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Abstract

We study the identification and estimation of panel dynamic simultaneous equations

models. We show that the presence of time-persistent individual-specific effects does not

lead to changes in the identification conditions of traditional Cowles Commission dynamic

simultaneous equations models. However, the limiting properties of the estimators depend

on the way the cross-section dimension, N , or the time series dimension, T , goes to infinity.

We propose three limited information estimator: panel simple instrumental variables (PIV),

panel generalized two stage least squares (PG2SLS), and panel limited information max-

imum likelihood estimation (PLIML). We show that they are all asymptotically unbiased

independent of the way of how N or T tends to infinity. Monte Carlo studies are conducted

to compare the performance of the PLIML, PIV, PG2SLS, the Arellano-Bond type gener-

alized method of moments and the Akashi-Kunitomo least variance ratio estimator and to

demonstrate the sensitivity of statistical inference to the asymptotic bias of an estimator.

Keywords: Panel dynamic simultaneous equations, Maximum likelihood, Instrumental vari-

able, Generalized method of moments, Multi-dimensional asymptotics

JEL classification: C01, C30, C32

∗This work was supported in part by China NSF grant #71131008. We would like to thank M.H. Pesaran

and K. Hayakawa for calling our attention to the Grassetti (2011) paper and three referees for helpful comments.
†Department of Economics, University of Southern California, University Park, Los Angeles, California 90089

chsiao@usc.edu, Department of Quantitative Finance, National Tsing Hua University and WISE, Xiamen Uni-

versity, China.
‡Department of Economics, University of Southern California, University Park, Los Angeles, California 90089

qiankunz@usc.edu.

1



1 Introduction

This paper considers statistical inference for panel dynamic simultaneous equations models.

There are three unique features in the analysis of panel dynamic simultaneous equations models

that are different from that of conventional Cowles Commission dynamic simultaneous equations

models (e.g. Hood and Koopmans (1953)): (i) the presence of time-invariant individual specific

effects raises the issue of incidental parameters, be the specific effects are considered random

or fixed; (ii) the formulation of initial observations; and (iii) the multi-dimensional nature of

panel data.

Statistical inference can only be made in terms of observed data. The joint dependence

of observed variables raises the possibility that many observational equivalent structures could

generate the same observed phenomena (e.g. Hood and Koopmans (1953)). Moreover, given

the inertia in human behavior and the institutional and technological rigidities, many people

believe that "all interesting economic behaviors is inherently dynamic, dynamic model are the

only relevant models" (e.g. Nerlove (2000)). However, the presence of time-invariant individual-

specific effects creates correlations between the unobserved individual-specific effects and all

current and past realized endogenous variables. Whether the presence of this time-invariant

effects affects conditions for identification of a dynamic simultaneous equations model needs to

be explored.

Current outcomes depend on past outcomes also raises the issue of how to treat the initial

observations. In a time series framework, this is a moot issue when the time dimension, T, goes

to infinity because the relevance of the initial observations becomes negligible. However, in a

panel framework, there is also a cross-sectional dimension, the impact of initial observation is

magnified by the dimension of cross-section, N, even T is large. It turns out that the statistical

properties of different simultaneous equations model estimators could depend critically on how

initial observation is formulated and the way N or T goes to infinity.

Akashi and Kunitomo (2012) consider several estimators for a dynamic simultaneous equa-

tions model, the within group, the generalized methods of moments estimator (GMM), the

panel limited information maximum likelihood estimators. They show that the statistical prop-

erties of these estimators depend critically on the way N or T goes to infinity. In particular,

if NT → c 6= 0 as T → ∞, all these estimators are asymptotically biased. Whether a consis-
tent estimator is asymptotically biased or not plays a pivotal role in the validity of statistical

inference (e.g. Hsiao and Zhang (2013)). In this paper, we propose three limited information

estimators that are independent of the way N or T or both go to infinity: panel simple instru-

mental variable estimator (PIV); panel generalized two stage estimator (PG2SLS) and the panel
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limited information (quasi) maximum likelihood estimator (MLE). We show that the likelihood

approach possesses desirable properties independent of the way N or T goes to infinity provided

the initial observation is properly formulated. However, if the initial value is mistreated as fixed

constants, the likelihood approach is asymptotically biased of order
√

N
T when

N
T → c 6= 0 and

c <∞ as T →∞.
This paper is organized as follows. Section 2 describes the model we studied. Section 3

discusses identification and related transformation of the model. Section 4 discusses MLE and

its asymptotic properties for the over-identified model. Section 5 discusses methods of moments

and several other related estimators for dynamic system. Section 6 provides two simulations

to check the performance of various estimators. Concluding remarks are at section 7. All

mathematical proofs are provided in the appendix.

2 The Model

We will show that the presence of lagged dependent variables is the source that a consistent

estimator could be asymptotically biased when both N and T are large. Therefore, there is no

loss of generality to consider a panel dynamic simultaneous equations model of the form

Byit + Γyi,t−1 + Cxit = ηi + uit, i = 1, . . . , N ; t = 1, . . . , T, (2.1)

where yit = (y1,it, y2,it, . . . , yG,it)
′ , yi,t−1 = (y1i,t−1, y2i,t−1, . . . , yGi,t−1)′ are G× 1 contempora-

neous and lagged joint dependent variables, xit is a k× 1 vector of strictly exogenous variables,

ηi is a G × 1 vector of time-invariant individual-specific effects. For ease of notation, yi,0 are

observed. We assume that

Assumption 1 (A1): uit is independent, identically distributed over i and t with zero mean,

and nonsingular covariance matrix Ωu, and finite eighth moment, and are independent of xit.

Assumption 2 (A2): {ηi : i = 1, 2, . . . N} are iid across individuals with finite fourth mo-
ment.

The distinct feature of panel dynamic simultaneous equations models are the joint depen-

dence of yit and the presence of time persistent effects ηi in the ith individual’s time series

observations. The joint dependence of yit makes B 6= IG.

Assumption 3 (A3): |B| 6= 0 and all the roots of |B− λΓ| = 0 lie outside the unit circle.

Premultiplying B−1 to (2.1) yields the reduced form specification

yit = H1yi,t−1 + H2xit +αi + vit, (2.2)
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where H1 = −B−1Γ, H2 = −B−1C, αi = B−1ηi and vit = B−1uit. The presence of time-

persistent αi creates correlation between yit, yi,t−j and αi for all j. Under A3, Hn
1 → 0 as

n→∞.

3 Identification and methods to remove the individual specific

effects

The time-invariant specific effects enter the system (2.1) (or (2.2)) linearly, it can be removed by

taking linear difference of an individual’s time series observation. The three popular approaches

are first differencing (e.g. Anderson and Hsiao (1981, 1982), Hsiao, Pesaran and Tahmiscioglu

(2002)), forward demeaning (e.g. Alvarez and Arellano (2003), Arellano and Bover (1995)),

or long differencing (e.g. Grassetti (2011), Hahn, Hausman and Kuersteiner (2007)). The

effi ciency of an estimate could depend on which way ηi is removed and the relevant moment

conditions used. However, the goal of this paper is to study if a particular type of estimator is

asymptotically biased, or if it is, what is the order of the asymptotic bias, not the exact formula

for the bias, we shall freely use either form depends on the ease of demonstration because the

order of the asymptotic bias of the estimators to be studied in this paper are not affected by

which of these three methods are used.

The first difference considers the system in terms of ∆yit = yit−yi,t−1. The long difference

considers the system in terms of ỹit = yit − yi0. Taking the first difference yields the system in

structural form as

B∆yit + Γ∆yi,t−1 + C∆xit = ∆uit, i = 1, . . . , N ; t = 2, . . . , T, (3.1)

or reduced form

∆yit = H1∆yi,t−1 + H2∆xit + ∆vit, i = 1, . . . , N ; t = 2, . . . , T. (3.2)

System (3.1) or (2.2) is a complete system if (yi1 − yi0) are fixed constants. However, if the

data generating process of yi0 is not different from yit, then yi0 or ∆yi1 = yi1 − yi0 cannot be

treated as fixed constants. Equation (2.2) implies that

yi0 = H1yi,−1 + H2xi0 +αi + vi0

= [IG −H1L]−1 H2xi0 + [IG −H1L]−1αi + [IG −H1L]−1 vi0, (3.3)

where L denotes the lag operator, Lyit = yi,t−1. However, xi0,xi,−1, . . . are unobservable. Under
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Assumption 4 (A4): xit is generated by

xit = µ+

∞∑
j=1

bjνi,t−j ,
∞∑
j=1

|bj | <∞, (3.4)

where µ is a G× 1 vector of constants, bj is a G×G matrix of constants, and νit is i.i.d over i
and t with nonsingular covariance matrix, Hsiao, Pesaran and Tahmiscioglu (2002) show that,

we can write1

[IG −H1] [IG −H1L]−1 H2xi0 = E
[
[IG −H1] [IG −H1L]−1 H2xi0|x̄i

]
+ wi (3.5)

= Ax̄i + wi, i = 1, 2, . . . , N,

where A is a k × k constant matrix, x̄i = 1
T

∑T
t=1 xit and wi is i.i.d across i with nonsingular

covariance matrix. Substituting (3.5) into (3.3) and substracting yi0 from yi1 yields

∆yi1 = H2∆xi1 − [IG −H1] Ax̄i + vi1 − [IG −H1L]
[
wi − [IG −H1L]−1 vi0

]
. (3.6)

Premultiplying (3.6) by B yields the structural form of ∆yi1 as

B∆yi1 + Cxi1 + A∗x̄i = ξ∗i + ui1, i = 1, 2, . . . , N, (3.7)

where A∗ = − (B + Γ) A and ξ∗i = Bwi − (B + Γ)
[
wi − [IG −H1L]−1 vi0

]
. A1 and A4 imply

that ξ∗i is independently, identically distributed over i with mean zero and nonsigular constant

covariance matrix Ωξ∗ .

