) knrp (1, 1) B (W' zisuipuirzgw)

i€GO s=1t=1r=1 I=1

NkT3 Y Y Y E(Wniugurziw)| = O (M7/T) = o(1),

zEGO |[s—t| <My |r— l|<MT

where the last equality follows from the fact that ||E(w'zijsujpupzyw)| < max;s; ||xlsu,t||§
< max g ||lzi||3 x max;y Juitl|; < C < oo by Assumption D1(iii). Then Bpyra = op (1) by
Chebyshev inequality and thus Bk NT2 =op(1).

By Corollary 2.3 and Davydov inequality,

’N*l — N
: H - N2 —1/2 Z ZkMT (t, 5) B (wisuit)
T3/2( / +N / ZGGOS 1=
- DS
S N ||E TisUit ||
1/2 1/2
TY2Ny (N, +N NkT €50 [s—t1=ay

— op(N,*T712)0 (1) = 0p (1).

By Assumptions D1(i)-(iv) and Davydov inequality,

T
HBkNTAH - 1/2T3/2 EZGO;; 1 - kMT t S)]]E(xlsuzt)
T T
- 1/2T3/2 Z z_;t_l [1 = karp (t, 8)] B (zisuir)
1/2T3/2 Z Z 2q—1)/(2q) ||£L‘is||4q ||uz-t||4q

zGGO |s—t|>Mrp

ON 1/2’171/2 Z MT (2¢-1)/(2q) _ 0(1) .
i€GY

IN

This completes the proof of the proposition. m



With the above result, we can readily show that
R _ NL/2 o Y
VN.T ( (c) _ ag) - {\/NkT (a5 — ) — &; 1IB%kNT] + (Nk/Nk> [@k By — b IIBSkNT}
N12]
+ [1 — N/ %) } O, Binr

_ [ NeT (5, — af) — <I>;1IBkNT] +op (1) +op (N1 O ((NK/T)1/2>

= [ NT (dk - Oég) — é;lBkNT] +op (1) .
That is, NkT(&,(f) — af) has the desired limiting distribution that centers around 0.

D.2 Bias Correction for the PGMM C-Lasso Estimator

The bias correction for the PGMM C-Lasso estimator in dynamic panel data models can be done
analogously. For simplicity we focus on the case where W;nyr = I for all i. Recall from Theorem
3.4 and the remark regarding Assumption B3(iii) (see (3.6) in particular) that

VT (1, — ) — A Beyr 2 N(0, AL CR ALY for k=1, ..., K

A — 1 9 9 1 T T
where Ak =N ZiGGg Q;,ZA:CQ@ZAI and BkNT = W ZiGGg Zs:l Zt:l E (A.Z?iSZgSZitA’U,Z‘t) .
k

Based on (3.6), in order to verify Assumption B3(iii) we also need to show

Vinr 1/2T1/2 % tZIQz anZitAuir 2 N (0,C), and (D.1)
RynT 1/2T3/2 Z Z Z { Aziszty — (Amiszgs)] zitAuy — B (A%‘szgszz‘tﬁuit)}
GO s=1 t=1
= or(). (D.2)

The first part is ensured by a version of CLT. Below we first propose an estimate of the bias
A 'Binr and then demonstrate (D.2).

To correct the bias, we propose to obtain consistent estimates of Ay and Byt respectively
by

_ 1 s s _
Ak: = = Z Q;7zAin,ZALI) and Byt = ~1/2 3/2 Z ZZkMT t S szszzszztAuzt;
k ieGy, T ieGy s=1 t=1

where Aty = Ay — &’GkAfcit for all i € G, kar, (t,8) is as defined above: kg, (t,s) =
k?MT (|t — s|) and ngT (u) denotes the Bartlett kernel: k?wT (u) = (1 —|u| /Mp)1{|u| < Mr}.
Note that we also allow dynamic misspecification here. If one is sure that the model is dy-
namically correctly specified in the sense that E (Auy|Fii—1) = 0 where F;; 1 = o(Aujs1,

3 Observe that ax — ol = Op ((NkT)fl/2 + Tﬁl) and g, — ay =0p ((NkT)fl/z) . We recommend using the
post-Lasso estimator &@k.