Thus, neither the structural form consisting of (3.1) and (3.7), nor the reduced form con-

sisting of (3.2) and (3.6) contains the time-invariant individual-specific effects, ηi or αi. It was

shown by Binder, Hsiao and Pesaran (2005) that H1 and H2 can be consistently estimated by

either the (quasi) maximum likelihood method or the GMM method. Using the relations be-

tween the structural parameters and reduced form parameters, it can be shown that a necessary

and suffi cient condition for the identification of the g-th equation (e.g. Hsiao (1983)) is

rank (Bg,Γg,Cg) = G− 1, (3.8)

1For a stationary invertible MA process, xt can be equivalently written xit = A (F )xi,t+1 + εit,∑∞
j=1 |Aj | < ∞ and F denotes the forward operator. (Box and Jenkins (1970), ch.6). The minimum

mean square predictor of x−j , E (x−j |xi1, . . .) is of the same form across i, (Box and Jenkins (1970), ch.6).

Thus, [IG −H1] [IG −H1L]
−1 H2xi0 = [IG −H1]

[
IG +

∑
v=1 Hv

1L
v
]
H2

[
A (F )

(
A(F )−1

Fv

)
+

]
xi1 + εi0. where(

A(F )−1

Fv

)
+
=
∑∞

j=0 bv+jF
j . Utilizing the result that Aj → 0 and Hj

1 → 0 as j increases, the minimum mean

square predictor can be approximated arbitrarily well by a finite order forward predictor. For ease of notation,

we use x̄i in stead of xi1,xi2, . . . .
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if the prior restrictions on (2.1) is in the form of excluding certain variables from the g-th

equation in (2.1), where (Bg,Γg,Cg) is the matrix formed from the column of (B,Γ,C) that

are zeros on the g-th row. In other words, the presence of individual-specific effects ηi doesn’t

change the conditions for the identification of an equation in (2.1). A necessary condition for

the satisfaction of the rank condition (3.8) is that the number of excluded variables from the

system (2.1) is no less than G− 1.

4 Limited information Quasi-Maximum likelihood (LIML) Es-

timation of the Transformed System

4.1 The model

Following Anderson and Rubin (1949), we just consider the estimation of a structual equation

ignoring the prior restrictions on the other equations of the system (2.1). To illustrate the

impact of lag dependent variables on the asymptotic distribution, there is no loss of generality

to consider the estimation of the first equation of the following system

y1,it = β′y2,it + γ1y1,it−1 + c′1x1,it + η1i + u1,it (4.1)

y2,it = Π21y1,it−1 + Π22y2,it−1 + Π23x1,it + Π24x2,it + η2i + u2,it,

where y2,it is a (G− 1)× 1 vector of the included joint dependent variables, x1,it and x2,it are

k1 × 1 and k2 × 1 vectors of included and excluded exogenous variables. Premultiplying the

system (4.1) by

B−1 =

(
1 −β′

0 IG−1

)−1

,

yields the reduced form as

(
y1,it

y2,it

)
=

(
Π11 Π12 Π13 Π14

Π21 Π22 Π23 Π24

)
y1,it−1

y2,it−1

x1,it

x2,it

+

(
α1i

α2i

)
+

(
v1,it

v2,it

)
, (4.2)

where

Π11 + β′Π21 = γ1,Π13 + β′Π23 = c′1,Π12 + β′Π22 = 0′, (4.3)

Π14 + β′Π24 = 0′, α1i + β′α2i = η1i, v1,it + β′v2i = u1,it.
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We shall assume that the first equation of (4.1) is identified, i.e.,

rank

(
Π12 Π14

Π22 Π24

)
= G− 1.

We can take the first difference to eliminate ηi. Under A4, it yields a system of (3.1) and

(3.7). However, the first difference yields a first order moving average error term. The inversion

of a T × T covariance matrix of a moving average error is quite complicated (e.g. Hsiao

and Zhang (2013)). Since it is well known that the effi ciency of the MLE is invariant to the

nonsingular linear transformation, we shall follow Gressetti (2011) to take the long difference,

ỹit = yit − yi0. Under A4, it yields a system of the form,

Bỹit + Γỹit−1 + Cxit + A∗x̄i = uit + ξ∗i , i = 1, 2, . . . , N ; t = 1, . . . , T, (4.4)

That is, the long difference transformed system becomes

ỹ1,it = β′ỹ2,it + γ11ỹ1,it−1 + c′1x1,it + a∗′1 x̄i + ξ∗1i + u1,it (4.5)

ỹ2,it = Π21ỹ1,it−1 + Π22ỹ2,it−1 + Π23x1,it + Π24x2,it + A∗2x̄i + ξ∗2i + u2,it,

for i = 1, . . . , N and t = 1, . . . , T.

4.2 Log-likelihood function

In this section, we will study the limited information quasi-maximum likelihood (LIML) esti-

mation of the system (4.1). For ease of exposition, we assume G = 2 and k = 2, because the

asymptotic distribution of the QMLE essentially takes the same form for models with more than

two variables but algebraically much more tedious. Specifically, we will consider the following

model

y1,it = βy2,it + γ11y1,it−1 + c11x1,it + η1i + u1,it (4.6)

y2,it = γ21y1,it−1 + γ22y2,it−1 + c21x1,it + c22x2,it + η2i + u2,it,

where (γ22, c22) 6= 0. After taking long difference, we have

ỹ1,it = βỹ2,it + γ11ỹ1,it−1 + c11x1,it + a∗′1 x̄i + ξ∗1i + u1,it (4.7)

ỹ2,it = γ21ỹ1,it−1 + γ22ỹ2,it−1 + c21x1,it + c22x2,it + a∗′2 x̄i + ξ∗2i + u2,it,

where x̄i = (x̄1i, x̄2i)
′ . The reduced form of (4.7) is(

ỹ1,it

ỹ2,it

)
= B−1Γ

(
ỹ1,it−1

ỹ2,it−1

)
+ B−1Cxit + B−1A∗x̄i + B−1

(
ξ∗1i
ξ∗2i

)
+ B−1

(
u1it

u2it

)
(4.8)

= Πỹi,t−1 + Ψxit + Θx̄i + ξi + vit,
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where

B =

(
1 −β
0 1

)
,Γ =

(
γ11 0

γ21 γ22

)
,C =

(
c11 0

c21 c22

)
,A∗=

(
a∗′1
a∗′2

)
,

Π = B−1Γ,Ψ = B−1C,Θ = B−1A∗,

ξi = B−1ξ∗i = B−1

(
ξ∗1i
ξ∗2i

)
,vit =

(
v1,it

v2,it

)
= B−1

(
u1,it

u2,it

)
,

where ξi and vit are independent by construction.

Stacking the ith individual’s T time series observations in the vector form yields

ỹ1i
T×1

= ỹ2iβ + ỹ1i,−1γ11 + x1ic11 + a∗′1 x̄i1T + ξ∗1i ⊗ 1T + u1i (4.9)

ỹ2i
T×1

= Ỹi,−1γ2 + Xic2 + a∗′2 x̄i1T + ξ∗2i ⊗ 1T + u2i,

where Ỹi,−1 = (ỹ1i,−1, ỹ2i,−1) , γ2 = (γ21, γ22)′ , Xi = (x1i,x2i) and c2 = (c21, c22)′ .

Let Zi = (ỹ2i, ỹ1i,−1,x1i, 1T x̄′i) andWi =
(
Ỹi,−1,Xi, 1T x̄′i

)
= (ỹ1i,−1, ỹ2i,−1,x1i,x2i, 1T x̄′i) ,

rewrite (4.9) as (
ỹ1i

ỹ2i

)
=

(
Zi 0

0 Wi

)(
δ1

δ2

)
+ V̄i, (4.10)

where δ1 = (β, γ11, c11,a
∗′
1 )′ and δ2 = (γ ′2, c

′
2,a
∗′
2 )′ , and V̄i = ξ∗i⊗1T+Ui and Ui = (u′1i,u

′
2i)
′ ,

and 1T = (1, . . . , 1)′ . Then

ΩV̄ = E
(
V̄iV̄

′
i

)
= Ωξ∗ ⊗ 1T 1′T + Ωu ⊗ IT ,

where

Ωu = E
(
uitu

′
it

)
=

(
σu,11 σu,12

σu,21 σu,22

)
,Ωξ∗ = E

(
ξ∗i ξ
∗′
i

)
=

(
σξ∗,11 σξ∗,12

σξ∗,21 σξ∗,22

)
.

Following Avery (1977), we can express ΩV̄ in terms of eigenvalues, Ωu, and Ω∗ = Ωu+TΩξ∗ ,

and the product of eigenvectors of ΩV̄ as

ΩV̄ = Ωu ⊗Q+ Ω∗ ⊗ J,

where Q = IT − 1
T 1T 1′T and J = 1

T 1T 1′T . It follows that (e.g. Hsiao (2003))

Ω−1
V̄

= Ω−1
u ⊗Q+ Ω∗−1 ⊗ J.
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Under A1-A4 and the assumption that uit and ξ∗i are normally distributed
2, the log-

likelihood function (4.10) is given by

logL = −NT
2

log |ΩV̄ | −
1

2

N∑
i=1

{[
ỹ′1i − δ′1Z′i, ỹ′2i − δ′2W′

i

]
Ω−1
V̄

[
ỹ′1i − δ′1Z′i, ỹ′2i − δ′2W′

i

]′}
= −N (T − 1)

2
log |Ωu| −

N

2
log |Ω∗|

−1

2

N∑
i=1

{[
ỹ′1i − δ′1Z′i, ỹ′2i − δ′2W′

i

] [
Ω−1
u ⊗Q

] [
ỹ′1i − δ′1Z′i, ỹ′2i − δ′2W′

i

]′}
−T

2

N∑
i=1

{[
ỹ
′
1i − δ′1Z̄′i, ỹ

′
2i − δ′2W̄′

i

]
Ω∗−1

[
ỹ
′
1i − δ′1Z

′
i, ỹ
′
2i − δ′2W

′
i

]′}
, (4.11)

where

ỹ
′
i =

1

T

T∑
t=1

(
ỹ1,it

ỹ2,it

)
=

(
ỹ1i

ỹ2i

)
,Zi =

1

T

T∑
t=1

zit and Wi =
1

T

T∑
t=1

wit,

with zit and wit being the t-th element of Zi and Wi, respectively.

4.3 LIML and its asymptotic properties

The MLE are obtained by choosing the values of Ω̂u, Ω̂ξ, δ̂1 and δ̂2 that simultaneously satisfy

the first order conditions

Ω̂u =
1

N (T − 1)

N∑
i=1

{[
ỹ′1i − δ̂

′
1Z
′
i, ỹ
′
2i − δ̂

′
2W

′
i

]
[I2 ⊗Q]

[
ỹ′1i − δ̂

′
1Z
′
i, ỹ
′
2i − δ̂

′
2W

′
i

]′}
(4.12)

Ω̂ξ∗ =
1

N

N∑
i=1

 (
ỹ1i − Z̄iδ̂1

)2 (
ỹ1i − Z̄iδ̂1

)(
ỹ2i − W̄iδ̂2

)
(
ỹ2i − W̄iδ̂2

)(
ỹ1i − Z̄iδ̂1

) (
ỹ2i − W̄iδ̂2

)2

 , (4.13)

and(
δ̂1

δ̂2

)
=

{
N∑
i=1

(
Z′i 0

0 W′
i

)
Ω̂−1
V̄

(
Zi 0

0 Wi

)}−1{ N∑
i=1

(
Z′i 0

0 W′
i

)
Ω̂−1
V̄

(
ỹ1i

ỹ2i

)}
. (4.14)

Equations (4.12)-(4.14) suggest that the LIML can be obtained by iterating between them

conditional on the solutions of the other two equations until convergence3.

2 If uit and ξ∗i are not normally distributed, maximizing (4.11) yields the quasi-MLE (QMLE). The asymptotic

distribution of the QMLE remains centered at the true value of the parameters, except that the covariance matrix

of the QMLE is no longer the inverse of the information matrix.
3Alternatively, we can obtain the MLE through the EM algorithm (e.g. Dempster et. al. (1977), Shah et. al.

(1997), Wang and Fan (2010)).
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Theorem 4.1 Let δ =
(
δ′1, δ

′
2

)
, δ1 = (β, γ11, c11,a

∗′
1 )′, δ2 = (γ ′2, c

′
2,a
∗′
2 )′ ,

θ =
(
σu,11, σu,12, σu,21, σu,22, σξ∗,11, σξ∗,12, σξ∗,21, σξ∗,22

)
, and let

Fδδ = E

(
1

NT

∂2 logL

∂δ∂δ′

)
, Fδθ = E

(
1

NT

∂2 logL

∂δ∂θ′

)
,

Fθθ = E

(
1

NT

∂2 logL

∂θ∂θ′

)
.

Under A1-A4, the (limited information) maximum likelihood estimator is consistent and
√
NT

(
δ̂ − δ

)
d→ N

(
0, F̃δδ

)
, (4.15)

where F̃δδ = −
(
Fδδ − FδθF−1

θθ F
′
δθ

)−1
. The weak convergence is independent of the way N or T

or both go to infinity.

See appendix for the proof.

Corollary 4.1 Maximizing the log-likelihood function of N individuals of the (T − 1) system

equations (4.7) ignoring the fact that ỹi1 is random (i.e. mistreating ỹi1 as fixed constants)

yields an estimator that is consistent and asymptotically unbiased only if N is fixed and T

tends to infinity. If NT → c 6= 0 and c < ∞ as T → ∞, then the QMLE of the system (4.7) is

asymptotically biased and the bias is of order
√

N
T .

Remark 4.1 The QMLE (4.12)-(4.14) remain consistent and asymptotically normally distrib-

uted whether ηi are fixed constants or random variables satisfying Assumption 5 below.

Assumption 5 (A5): The individual-specific effects ηi are randomly distributed with mean

zero and covariance matrix Ωη and are independent of xit.

However, if ηi are indeed independent of xit, then for each individual i, in addition to the

T equations of the form (4.1), there is also the distribution of the initial value yi0 in the form

of (3.3). In other words, for each individual i, we have (T + 1) equations of the form

BY∗i + ΓY∗i,−1 + C∗X∗i = V∗i , (4.16)

where Y∗i = (yi0,yi1, . . . ,yiT ) , Y∗i,−1 = (0,yi0, . . . ,yi,T−1) ,

X∗i =

(
x̄i 0 . . . 0

0 xi1 . . . xiT

)
,C∗ =

(
A

C

)
,

and V∗i = ηi ⊗ 1′T+1 + (u∗i0,ui1, . . . ,uiT ) with E (V∗i ) = 0 and

Cov (vec (V∗i )) = Ω∗V = Ωu ⊗
(
W 0

0 IT

)
+ Ωη ⊗

(
W ∇⊗ 1′T

∇′ ⊗ 1T 1T 1′T

)
,
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where W = Ω−1
u Ωu∗i0 , W = Ω−1

η (I −Π)−1 Ωξ∗ (I −Π′)−1 , ∇ = Ω−1
η Cov (ηi,y

′
i0B
′) . Condi-

tional on Ω∗V , the MLE of δ̂1 and δ̂2 is of the form (4.14), where ΩV̄ is replaced by Ω∗V and Zi

is now a (T + 1)× (G+ k + k1) matrix of the form

Zi =
[
Y∗′2i,Y

∗′
1i,−1, (x̄i,x1i)

]
,

and Wi is a (T + 1)× (G+ k + k1 + k2) matrix of the form,

Wi =
[
Y∗′i,−1,X

∗′
i

]
,

whereY∗2i = (y2,i0,y2,i1, . . . ,y2,iT ). The random effects QMLE is consistent and asymptotically

unbiased independent of the way N or T or both tend to infinity.

Remark 4.2 If A5 holds, the random effects QMLE (REQMLE) has several advantages over

the fixed effects QMLE (FEQMLE). First, the REQMLE combines T+1 time series observations

for each i while the FEQMLE uses only T time series observations. Second, the REQMLE uses

a weighted average of between group variation and within group variation while the FEQMLE

only uses the within group variation4. Typically, the between group variation is much larger than

the within group variation. Third, the FEQMLE can not estimate the impact of time-invariant

variables, but the REQMLE can. On the other hand, the FEQMLE remains consistent and

asymptotically unbiased even xit and ηi are correlated as long as E
(
xitu

′
js

)
= 0.

5 Other Estimators

Because xit is strictly exogenous, there is no loss of generality to consider the asymptotic

properties of different estimators by simply consider a dynamic system without exogenous

variables as in Akashi and Kunitomo (2012).

5.1 IV estimation

As discussed in section 2, we can remove the individual specific effects by first differencing (4.1)

(under the assumption that c1 = 0, Π23 = 0 and Π24 = 0) to yield

∆y1,it = β′∆y2,it + γ1∆y1,it−1 + ∆u1,it (5.1)

∆y2,it = Π21∆y1,it−1 + Π22∆y2,it−1 + ∆u2,it, (5.2)

4Following the approach of Maddala (1971), we can decompose the inverse of the asymptotic covariance matrix

of the REQMLE as the sum of the inverse of the asymptotic covariance matrix of the FEQMLE and a positive

definite matrix.
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where t = 2, . . . , T and i = 1, . . . , N. Although both ∆y1,it and ∆y2,it are correlated with ∆u1,it.

However,

E (y2i,t−2∆u1,it) = 0 and E (∆yi,t−2∆u1,it) = 0. (5.3)

Just like Anderson and Hsiao (1981, 1982), we can use either yi,t−2 or ∆y2i,t−2 as instruments

for equation (5.1). Consequently, the panel simple IV (PIV) estimator for β and γ1 are(
β̂IV

γ̂1,IV

)
=

[
N∑
i=1

T∑
t=2

(
∆y2,it

∆y1,it−1

)
y′i,t−2

]−1 [ N∑
i=1

T∑
t=2

yi,t−2∆y1,it

]
, (5.4)

or (
β̂IV

γ̂1,IV

)
=

[
N∑
i=1

T∑
t=3

(
∆y2,it

∆y1,it−1

)
∆y′i,t−2

]−1 [ N∑
i=1

T∑
t=3

∆yi,t−2∆y1,it

]
. (5.5)

Theorem 5.1 The PIV estimator (5.4) (or (5.5)) is consistent and asymptotically unbiased

independent of the way N or T or both tend to infinity and

√
NT

(
β̂IV − β
γ̂1,IV − γ

)
d→ N (0,ΩIV ) ,

where ΩIV = Ξ−1
1 Ω1Ξ−1

1 for (5.4) or ΩIV = Ξ−1
2 Ω2Ξ−1

2 for (5.5), with

Ξ1 = p lim
(N,T )→∞

1

NT

N∑
i=1

T∑
t=2

(
∆y2,it

∆y1i,t−1

)
y′i,t−2,

Ω1 = p lim
(N,T )→∞

1

NT

N∑
i=1

T∑
t=2

yi,t−2y
′
i,t−2 (∆u1,it)

2 ,

Ξ2 = p lim
(N,T )→∞

1

NT

N∑
i=1

T∑
t=2

(
∆y2,it

∆y1,it−1

)
∆y′i,t−2,

Ω2 = p lim
(N,T )→∞

1

NT

N∑
i=1

T∑
t=2

∆yi,t−2∆y′i,t−2 (∆u1,it)
2 .