10



Axit—1, zit; Atjp—2, ATjt—2, Zi1—1; ...), one can use the one-sided kernel: kjpz, (t,s) = k;]le (s—1),
where k:]le (u) = (1 —u/M7)1{0 < u < Mr}. The bias-corrected C-Lasso estimator of o would
be

al? = &, !
k. — - =
vV N, T
Note that Theorem 3.4 indicates that there is no need to consider bias correction for the post
Lasso estimator dék.

A;lgkNT.

We add the following assumption.

ASSUMPTION D2. (i) For each i =1,..., N, {(Ax, zit, Augy) : t = 1,2, ...} is strong mizing with
mizing coefficients {c; (-)}. In addition, o (T) < cq,ip” for some cqo; < 00 and p € (0,1) where
N Tieay ot 1 =0(1) and Ty ess = 0(1).

(ii) Let x; = (x51,...,x57) and u; = (uzl,.. wir) . (xi,u;) are independent across i € Gg
where k=1, ..., Ky.

(iii) max; ;B || Azirzl,|* < C < 0o and max; ;B ||z Aug||* < C < 0o for some ¢ > 1.

(iv) As (N, T) — oo, My — oo, M2/T — 0 and N,;l/QTl/2 Zz’eGg o (M) 1/CD g for
each k=1,..., Kp.

Assumptions D2(i)-(iv) parallel D1(i)-(iv). The major difference is that we don’t need M2 Ny /T
— 0 in D2(iv) but require ¢ > 1 in D2(iii).

Proposition D.2 Suppose that the conditions of Theorem 8.4 hold. Suppose Assumption D2
holds. Then AllekNT - A,;lBkNT =op (1) .

Proof. Noting that A BkNT A BkNT = (A ! /_1 )BkNT“‘(A A )(BkNT BkNT)
+A (BkNT BkNT) A* = 0(1), and BinT = O(\/Nk/T) it suffices to show that (i) Ap— Ay =
op (VNT) and (ii) Bryr — Bryr = op (1), where vy = min(1, /T/Ny).

We first prove (i). Note that

Ak‘ - Ak‘ - — Z Qz zAxQZ ZAZ‘ - Z Q'L zAmQZ ZAJ?
zeGk zeGO
~ Nk
= Z Z 7 zA:rQi,zAac +— N N Z Qz zA:er zAx
icGy  i€GY, kY iego

= Api+ Agp, say.

By Corollary 3.3, A2 = Op(N, ) =op (VNT)) For any € > 0, we have by the proof of Theorem
3.2, P(HAk 1|| > I/NTG) < P(FkNT) + P(EkNT) = 0( ) It follows that A — Ak =op (VNT) .

11



Now we prove (ii). We make the following decomposition:

Bk:NT — Bint

T T
= 1/2T3/2 Z ZZkMT (t,8) Aziszt 2it Al — 1/2T3/2 Z Z ZE (A:BiszgszitAuit)

ieGy, s=1 t=1 i€G0 s=1 t=1

T T
= 1/2T3/2 Z ZZk‘MT (t,8) Azisztg2it Atiy — 1/2T3/2 Z ZZE (AwiszgszitAuit)

Gos 1t=1 Goslt—l
“+op (1)
- 1/2T3/2 Z ZZkMT (t,8) Aziszigzie (At — Augy)
EGO s=1 t=1
— /2T3 P > ZZkMT (t,8) [Aziszl 2 Ausy — B (Awiszlyzi A )|

i€GY s=11=1

-1/2 5—1/2
N, TN

T T
+ T3/2 Z Z Z kMT Amlsz ZitAuz‘t)
i€GY

ks 1t=1

Z Z 1 — kMT (t,s ]E (AwiszgszitAuit) +op (1)

1/2 3/2
T/ ’LEGOS 1t=1

= Bynt,1 + Bint2 + Bents + Binra +op (1), say,

where the op (1) term arises due to the replacement of Gy by G% and this can be easily justified by
using the uniform classification consistency result and arguments as used in the proof of Theorems
2.5. We prove (ii) by demonstrating that Byyrs = op (1) for s =1,2,3,4.