5.2 The (generalized) two-stage least squares estimator (PG2SLS)

Stacking the (T − 1) time series observations of (5.1) for the i-th individual yields

∆y1i = β′∆Y2i + γ1∆y1i,−1 + ∆u1i (5.6)

= ∆Xiθ + ∆u1i,
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where∆y1i = (∆y1,i2, . . . ,∆y1,iT )′ ,∆y1i,−1 = (∆y1,i1, . . . ,∆y1,iT−1)′ ,∆Y2i = (∆y2,i2, . . . ,∆y2,iT )′,

∆u1i = (∆u1,i2, . . . ,∆u1,iT )′ , ∆Xi = (∆Y2i,∆y1i,−1) and θ =
(
β′, γ1

)′
. We note that

E (yi,t−2∆u1,it) = 0, (5.7)

and

E
(
∆u1i∆u′1i

)
= σu,11A, (5.8)

where

A =


2 −1 . . . 0

−1 2 . . .
...

... . . .
. . . −1

0 . . . −1 2

 .

Let Yi,−2 = (yi0,yi1, . . . ,yiT−2) , an analogus panel generalized 2SLS (PG2SLS) estimator can

be defined as

θ̂PG2SLS =


[
N∑
i=1

∆X′iY
′
i,−2

][
N∑
i=1

Yi,−2AY′i,−2

]−1 N∑
i=1

Yi,−2∆Xi


−1

×


[
N∑
i=1

∆X′iY
′
i,−2

][
N∑
i=1

Yi,−2AY′i,−2

]−1 [ N∑
i=1

Yi,−2∆y1i

] . (5.9)

Proposition 5.2 The PG2SLS estimator of θ =
(
β′, γ1

)′ is consistent, asymptotically unbi-
ased and √

NT
(
θ̂PG2SLS − θ

)
d→ N (0,ΩPG2SLS) ,

where

ΩPG2SLS = σu,11

 1

NT

[
N∑
i=1

∆X′iY
′
i,−2

][
N∑
i=1

Yi,−2AY′i,−2

]−1 N∑
i=1

Yi,−2∆Xi


−1

,

independent of the way N or T or both tend to infinity.

5.3 Generalized Method of Moment Estimator (GMM)

Either the PIV or PG2SLS is a form of the method of moments estimator. However, in addition

to yi,t−2, all past yi,t−j , j ≥ 2 are legimate instruments. Following Arellano-Bond (1991), one

can use the moment conditions

E (∆u1iQi) = 0, (5.10)
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where ∆u1i = (∆u1i,2, . . . ,∆u1i,T )′ and Qi is a (T − 1) ×K∗ block diagonal matrix with the
t-th block being a vector of the form5

qit = (y1,i0, . . . , y1,it−2, y2,i0, . . . , y2,it−2)′ , (5.11)

where K∗ = T (T − 1) for model (5.1) and (5.2). Thus, an Arellano-Bond type GMM can be

defined as

θ̂GMM =


(

N∑
i=1

∆X′iQi

)(
N∑
i=1

Q′iAQi

)−1( N∑
i=1

Q′i∆Xi

)
−1

(5.12)

×


(

N∑
i=1

∆X′iQi

)(
N∑
i=1

Q′iAQi

)−1( N∑
i=1

Q′i∆y1i

)
−1

.

To ensure the existence of the inversion of the matrix, TN < 1
2 , i.e., the time series dimension of

the panel data must be less that one half of the cross-section dimension. Akashi and Kunitomo

(2012, 2014) show that Arellano-Bond type GMM suffers from:

Proposition 5.3 The Arellano-Bond type GMM (5.12) is inconsistent if T
N → c 6= 0 < ∞ as

(N,T ) → ∞. Even when c = 0 as (N,T ) → ∞, if T 3N → d 6= 0 < ∞,
√
NT

(
θ̂GMM − θ

)
is

asymptotically biased of order
√

T 3

N .

The Arellano-Bond type GMM uses (yi0,yi1, . . . ,yit−2) as instruments for each ∆u1,it equa-

tion. As t increases, so is the number of available instruments. One way to control the impact

of ever increasing number of instruments on the asymptotic distribution as T increases is to fix

the number of instruments used for each ∆u1,it equation. Akashi and Kunitomo (2014) show

that

Proposition 5.4 When a fixed number of instruments is used for each ∆u1,it equation (say,

only yit−2 is used), the modified GMM, θ̂MGMM , is consistent as (N,T ) → ∞. However,

E
[√

NT
(
θ̂GMM − θ

)]
= O

(√
T
N

)
.

The difference between the Arellano-Bond type GMM and the PIV or PG2SLS is that the

former uses the cross-sectional mean 1
N

∑N
i=1 qit∆u1it to approximate the population moments

5As pointed out by a referee that "nowadays, it is more and more appreciated that combining this approach

with estimating the model in levels with moments in differences greatly adds to the quality of the estimation

process." The issue of finding optimal combination of moment is important and deserves further study. However,

the purpose of this paper is to study the order of asymptotic bias order, and the order of asymptotic bias is

mainly due to the error of approximating the population moments using cross-sectionally mean.
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E (qit∆u1,it), while the latter uses 1
NT

∑N
i=1

∑T
t=2 yi,t−2∆u1it to approximate the population

moments (5.7). Using the cross-sectional mean, the regressor, 1
N

∑N
i=1 qit∆xit, and the error

1
N

∑N
i=1 qit∆u1it are correlated of order 1

N .When T is fixed and N is large, they are asymptoti-

cally uncorrelated. However, when T is also large, as long as TN → c 6= 0, the Arellano-Bond type

GMM magnifies the impact of the correlation between 1
N

∑N
i=1 qit∆xit and 1

N

∑N
i=1 qit∆u1it by

the time dimension, T . On the other hand, the PIV or PG2SLS uses the simple or weighted

average across i and t to approximate the moment condition E (yi,t−2∆u1it) = 0 and the cor-

relation of the transformed regressor of 1
NT

∑N
i=1

∑T
t=2 yi,t−2∆xit and the transformed error

1
NT

∑N
i=1

∑T
t=2 yi,t−2∆u1it is of order 1

NT , hence is asymptotically uncorrelated either N or T

or both tend to infinity, and is independent of the value of TN .

5.4 Least Variance Ratio Estimator

Akashi and Kunitomo (2012) propose a panel generalization of the Anderson-Rubin (1949) least

variance ratio estimator6 of (β,γ1) , where θ̂LI =
(
β′,γ1

)′ are obtained by(
1

n
G(f) − λn

1

qn
H(f)

)(
1

−θ̂LI

)
= 0, (5.13)

where

G(f) =
T−1∑
t=1

(
y

(1,f)′

t

Y
(f)′

t·t−1

)
Mt

(
y

(1,f)
t ,Y

(f)
t·t−1

)
H(f) =

T−1∑
t=1

(
y

(1,f)′

t

Y
(f)′

t·t−1

)
[IN −Mt]

(
y

(1,f)
t ,Y

(f)
t·t−1

)
,

where y
(1,f)
t =

(
y

(f)
1,1t, . . . , y

(f)
1,Nt

)′
, y

(2,f)
t =

(
y

(f)
2,1t, . . . , y

(f)
2,Nt

)′
with y

(1,f)
t and y

(2,f)
t being the

forward defferencing transformation, and Y
(f)
t·t−1 =

(
y

(2,f)
t ,y

(1,f)
t−1

)
, Mt = Zt (Z′tZt)

−1 Z′t. Two

versions of Zt are suggested. Version A defines Zt = (y10,y20, . . . ,y1,t−1,y2,t−1) is the N × 2t

instrumental variables matrix. Version B only uses the first lagged variables as instruments, so

Zt = (y1,t−1,y2,t−1) (Akashi and Kunitomo (2014)).

Proposition 5.5 For the least variance ratio estimator (5.13), under version A, Akashi and

Kunitomo (2012) show that they are consistent and asymptotically normally distributed, but as-

ymptotically biased of order
√

T
N if 0 ≤ c ≤ 1

2 where c = T
N as (N,T )→∞. On the other hand, if

6The Anderson-Rubin (1949) limited information maximum likelihood approach and the least variance ration

approach yields identical estimators in the one-dimensional case (i.e., either N = 1 but T 6= 1 or T = 1 but

N 6= 1). In the multi-dimensional case, the two approaches yields different estimator, Akashi and Kunitomo

(2012a,b) (or Alvarez and Arellano (2003)) call their estimators the panel generalization of Anderson-Rubin

(1949) LIML. We feel that their estimators is probably more in the spirit of least variance ratio approach.
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only a fixed number of instruments are used, Akashi and Kunitomo (2014) show that the version

B of the least variance ratio estimator is asymptotically unbiased.

6 Simulation7

We conduct a small scale Monte Carlo simulations to examine the finite sample properties

of various estimators and report the results in this section. Following Akashi and Kunitomo

(2012), we consider a dynamic simultaneous equations model of the form

y1,it = βy2,it + γ11y1,it−1 + η1i + u1,it,

y2,it = γ21y1,it−1 + γ22y2,it−1 + η2i + u2,it,

with β = 0.5, γ11 = 0.5, γ21 = 0, γ22 = 0.3.

In data generation process 1 (DGP1), we assume that(
η1i

η2i

)
∼ iidN

(
0,

[
1 0

0 1

])
,

(
u1,it

u2,it

)
∼ iidN

(
0,

[
σ2
u1 0.2σu1σu2

0.2σu1σu2 σ2
u2

])
,

where σ2
u1,i

and σ2
u2,i

are set as independently random draws from 0.5(1 + 0.5χ2 (2)) for i =

1, 2, . . . , N, and (η1i, η2i)
′ and (u1,it, u2,it)

′ are independent over i and t.

In DGP2, we assume that (
η1i

η2i

)
∼iid N

(
0,

[
1 0

0 1

])
,

and u1,it ∼iid χ2 (1) − 1 and u2,it ∼iid χ2 (1) − 1, but we set Cov (u1,it, u2,it) = 0.2. As before,

(η1i, η2i)
′ and (u1,it, u2,it)

′ are independent over i and t.

We generate 100 + T observations of yit, starting with zero. We let yi0 be the 100th

observations of yit.We report the bias, root mean square error (RMSE), iqr (interquantile range

of 75%-25%) and size for MLE, PIV, PG2SLS, two versions of Akashi-Kunitomo least variance

ratio estimator (LV(A) and LV(B)), two versions of Akashi-Kunitomo type GMM (GMM(A) and

GMM(B)) and the MLE assuming initial value as fixed, denoted by MLE∗, of β and γ11 when

N = 100, 200 and T = 25, 50 for DGP1 in Tables 1-2 and DGP2 in Tables 3-4. The number

of replication is set at 2000. For illustration, we also draw the empirical densities for different

estimators of β and γ11 when (N,T ) = (200, 25) for DGP1.

7Codes are available from the authors upon request.
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The results show clearly that the actual size of PIV, PG2SLS and PLIML is close to the

nominal size. However, the size distortion of Arellano-Bond type GMM and version A of LV are

significant. The size distortion of using a fixed number of instruments for the Arellano-Bond

type GMM (GMM(B)) is less, however, it is still significant. The version B of Akashi-Kunitomo

LV (LV(B)) has negligible size distortion if both N and T are large. However, if N is much larger

than T, then the size distortion remains significant. The actual size of the GMM estimator for

the coeffi cient of the joint dependent variable, β, could be near 100%, and for the lag dependent

variable, γ, could be near 75% for a 5% significance level test. On the other hand, the actual

size of the LV(A) estimator is about 1% for a 5% significant level test due to the large variance

of the estimator. Overall, the empirical distribution of Arellano-Bond type GMM estimators

for β is more concentrated than other estimators. Unfortunately, it is not centered at the

true values. Among the asymptotically unbiased estimators, the root mean square error of the

PLIML is only about one-half of the root mean square error of the PIV, PG2SLS or LV(B).

Overall, our finding suggests that PLIML proposed in this paper is preferred for the estimation

and inference for panel dynamic simultaneous equations models, in terms of bias, RMSE, and

size.

7 Conclusion

We consider the identification and estimation of panel dynamic simultaneous equations mod-

els in this paper. We have shown that although the time-invariant individual-specific effects

creates the dependence between the current and all the past joint dependent variables, they

do not change the identification conditions for the Cowles Commission dynamic simultaneous

equations models (e.g. Hood and Koopmans (1953), Hsiao (1983)). However, the presence of

time-invariant individual-specific effects does affect the asymptotic properties of the estimator

when the cross-sectional dimension, N, and the time-series dimension, T, are of the same mag-

nitude. We consider both the likelihood approach and the methods of moments approach of

inference. We show that the treatment of initial values plays a pivotal role in the likelihood

approach. The asymptotic distribution of the quasi-maximum likelihood estimator (QMLE)

is centered at the true value independent of the way N or T or both go to infinity if the

distribution of initial values is properly formulated. On the other hand, mistreating initial

values as fixed constant could yield an estimator that is asymptotically biased of order
√

N
T .

For the method of moments estimators, the treatment of initial values plays no role. How-

ever, the asymptotic distribution depends critically on the way that population moments are

approximated by the sample moments. The suggested panel instrumental variable estimator
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(PIV) and panel generalized two stage least squares estimator (PG2SLS) both approximate

the population moments by taking the average of NT sample observations are consistent and

asymptotically unbiased independent of the way N or T or both tend to infinity. On the other

hand, the Arellano-Bond (1991) type GMM estimators approximate the population moments

by taking the cross-sectional mean is asymptotically unbiased only if T is fixed and N tends

to infinity. When T
N → c 6= 0 <∞, the Arellano-Bond type GMM estimator is asymptotically

biased of order
√

T
N . Our Monte Carlo studies confirm the importance of using asymptotically

unbiased estimators to obtain valid statistical inference and the desirability of using a properly

formulated likelihood approach for inference.8
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Table 1: Simulation results of β for DGP1

N T βMLE βMLE,∗ βIV βPG2SLS β
(A)
GMM β

(B)
GMM β

(A)
LV β

(B)
LV

25 estimate 0.4979 0.4920 0.4973 0.5064 0.6903 0.5852 0.4717 0.4976

bias -0.0021 -0.0080 -0.0027 0.0064 0.1903 0.0852 -0.0283 -0.0024

rmse 0.0855 0.0875 0.1396 0.1268 0.1947 0.1320 1.6560 0.3709

iqr 0.1176 0.1156 0.1738 0.1715 0.0494 0.1254 0.3310 0.2609

100 size 5.1% 5.25% 5.2% 5.05% 99% 13% 0.5% 2.9%

50 estimate 0.5003 0.4990 0.4983 0.5020 0.6854 0.5864 0.4327 0.4929

bias 0.0003 -0.0010 -0.0017 0.0020 0.1854 0.0864 -0.0673 -0.0071

rmse 0.0590 0.0599 0.0904 0.0792 0.1864 0.1098 0.7791 0.1447

iqr 0.0799 0.0814 0.1168 0.1063 0.0249 0.0892 0.3210 0.1820

size 5.1% 4.75% 5.2% 5.15% 100% 24% 1% 5.1%

25 estimate 0.5005 0.4951 0.4991 0.5033 0.6893 0.5510 0.4595 0.4826

bias 0.0005 -0.0049 -0.0009 0.0033 0.1893 0.0510 -0.0405 -0.0174

rmse 0.0608 0.0624 0.0951 0.0873 0.1936 0.0977 0.1619 0.1386

iqr 0.0807 0.0826 0.1268 0.1110 0.0470 0.1127 0.1925 0.1741

200 size 4.9% 5.25% 4.95% 5% 99% 9.5% 5.95% 4.9%

50 estimate 0.5005 0.4987 0.4987 0.5023 0.6868 0.5555 0.4480 0.4935

bias 0.0005 -0.0013 -0.0013 0.0023 0.1868 0.0555 -0.0520 -0.0065

rmse 0.0398 0.0404 0.0643 0.0570 0.1879 0.0795 0.3580 0.0863

iqr 0.0503 0.0539 0.0861 0.0741 0.0240 0.0752 0.1721 0.1114

size 4.9% 4.75% 5.4% 5.05% 100% 15% 0.1% 5.5%

Note: 1. The true value of β in this case is β = 0.5;

2. For estimators, MLE refers to MLE, MLE,∗ refers to MLE ignoring yi1−yi0,
IV refers to

IV estimation, PG2SLS refers to PG2SLS estimation, GMM,A refers to Akashi-Kunitomo type GMM

estimator of version A, GMM,B refers to Akashi-Kunitomo type GMM estimator of version B, LV,A

refers to least variance estimation of version A, LV,B refers to least variance estimation of version B;

3. iqr is the 75th-25th interquartile range;

4. The number of replication is set at R = 2000, and the 95% confidence interval for size 5% is [4%,

6%];
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Table 2: Simulation results of γ11 for DGP1

N T γMLE
11 γMLE,∗

11 γIV11 γPG2SLS
11 γGMM,A

11 γGMM,B
11 γLV,A11 γLV,B11

25 estimate 0.5000 0.5035 0.5004 0.4986 0.4322 0.4698 0.4717 0.4816

bias 0.0000 0.0035 0.0004 -0.0014 -0.0678 -0.0302 -0.0283 -0.0184

rmse 0.0214 0.0227 0.0418 0.0392 0.0735 0.0450 0.1641 0.0696

iqr 0.0284 0.0304 0.0536 0.0518 0.0261 0.0442 0.0551 0.0571

100 size 4.7% 5.15% 5.95% 5.05% 66% 15% 0.5% 2.9%

50 estimate 0.4998 0.5005 0.5002 0.4993 0.4502 0.4801 0.4895 0.4936

bias -0.0002 0.0005 0.0002 -0.0007 -0.0498 -0.0199 -0.0105 -0.0064

rmse 0.0143 0.0146 0.0282 0.0240 0.0519 0.0298 0.0829 0.0302

iqr 0.0196 0.0196 0.0381 0.0328 0.0165 0.0290 0.0475 0.0390

size 5.05% 4.85% 4.55% 4.95% 93% 14% 1% 5.9%

25 estimate 0.4998 0.5027 0.5008 0.5000 0.4478 0.4794 0.4861 0.4894

bias -0.0002 0.0027 0.0008 0.0000 -0.0522 -0.0206 -0.0139 -0.0106

rmse 0.0152 0.0162 0.0294 0.0266 0.0570 0.0330 0.0292 0.0326

iqr 0.0205 0.0210 0.0392 0.0368 0.0202 0.0361 0.0336 0.0404

200 size 5.05% 5.65% 5.35% 4.45% 63% 13% 7.4% 5.8%

50 estimate 0.5002 0.5009 0.5008 0.4999 0.4592 0.4851 0.4960 0.4940

bias 0.0002 0.0009 0.0008 -0.0001 -0.0408 -0.0149 -0.0040 -0.0060

rmse 0.0096 0.0099 0.0195 0.0165 0.0426 0.0229 0.0426 0.0209

iqr 0.0131 0.0131 0.0261 0.0220 0.0128 0.0208 0.0262 0.0268

size 4.75% 5.15% 4.75% 5.55% 91% 15% 1% 5.5%

Note: 1. The true value of γ11 in this case is γ11= 0.5;

2. For estimators, MLE refers to MLE, MLE,∗ refers to MLE ignoring yi1−yi0,
IV refers to IV

estimation, PG2SLS refers to G2SLS estimation, GMM,A refers to Akashi-Kunitomo type GMM estimator

of version A, GMM,B refers to Akashi-Kunitomo type GMM estimator of version B, LV,A refers to least

variance estimation of version A, LV,B refers to least variance estimation of version B;

3. iqr is the 75th-25th interquartile range;

4. The number of replication is set at R = 2000, and the 95% confidence interval for size 5% is [4%,

6%];
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Table 3: Simulation results of β for DGP2