First, noting that Ad; — Auy = (o — &ék)/Al‘it, GG, — ad = Op ((NkT)_1/2) , and that
Ni/Ni, =14 op (1) by Corollary 3.3, we have

| Bental] 1/2 7 Z ZZkMT (t,8) Aziszigzie(Axiy) (042 —&ék)
T GO s=1t=1
S (NkT)1/2 HOI% — dék N N T2 Z E HA'xzszzsz’Lt Amlt H
k GO ‘8 t|<MT
= Op(1)bgnT
where bgyr1 = ﬁZieGg le;—t\SMT |Aziszl zie(Azi)'|| . By Markov inequality, byyri =

Op (M7/T) . It follows that ||Binr,1| = Op (Mr/T) = op (1) under Assumption D2(iv).
For BkNTQ, note that Bk;NTQ B kaT2N1/2/N1/2 e kaT,2 (1 +op (1)) s where

E ZZkMT (t,s) AfczszzszztAuzt — (AmiszgszitAuit)]

bunT 2 =
v 1/2
T3/2 i€GY s=1 t=1

12



Let w be any p x 1 nonrandom vector such that ||w|| = 1. Then E (w'bgn72) = 0. By Assumptions
D2(ii)-(iv) and Jensen inequality,

Var (w,kaTg)

T T
= N1T3 Z Var Z Zk {Axwz zitAu; — B (Azlsz znAuzt)}
e s=1 =1
1 T T T T
< N.TO Z Z Z Z Z kaip (t,8) gy (7,1) W'B [Amis 2]z Awig Awq 25y zi Ay | w
i€eGY s=1 t=1r=1[=1
< Nle3 Z Z Z HE w' Awis 2zt A Awi 25y 23 Ay w] H

M
Q
ENS)
w
L
/\m
ﬂ
?
W
5

= O(M;/T)=0(1),

where the last equality follows from the fact that ||E [w' Azisz),zi Awi Axi 2} zir Augrw] || < max;
1/2
{E |Aziszl || } X max; ¢ {E ||z¢tAuit||4} < C < oo by Assumption D2(iii). It follows that

Bint2 = op (1).
By Corollary 3.3 and Davydov inequality,

\Nfl_]v,;l
||BkNT,3|| = — k?M t S Aa:wz ZitAuit)
‘N'“_N‘“ > | )|
< E Amlsz Zit Ay
= S— ~1/2 is
TY2Ng(N,, / +N /) NkT i€GY |s—t| <My

= op(N, PT12)0 (1) = 0p (1).

By Assumptions D2(i)-(iii) and Davydov inequality,

T
| BenTall = 1/2 s Z ZZ [1 = kary (£, 8)] B (Amiszlyzin Auge)
T ieGY s=1 t=1
1/2T3/2 Z Z (2‘1 D/ “Amlszzs“4 ||ZZtAuzt||4q

’LEGO IS t|>MT

CN;1/2T1/2 Z o (MT)(2qfl)/(2q) =0(1).

=10
1€GY,

IN

This completes the proof of the proposition. m
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With the above result, we can readily show that
_ S N1/2 72 .
v N T < (c) _ Oz%) = [\/NkT (dk — ag) — A,;lBkNT} + <Nk/Nk) [A,;lBkNT — AllekNT}
SN2
+ [1 — <Nk/Nk) } AL BinT
_ [ /NT (6 — ) — A,;lBkNT} +op (1) +o0p (N7H) O <(NK/T)1/2)
= [\/Nk;T (dk; — ag) — AI;IBJQNT} +op(1).

That is, v/ NkT(&,(f) — af) has the desired limiting distribution that centers around 0.