N T βMLE βMLE,∗ βIV βPG2SLS β
(A)
GMM β

(B)
GMM β

(A)
LV β

(B)
LV

25 estimate 0.4978 0.4918 0.4946 0.5033 0.7003 0.5740 0.3634 0.4924

bias -0.0022 -0.0082 -0.0054 0.0033 0.2003 0.0740 -0.1366 -0.0076

rmse 0.0817 0.0829 0.1341 0.1157 0.2054 0.1184 3.0518 0.1793

iqr 0.1073 0.1085 0.1756 0.1491 0.0543 0.1226 0.3310 0.2099

100 size 5.35% 5.1% 5.35% 5.2% 99% 13% 1% 5.9%

50 estimate 0.4975 0.4962 0.4928 0.4964 0.6949 0.5761 0.4006 0.5005

bias -0.0025 -0.0038 -0.0074 -0.0036 0.1949 0.0761 -0.0994 0.0005

rmse 0.0571 0.0575 0.0933 0.0782 0.1965 0.0994 15.550 0.1071

iqr 0.0767 0.0779 0.1221 0.1037 0.0310 0.0899 0.3192 0.1402

size 4.7% 4.85% 4.6% 5.3% 100% 23% 0.2% 5.7%

25 estimate 0.4980 0.4922 0.4965 0.5015 0.6949 0.5427 0.4656 0.4900

bias -0.0020 -0.0078 -0.0035 0.0015 0.1949 0.0427 -0.0344 -0.0100

rmse 0.0584 0.0595 0.0926 0.0809 0.1999 0.0834 0.1856 0.0999

iqr 0.0772 0.0797 0.1224 0.1107 0.0472 0.1022 0.1675 0.1383

200 size 5.3% 5.15% 5.15% 4.55% 99% 9.6% 1.8% 5.2%

50 estimate 0.4977 0.4962 0.4959 0.4966 0.6930 0.5432 0.4720 0.4938

bias -0.0023 -0.0038 -0.0041 -0.0034 0.1930 0.0432 -0.0280 -0.0062

rmse 0.0408 0.0412 0.0640 0.0552 0.1944 0.0654 0.1247 0.0654

iqr 0.0552 0.0557 0.0836 0.0758 0.0270 0.0604 0.1441 0.0809

size 5.3% 5.3% 5.3% 5.3% 100% 14% 5.3% 5.6%

Note: 1. The true value of β in this case is β = 0.5;

2. For estimators, MLE refers to MLE, MLE,∗ refers to MLE ignoring yi1−yi0,
IV refers to IV

estimation, PG2SLS refers to G2SLS estimation, GMM,A refers to Akashi-Kunitomo type GMM estimator

of version A, GMM,B refers to Akashi-Kunitomo type GMM estimator of version B, LV,A refers to least

variance estimation of version A, LV,B refers to least variance estimation of version B;

3. iqr is the 75th-25th interquartile range;

4. The number of replication is set at R = 2000, and the 95% confidence interval for size 5% is [4%,

6%];
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Table 4: Simulation results of γ11 for DGP2

N T γMLE
11 γMLE,∗

11 γIV11 γPG2SLS
11 γGMM,A

11 γGMM,B
11 γLV,A11 γLV,B11

25 estimate 0.4995 0.5023 0.5007 0.4983 0.4333 0.4752 0.4896 0.4871

bias -0.0005 0.0023 0.0007 -0.0017 -0.0667 -0.0248 -0.0104 -0.0129

rmse 0.0191 0.0197 0.0368 0.0321 0.0717 0.0368 0.3198 0.0380

iqr 0.0256 0.0252 0.0494 0.0418 0.0234 0.0359 0.0541 0.0444

100 size 5.35% 5.6% 5.25% 5.75% 72% 15% 1% 6.2%

50 estimate 0.4998 0.5004 0.5010 0.5003 0.4489 0.4816 0.4885 0.4922

bias -0.0002 0.0004 0.0010 0.0003 -0.0511 -0.0184 -0.0115 -0.0078

rmse 0.0128 0.0129 0.0253 0.0214 0.0529 0.0259 2.1272 0.0235

iqr 0.0165 0.0169 0.0326 0.0290 0.0150 0.0253 0.0477 0.0295

size 5.6% 5.55% 5% 4.85% 96% 19% 0.2% 6.2%

25 estimate 0.5003 0.5031 0.5009 0.4996 0.4500 0.4813 0.4868 0.4890

bias 0.0003 0.0031 0.0009 -0.0004 -0.0500 -0.0187 -0.0132 -0.0110

rmse 0.0136 0.0143 0.0258 0.0227 0.0543 0.0273 0.0288 0.0249

iqr 0.0188 0.0188 0.0353 0.0303 0.0182 0.0247 0.0296 0.0288

200 size 5.1% 5.55% 4.45% 5.1% 66% 15% 5.2% 8.5%

50 estimate 0.5001 0.5007 0.5005 0.5006 0.4584 0.4868 0.4933 0.4938

bias 0.0001 0.0007 0.0005 0.0006 -0.0416 -0.0132 -0.0067 -0.0062

rmse 0.0089 0.0090 0.0178 0.0151 0.0431 0.0187 0.0193 0.0160

iqr 0.0119 0.0118 0.0236 0.0202 0.0112 0.0182 0.0235 0.0199

size 5.35% 5.6% 5.9% 5.3% 96% 17% 5.95% 7.5%

Note: 1. The true value of γ11 in this case is γ11= 0.5;

2. For estimators, MLE refers to MLE, MLE,∗ refers to MLE ignoring yi1−yi0,
IV refers to IV

estimation, PG2SLS refers to G2SLS estimation, GMM,A refers to Akashi-Kunitomo type GMM estimator

of version A, GMM,B refers to Akashi-Kunitomo type GMM estimator of version B, LV,A refers to least

variance estimation of version A, LV,B refers to least variance estimation of version B;

3. iqr is the 75th-25th interquartile range;

4. The number of replication is set at R = 2000, and the 95% confidence interval for size 5% is [4%,

6%];

24



Figure 1: Empirical densities for MLE, IV, 2SLS, GMM, MGMM and LV estimators of β for

DGP1 when (N,T ) = (200, 25)
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These empirical densities are drawn based on 2000 replications of DGP1, the true value of β is

0.5.

Figure 2: Empirical densities for MLE, IV, 2SLS, GMM, MGMM and LV estimators of γ11 for

DGP1 when (N,T ) = (200, 25)
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25



Appendix

We sketch the derivation of the asymptotic distribution of the MLE, IV, G2SLS. Details are

available on request.

Under the assumption that xit are independent of uit, the presence of xit does not affect

the limiting distribution, nor the order of asymptotic bias, for ease of exposition, we consider

an exactly identified model of the form(
1 β

0 1

)(
y1,it

y2,it

)
+

(
γ11 0

0 γ22

)(
y1,it−1

y2,it−1

)
+

(
η1i

η2i

)
=

(
u1,it

u2,it

)
(A.1)

where γ22 6= 0 with the reduced form(
y1,it

y2,it

)
= Π

(
y1,it−1

y2,it−1

)
+

(
α1i

α2i

)
+

(
v1,it

v2,it

)
, (A.2)

where

Π = −B−1Γ =

(
π11 π12

π21 π22

)
.

Let ỹit = yit − yi0, following the discussion in the paper, we have

Ỹi = I2 ⊗
(
Ỹ1i,−1, Ỹ2i,−1

)
vec

(
Π′
)

+ Ṽi, i = 1, 2, . . . , N, (A.3)

where Ỹi =
(
Ỹ ′1i, Ỹ

′
2i

)′
with Ỹ1i = (ỹ1,i2, . . . , ỹ1,iT )′ and Ỹ1i,−1 = (ỹ1,i0, . . . , ỹ1,iT−1)′ , and

Ṽi = Vi + ξi ⊗ 1T ,

and

ΩṼ = E
(
ṼiṼ

′
i

)
= E

(
ViV

′
i

)
+ E

(
ξiξ
′
i ⊗ 1T 1′T

)
= Ωv ⊗ IT + Ωξ ⊗ 1T 1′T

= Ωv ⊗Q+ Ω⊗ J.

where Ω = Ωu + TΩξ and

Ωv = E
(
vitv

′
it

)
=

(
σv,11 σv,12

σv,21 σv,22

)
,Ωξ = E

(
ξiξ
′
i

)
=

(
σξ,11 σξ,12

σξ,21 σξ,22

)
.
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A. Limiting distribution of MLE

Conditional on Ωv and Ω, the MLE of vec (Π′) = π = (π11, π12, π21, π22)′ is given by

π̂ =

{[
I2 ⊗

(
Ỹ ′1,−1

Ỹ ′2,−1

)]
Ω−1
Ṽ

[
I2 ⊗

(
Ỹ1,−1, Ỹ2,−1

)]}−1

×
{[

I2 ⊗
(
Ỹ ′1,−1

Ỹ ′2,−1

)]
Ω−1
Ṽ
Ỹ

}
. (A.4)

where Ỹ1 =
(
Ỹ ′1,1, . . . , Ỹ

′
1,N

)′
with Ỹ1,i = (ỹ1,i1, . . . , ỹ1,iT )′ , Ỹ1,−1 =

(
Ỹ ′11,−1, . . . , Ỹ

′
1N,−1

)′
with

Ỹ1i,−1 = (0, ỹ1,i2, . . . , ỹ1,iT−1)′, and Ω−1
Ṽ

= Ω−1
v ⊗Q+ Ω−1 ⊗ J. Thus,

√
NT (π̂ − π) =

{
1

NT

[
I2 ⊗

(
Ỹ ′1,−1

Ỹ ′2,−1

)]
Ω−1
Ṽ

[
I2 ⊗

(
Ỹ1,−1, Ỹ2,−1

)]}−1

×
{

1√
NT

[
I2 ⊗

(
Ỹ ′1,−1

Ỹ ′2,−1

)]
Ω−1
Ṽ

Ṽ

}
, (A.5)

It’s easy to see the first term on the righthand size of (A.5) converges to a nonsingular

constant matrix as (N,T )→∞. Let

Ω−1
v =

(
σ11
v σ12

v

σ12
v σ22

v

)
,Ω−1 =

(
w11 w12

w12 w22

)
.