Now, we demonstrate (D.2). Let &, = Awiszl, — B (Awiszl,) and n;, = 2 Augy. Noting that
E (&) =0 and E(n;) =0, we have

RkNT = 1/2T3/2 Z ZZ fzsnzt gzsnzt)]

i€GY s=11=1

- 1/2T3/2 Z Z 5“77“5 gltnlt)] 1/2T3/2 Z Z gzsnzt fzsnzt)]

ieGy t=1 i€GY 1<s<t<T

1/2T3/2 Z Z fzsnzt 51577“:)]

ieGY 1<t<s<T
= RinT1+ Bipnt2 + RipnT3, say.

It is trivial to show that Ryn71 = Op (Tﬁl) by Chebyshev and Davydov inequalities. For Ry 2,
we have E (Rgn72) = 0 by construction, and by Assumption D2(ii) and Jensen inequality

E (RI%NT,Q) = NkT3 Z Var Z [§z‘t177it2 —E (fz’tl 771'152)]

zeGO 1<t1<ta<T

NkT3 Z Z Z (fz‘tlmtzﬁitgmu) = SkNT, say.

zeGO 1<t1<to<T 1<t3<ts4<T

To bound Sy, we can consider three subcases: (a) #{t1,t2,t3,t4} =4, (b) #{t1, ta,t3,ta} = 3,
and (c) #{t1,t2,t3,ta} = 2, and use SpnT.q; SknTp, and Spn7. to denote the last summation
when the time indices are restricted to these three cases in order. Apparently, Syn7,. = O (1/7)
under Assumption D2(iii). In case (a), without loss of generality (wlog) assume that 1 < ¢; <
to < t3 < t4 < T and denote S IS\),T o @8 SENT,q when the time indices are restricted to this subcase.
[Note that the other subcases can be analyzed analogously.] Let d. be the c-th largest difference
among t;y1 —t; for j =1,2,3. Then

Sl(c%f\)fT,a = NkT3 Z Z + Z + Z

i€GY \1<ti<ta<tz<ta<Tto—ti=d1 1<t1<ta<tz<ta<T,tz—to=d1 1<t1<to<tz<t4<T,ts—t3
xT (§it1 Nity fitg 77it4)
(1)

(1) (1) .
Sk:NT,al + Sk:NT,aQ + Sk:NT,a3’ say.
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=dy



By Davydov inequality and Assumptions D2(i) and (iii),

(1) 1 T-3 T2 17
SNTa1 < N.T3 Z Z Z Z Z Hfz‘t1H4q Hnitz§it377it4“4q/3 a (ty — 1)~/
k ieG’g t1=1to=t) +max;>3{t;—tj_1} ta=ta+1ta=ts+1
o N T3 T2
< sz Z (t2—t1)2 ; (ta —tl)(q—l)/q
i=1t=1to=t1+1
1 L&
<y T =or.

i=17=1

Similarly, we can show that S ,S\),T us = O (1/T) for s = 2,3. It follows that S,S\),T’ . =0(1/T) and

S,S\),T’a =0 (1/T) = o(1). In case (b), wlog assume that t4 = t2 and 1 < t; < t2 < t3 < T and

we use Sé?,T » to SpnTp when the time indices are restricted to this subcase. Then by Davydov

inequality and Assumptions D2(i) and (iii)

1
‘Szgx)rT,b) = WZ > B (Gt

i€GY 1<t1 <ta<t3<T

N
8 —
= N, T3 Z Z Hgihnzztz H4q/3 Hgit:s H4q oy (tg — t2)(q 1)/a
FE 1 1<t <ta<ta<T
8C S~y (a-1)/
e . q—1)/q _ 1
< N, T ;;0‘1 (1) =0(T™).

So Sknrpe = O(T™1). Consequently, Spyy = O(T71) and Rypnra = Op(T~1/2) by Cheby-
shev inequality. By the same token, Ryn73 = Op(T -1/ 2). Thus we have shown that Rpyr =
OP(T’1/2) =op(1).
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