Then, the numerator of (A.5) can be rewritten as 1√
NT

∑N
i=1 ϑi where ϑi = (ϑi,1, ϑi,2, ϑi,3, ϑi,4)′

with

ϑi,1 = σ11
v Ỹ

′
1i,−1QV1i + σ12

v Ỹ
′

1i,−1QV2i + w11Ỹ ′1i,−1J (1T ξ1i + V1i) + w12Ỹ ′1i,−1J (1T ξ2i + V2i)

ϑi,2 = σ11
v Ỹ

′
2i,−1QV1i + σ12

v Ỹ
′

2i,−1QV2i + w11Ỹ ′2i,−1J (1T ξ1i + V1i) + w12Ỹ ′2i,−1J (1T ξ2i + V2i)

ϑi,3 = σ21
v Ỹ

′
1i,−1QV1i + σ22

v Ỹ
′

1i,−1QV2i + w21Ỹ ′1i,−1J (1T ξ1i + V1i) + w22Ỹ ′1i,−1J (1T ξ2i + V2i)

ϑi,4 = σ21
v Ỹ

′
2i,−1QV1i + σ22

v Ỹ
′

2i,−1QV2i + w21Ỹ ′2i,−1J (1T ξ1i + V1i) + w22Ỹ ′2i,−1J (1T ξ2i + V2i) ,

(A.6)

We note that (
ỹ1,it

ỹ2,it

)
= Π

(
ỹ1i,t−1

ỹ2i,t−1

)
+ ξi + vit (A.7)

= (I2 −Π)−1 (I2 −Πt
)
ξi +

t∑
j=0

Πjvi,t−j ,

then

E

[(
ỹ1,it−1

ỹ2,it−1

)
ξ′i

]
= (I2 −Π)−1 (I2 −Πt−1

)( σξ,11 σξ,12

σξ,12 σξ,22

)
,

E

[(
ỹ1,it−1

ỹ2,it−1

)
v′i,t−j

]
= Πj

(
σv,11 σv,12

σv,12 σv,22

)
for 1 ≤ j ≤ t− 1,
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and

E

{(
Ỹ ′1i,−1

Ỹ ′2i,−1

)
J1T (ξ1i, ξ2i)

}
= E


T−1∑
j=0

(
ỹ1,iT−1−j
ỹ2,iT−1−j

)
(ξ1i, ξ2i)


= (I2 −Π)−2 {(T − 1) I2 − TΠ + ΠT

}( σξ,11 σξ,12

σξ,12 σξ,22

)
.

Thus

E

{(
Ỹ ′1i,−1

Ỹ ′2i,−1

)
Q (V1i, V2i)

}
= − 1

T
E


T−1∑
j=0

(
ỹ1,iT−1−j
ỹ2,iT−1−j

) T−1∑
j=0

(v1,iT−j , v2,iT−j)


= − 1

T
(I2 −Π)−2 {(T − 1) I2 − TΠ + ΠT

}( σv,11 σv,12

σv,12 σv,22

)
,

and

E

{(
Ỹ ′1i,−1

Ỹ ′2i,−1

)
J (V1i, V2i)

}
=

1

T
E


T−1∑
j=0

(
ỹ1,iT−1−j
ỹ2,iT−1−j

) T−1∑
j=0

(v1,iT−j , v2,iT−j)


=

1

T
(I2 −Π)−2 {(T − 1) I2 − TΠ + ΠT

}( σv,11 σv,12

σv,12 σv,22

)
.

Let

(I2 −Π)−2 {(T − 1) I2 − TΠ + ΠT
}

=

(
a11 a12

a21 a22

)
.

Then

E
(
σ11
v Ỹ

′
1i,−1QV1i + σ12

v Ỹ
′

1i,−1QV2i

)
= − 1

T

{
a11

[
σ11
v σv,11 + σ12

v σv,21

]
+ a12

[
σ11
v σv,12 + σ12

v σv,22

]}
= −a11

T
,

since σ11
v σv,11 + σ12

v σv,21 = 1 and σ11
v σv,12 + σ12

v σv,22 = 0 from the fact that ΩvΩ
−1
v = I2. Also,

E
(
w11Ỹ ′1i,−1J1T ξ1i + w12Ỹ ′1i,−1J1T ξ2i

)
= a11

[
w11σξ,11 + w12σξ,21

]
+ Ta12

[
w11σξ,12 + w12σξ,22

]
,

and

E
(
w11Ỹ ′1i,−1JV1i + w12Ỹ ′1i,−1JV2i

)
=

1

T
{a11 [w11σv,11 + w12σv,12] + a12 [w11σv,21 + w12σv,22]} .
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Combining these two equations we have

E
(
w11Ỹ ′1i,−1J (1T ξ1i + V1i) + w12Ỹ ′1i,−1J (1T ξ2i + V2i)

)
=

a11

T

[
w11 (σv,11 + Tσξ,11) + w12 (σv,12 + Tσξ,21)

]
+
a12

T

[
w11 (σv,12 + Tσξ,12) + w12 (σv,22 + Tσξ,22)

]
=

a11

T
,

Thus

E
[
σ11
v Ỹ

′
1i,−1QV1i + σ12

v Ỹ
′

1i,−1QV2i + w11Ỹ ′1i,−1J (1T ξ1i + V1i) + w12Ỹ ′1i,−1J (1T ξ2i + V2i)
]

= 0,

or

E (ϑi,1) = 0.

Similarly, we can show that ϑi,2, ϑi,3, ϑi,4 have zero mean.

Following Magnus and Neudecker (2007, Ch16), we can establish that

√
NT (π̂ − π)

d→ N (0,Ωπ) ,

where

Ωπ = −E
(

1

NT

∂2 logL

∂π∂π′

)
,

and

logL = −NT
2

log
∣∣ΩṼ

∣∣
−1

2

N∑
i=1

{[
Ỹi − I2 ⊗

(
Ỹ1i,−1, Ỹ2i,−1

)
π
]

Ω−1
Ṽ

[
Ỹi − I2 ⊗

(
Ỹ1i,−1, Ỹ2i,−1

)
π
]′}

.

The structural form parameter β can be derived from the relation β = π12
π22
. Thus, the MLE

of β is simply π̂12
π̂22
. From

β̂ − β =
π̂12

π̂22
− π12

π22

=
π22 (π̂12 − π12)− π12 (π̂22 − π22)

π̂22π22
, (A.8)

using the delta method, once can show that

√
NT

(
β̂ − β

)
=
π22

√
NT (π̂12 − π12)− π12

√
NT (π̂22 − π22)

π2
22

+ op (1) . (A.9)

Thus,
√
NT

(
β̂ − β

)
is asymptotically normally distributed with mean 0.
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B. QMLE when yi1 − yi0 is treated as fixed constant

Consider the system (A.1), let ỹi,−1 = (ỹ1i,−1, ỹ2i,−1) , γ2 = (γ21, γ22)′ and

ỹ1i =


y1,i2 − y1,i1

...

y1,iT − y1,i1

 , ỹ1i,−1 =


y1,i1 − y1,i0

...

y1,i,T−1 − y1,i0

 .

Let Zi = (ỹ2i, ỹ1i,−1) and Wi =
(
Ỹi,−1

)
= (ỹ1i,−1, ỹ2i,−1) , then(

ỹ1i

ỹ2i

)
=

(
Zi 0

0 Wi

)(
δ1

γ2

)
+ Vi,

where δ1 = (β, γ11)′ and Vi = (v′1i,v
′
2i)
′ with

ΩV = E
(
ViV

′
i

)
= Ωu ⊗ IT−1 + Ωu ⊗ 1T−11′T−1

= Ωu ⊗
(
IT−1 + 1T−11′T−1

)
,

It follows that (e.g. Hsiao (2003)) Ω−1
V = Ω−1

u ⊗
(
IT−1 − 1

T 1T−11′T−1

)
, and(

δ̂1

γ̂2

)
=

(
δ1

γ2

)
+

{
N∑
i=1

(
Z′i 0

0 W′
i

)
Ω−1
V

(
Zi 0

0 Wi

)}−1{ N∑
i=1

(
Z′i 0

0 W′
i

)
Ω−1
V

(
v1i

v2i

)}
,

(A.10)

It is easy to show that

1

NT

N∑
i=1

(
Z′i 0

0 W′
i

)
Ω−1
V

(
Zi 0

0 Wi

)
→p Σ1

where Σ1 is a positive definite matrix. The numerator of (A.10) is

N∑
i=1

(
Z′i 0

0 W′
i

)
Ω−1
V

(
v1i

v2i

)

=
N∑
i=1


ỹ′2i
(
σ11
u

(
IT−1 − 1

T 1T−11′T−1

)
v1i + σ12

u

(
IT−1 − 1

T 1T−11′T−1

)
v2i

)
ỹ′1i,−1

(
σ11
u

(
IT−1 − 1

T 1T−11′T−1

)
v1i + σ12

u

(
IT−1 − 1

T 1T−11′T−1

)
v2i

)
y1i,−1

(
σ21
u

(
IT−1 − 1

T 1T−11′T−1

)
v1i + σ22

u

(
IT−1 − 1

T 1T−11′T−1

)
v2i

)
y2i,−1

(
σ21
u

(
IT−1 − 1

T 1T−11′T−1

)
v1i + σ22

u

(
IT−1 − 1

T 1T−11′T−1

)
v2i

)

 ,(A.11)

Thus, for the expectation of the first element of (A.11), we have

E

(
ỹ′2i

(
σ11
u

(
IT−1 −

1

T
1T−11′T−1

)
v1i + σ12

u

(
IT−1 −

1

T
1T−11′T−1

)
v2i

))
= σ11

u

[
E
(
ỹ′2iv1i

)
− 1

T
E
(
ỹ′2i1T−11′T−1v1i

)]
+ σ12

u

[
E
(
ỹ′2iv2i

)
− 1

T
E
(
ỹ′2i1T−11′T−1v2i

)]
,
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To show this, we note that

ỹ2i
(T−1)×1

= ỹ1i,−1γ21 + ỹ2i,−1γ22 + v2i,

then

E
(
ỹ′2iv1i

)
= E

(
γ21y

′
1i,−1v1i + γ22y

′
2i,−1v1i + v′2iv1i

)
,

because y1,i0 is treated as a fixed constant. Also, since

yit = (I2 −Π)−1 (I2 −Πt
)
ηi +

t−1∑
j=0

ΠjB−1ui,t−j + Πtyi,0,

and (y1,i0, y2,i0) are fixed constants, then E (y′itui,1) = Πt−1B−1Ωu, and

T−1∑
t=1

E
(
y′itui,1

)
=

T−1∑
t=1

Πt−1B−1Ωu = (I2 −Π)−1 (I2 −ΠT
)
B−1Ωu = Op (1) ,

as T →∞. This suggests that
E
(
y′1i,−1v1i

)
= Op (1) .

Similarly, it can be shown that

E
(
y′1i,−1v2i

)
= Op (1) , E

(
y′2i,−1v1i

)
= Op (1) , E

(
y′2i,−1v2i

)
= Op (1) .

Also,

1

T
E
(
ỹ′2i1T−11′T−1v2i

)
=

1

T

∑
s,t

E (y2,isv2,it)−
T − 1

T
E
(
y2,i11′T−1v2i

)
= Op (1) ,

and

1

T

∑
t>s

E
(
yitv

′
is

)
=

1

T

∑
t>s

(
Πt−sB−1 −Πt−1B−1

)
B−1Ωu

= Op (1) ,

as T →∞. Similarly, we have 1
TE

(
ỹ′2i1T−11′T−1v1i

)
= Op (1) , 1

TE
(
ỹ′1i1T−11′T−1v1i

)
= Op (1) ,

1
TE

(
ỹ′1i1T−11′T−1v2i

)
= Op (1) .

Combining these results, we have(
Z′i 0

0 W′
i

)
Ω−1
V

(
v1i

v2i

)
= Op (1) ,
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as T →∞. Consequently, we have

E

[
√
NT

((
δ̂1

γ̂2

)
−
(
δ1

γ2

))]
=

1√
NT

Op (N) = Op

(√
N

T

)
,

as required. This means that when the initial values are treated as fixed constant, the MLE

are asymptotically biased of order
√

N
T .

C. Limiting distribution of IV estimator

For the PIV estimator (5.4) (or (5.5)), by using the orthogonal condition (5.3) and

1
NT

∑N
i=1

∑T
t=2

(
∆y2,it

∆y1,it−1

)
y′i,t−2 (or

1
NT

∑N
i=1

∑T
t=3

(
∆y2,it

∆y1,it−1

)
∆y′i,t−2) converges to a

constant matrix as either N or T or both tend to infinity, it is obvious that (5.4) (or (5.5)) is

consistent and asymptotically unbiased independent of the way N or T or both tend to infinity.

For the limiting distribution, by following the standard textbook such as Hsiao (2003) or Hahn

and Kuersteiner (2002), it can be easily verified that

√
NT

(
β̂IV − β
γ̂1,IV − γ

)
d→ N (0,ΩIV ) ,

where ΩIV = Ξ−1
1 Ω1Ξ−1

1 for (5.4) or ΩIV = Ξ−1
2 Ω2Ξ−1

2 for (5.5), where Ω1, Ξ1, Ω2 and Ξ2 are

given in the paper.

D. Limiting distribution of PG2SLS estimator

For the PG2SLS estimator (5.9), for ease of exposition, we shall assume there is only one

endogenous variables in (5.6), i.e, β is a scalar. Extension to more than one endogenous

variables is straightforward. We first notice that

√
NT

(
θ̂PG2SLS − θ

)
=

 1

NT

[
N∑
i=1

∆X′iY
′
i,−2

][
N∑
i=1

Yi,−2AY′i,−2

]−1 N∑
i=1

Yi,−2∆Xi


−1

×


[
N∑
i=1

∆X′iY
′
i,−2

][
N∑
i=1

Yi,−2AY′i,−2

]−1 [
1√
NT

N∑
i=1

Yi,−2∆u1i

] ,

and

1

NT

N∑
i=1

Yi,−2AY′i,−2 =
1

NT

N∑
i=1

[
(2yi0 − yi1) y′i0 +

T−3∑
t=1

(2yit − yit−1 − yit+1) y′it + (2yiT−2 − yiT−3) y′iT−2

]

=
1

NT

N∑
i=1

T−3∑
t=1

(2yit − yit−1 − yit+1) y′it + op (1) ,
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where it can be easily verified that 1
NT

∑N
i=1

∑T−3
t=1 (2yit − yit−1 − yit+1) y′it converges to a

positive definite constant matrix as N or T or both tend to infinity, and we shall denote the

limit as Ayy. Also,

1

NT

N∑
i=1

∆X′iY
′
i,−2 =

1

NT

N∑
i=1

T∑
t=2

(
∆y2,it

∆y1,it−1

)
y′it,

1√
NT

N∑
i=1

Yi,−2∆u1i =
1√
NT

N∑
i=1

T∑
t=2

yit−2∆u1,it,

thus, for the asymptotic unbiasness of the first element of θ (which is β), by denoting τ = (1, 0) ,

the numerator becomes

E


N∑
i=1

τ∆X′iY
′
i,−2

[
N∑
i=1

Yi,−2AY′i,−2

]−1 [
1√
NT

N∑
i=1

Yi,−2∆u1i

]
= tr

E
[ 1

NT

N∑
i=1

Yi,−2AY′i,−2

]−1
1

N3/2T 3/2

N∑
i=1

N∑
j=1

Yi,−2∆u1iτ∆X′jY
′
j,−2


= tr

{
A−1
yy

1

N3/2T 3/2

N∑
i=1

E
(
Yi,−2∆u1iτ∆X′iY

′
i,−2

)}
+ op (1) ,

where

E
(
Yi,−2∆u1iτ∆X′iY

′
i,−2

)
=

T∑
s,t=2

E

[(
y1,it−2∆u1,it

y2,it−2∆u1,it

)
(y1,is−2∆y2,is, y2,is−2∆y2,is)

]

=

T∑
s,t=2

E

(
y1,it−2∆u1,ity1,is−2∆y2,is y1,it−2∆u1,ity2,is−2∆y2,is

y2,it−2∆u1,ity1,is−2∆y2,is y2,it−2∆u1,ity2,is−2∆y2,is

)

=
∑
s≥t−1

E

(
y1,it−2∆u1,ity1,is−2∆y2,is y1,it−2∆u1,ity2,is−2∆y2,is

y2,it−2∆u1,ity1,is−2∆y2,is y2,it−2∆u1,ity2,is−2∆y2,is

)
,

and for s ≥ t− 1,, we have∑
s≥t−1

E (y1,it−2∆u1,ity1,is−2∆y2,is)

=
∑
s≥t−1

E (y1,it−2u1,ity1,is−2y2,is)−
∑
s≥t−1

E (y1,it−2u1,it−1y1,is−2y2,is)

−
∑
s≥t−1

E (y1,it−2u1,ity1,is−2y2,is−1) +
∑
s≥t−1

E (y1,it−2u1,it−1y1,is−2y2,is−1)

= Op (T ) ,
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because from (A.7), we have∑
s≥t+2

E (y1,it−2u1,ity1,is−2y2,is)

=

T∑
t=3

T∑
s=t+2

E (y1,it−2u1,ity1,is−2y2,is)

=
T∑
t=3

T∑
s=t+2

[
E
((

Π2
)(2,1)

y1,it−2u1,ity
2
1,is−2

)
+ E

((
Π2
)(2,2)

y1,it−2u1,ity1,is−2y2,is−2

)]
,

and
T∑
t=3

T∑
s=t+2

E
(
y1,it−2u1,ity

2
1,is−2

)
=
(
Π2
)(2,1)

T∑
t=3

T∑
s=t+2

E
(
y1,it−2u1,ity

2
1,is−2

)
whereA(i,j) denotes the (i, j)-th element of matrixA.Moreover, we have y1,is−2 = φ1 (s− t) y1,it−2+

φ2 (s− t) y2,it−2 +
∑s

s′=t−1

(
φ1 (s− s′)u1,is′ + φ2 (s− s′)u2,is′

)
, where φi (s) = (Πs)(i,i) for i =

1, 2, then

T∑
s=t+2

E
(
y1,it−2u1,ity

2
1,is−2

)
= 2

T∑
s=t+2

φ1 (s− t)E
(
y2

1,it−2u
2
1,it

)
+ 2

T∑
s=t+2

φ2 (s− t)E
(
y1,it−2y2,it−2u

2
1,it

)
+ op (1)

= Op (1) ,

since
∑T

s=t+2 φ1 (s− t) and
∑T

s=t+2 φ2 (s− t) are finite by assumption A3. Consequently, we
have

T∑
t=3

T∑
s=t+2

E
(
y1,it−2u1,ity

2
1,is−2

)
= Op (T ) ,

and ∑
s≥t−1

E (y1,it−2∆u1,ity1,is−2∆y2,is) = Op (T ) ,

and
1

N3/2T 3/2

N∑
i=1

E
(
Yi,−2∆u1iτ∆X′iY

′
i,−2

)
= Op

(
1√
NT

)
= op (1) ,

by substituting back, we have

tr

{
A−1
yy

1

N3/2T 3/2

N∑
i=1

E
(
Yi,−2∆u1iτ∆X′iY

′
i,−2

)}
= Op

(
1√
NT

)
= op (1) ,
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and consequently,

E
[√

NT
(
β̂PG2SLS − β

)]
= op (1) ,

i.e., β is asymptotically unbiased. By using similar argument, we can show that γ1 is also

asymptotically unbiased.

For the limiting distribution of θ̂G2SLS , by following Arellano (2003), we can establish that

√
NT

(
θ̂PG2SLS − θ

)
d→ N (0,ΩPG2SLS) ,

where ΩPG2SLS is given in the paper.
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