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Abstract

Estimation of TFP and returns to scale hinges on the first-stage correct indentification of the 
underlying production functions. We argue that production function estimation is significantly 
affected by measurement errors. In particular, we show that measurement error in capital 
sizeably impacts its coefficient estimate. Using a large panel of Czech manufacturing firms in 
2003–2007, we estimate firm-level production functions using the Levinsohn and Petrin 
(2003) and Wooldridge (2009) approaches, correcting for the measurement error in capital.
As our labor and material inputs are measured in physical rather than financial units, we are 
able to pin down the effect of various measurement issues of capital, including deflator 
choice. Our results suggest that the capital coefficient estimate approximately doubles 
(depending on the particular industry) when we control for capital measurement error. 
Consequently, while the majority of industries exhibit constant or (in)significantly decreasing 
returns to scale when the standard methods are used, increasing returns cannot be rejected in 
some industries when the estimation is corrected for capital measurement error.

JEL Codes: C23, C33, D24, C18, O47.
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1. Introduction

Relating aggregate output to productivity (TFP) and production factors is the basis for 

understanding the sources of economic growth, while estimates of returns to scale across 

industries have important policy implications.1 Estimation of TFP and returns to scale hinges 

on the first-stage correct indentification of the underlying production functions. At the 

microeconomic level, however, estimating firm-level production functions is a non-trivial 

exercise owing to simultaneity bias caused by the relationship between unobserved 

productivity shocks and inputs used in production.

A number of methods have been developed to address the simultaneity bias in production 

function estimation. While Blundell and Bond (2000) use method of moments techniques, 

other approaches rely on finding proxy variables for productivity shocks, which are used to 

invert out productivity from the regression residual in a two-step estimation (Olley and Pakes, 

1996; Levinsohn and Petrin, 2003). Wooldridge (2009) proposes a one-step estimation

implemented in a generalized method of moments framework.

Another problem in production function estimation is posed by measurement issues. While 

labor as a measure of production input is available in datasets used in the estimation of 

production functions, the true stock of capital is difficult to measure.2 Capital is often 

recorded in acquisition (book-keeping historical) values that reflect neither the amount of 

capital used in current production nor its market valuation and capacity utilization. Levinsohn 

and Petrin (2003) as well as many other researchers use a kind of perpetual investment 

method where the capital is derived from book-keeping values and depreciation.3 Another 

                                                
1 Returns to scale estimates vary considerably in the literature. In the United States, Basu and Fernald (1997) 
find constant or slightly decreasing returns to scale in a typical two-digit industry. Altug and Filiztekin (2002) 
find the existence of increasing returns in durable goods manufacturing industries. Increasing returns to scale in 
U.S. manufacturing industries are also found in Diewert and Fox (2008). They argue that the U.S. economic 
growth was driven by increasing returns to scale rather than technological progress in 1950-2000.
2 Market valuation of capital is available only for publicly traded firms which can severely limit the sample and 
could be a source of sample bias. In addition, the implied value of capital is not a fixed number but an estimate 
with a standard error. Values of firms’ capital are not constant over time but often quite volatile as the price of 
the firm changes. These problems are well documented for optimal investment decisions as the optimal 
investment strategy is often derived based on the equivalence of Tobin’s marginal q and average q (e.g., 
Hayashi, 1982) which implies the use of yet additional assumptions, especially on the linear homogeneity of the 
production function. We therefore have to assume that the capital suffers from a measurement error irrespective 
of the  capital recording or estimation method.
3 The main problem in this approach is that the depreciation rate and the initial stock of capital are unknown; see 
Hernández and Mauleón (2002, 2005) for suggestions on how to estimate the stock of capital. Furthermore, 
Hájková (2008) shows that capital services better account for productive capital input in production than the 
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approach uses real capital as the stock of fixed assets deflated by the average deflator within 

industries (see, for example, Geršl, Rubene, and Zumer, 2007).4 However, all these studies 

treat capital, after these adjustments, as correctly measured and recorded. We argue that 

capital is measured with an error which should be, and needs to be, addressed in production 

function estimation similarly as it has been done in labor studies.5

Gorodnichenko (2007, in his newer version of 2010) argues that standard inversion-based 

production function estimators (Olley and Pakes, 1996; Levinsohn and Petrin, 2003) yield 

inconsistent estimates because the large variation of input prices across firms does not allow 

for non-stochastic inversion of firm’s input choice into firm’s unobserved productivity. This 

type of measurement error due to the variation of input prices thus distorts estimates of 

productivity, leading to incorrect implications about relative productivity of firms as well as 

productivity differences across firms. He proposes a simple structural estimator that models 

the cost and revenue functions simultaneously and treats productivity and input price shocks 

symmetrically, and demonstrates its properties using Monte Carlo simulations. Using the 

same Chilean manufacturing data as in Levinsohn and Petrin (2003), Gorodnichenko shows 

that compared to standard Levinsohn and Petrin estimates, his estimator yields a sizeably 

higher coefficient estimate of capital and, consequently, increasing returns to scale cannot be 

rejected.

The literature on the estimation of Czech individual firm-level production functions is scant

and the estimations of prodution functions are not the main goal of the research provided but 

rather a tool in a different analysis. For example, Lizal, Singer, and Baghdasarian (2001) 

estimate the production functions of Czech industrial firms in the mid-1990s as a by-product 

of the investment and labor adjustment cost function. They find that Czech industrial firms 

exhibit decreasing returns to scale.6 Using the Cobb Douglas production function 

specification, Hanousek, Kočenda and Mašika (2012) employ a panel version of a stochastic 

                                                                                                                                                        
capital stock net of depreciation and that the net capital stock underestimates the contribution of capital input to 
production particularly in fast-growing Czech industries.
4 Ornaghi (2006) shows that the use of common (industry-wide) price deflators leads to misleading results in the 
estimation of production function parameters.
5 For example, Bollinger (2003) deals with measurement error in human capital and shows that correctly 
measured variables are also biased when proxy variables are used. Other studies control for bias caused by 
measurement errors in reported schooling in the estimation of returns to human capital  (Ashenfelter and 
Zimmerman, 1997; Münich et al., 2005). 
6 Another use of an adjustment costs framework in investment is Lízal and Svejnar (2002). They analyze the 
investment behavior of firms with various types of ownership and legal status, however without controlling for 
measurement errors.
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production frontier model for medium and large Czech firms in 1996-2007 to estimate the 

degree of firm efficiency and the effect of ownership structure on the distance from the 

efficiency frontier. They find that concentration and foreign ownership are positively related 

to firm efficiency. Their results are consistent with decreasing returns to scale.7

Individual production functions are also estimated in Geršl, Rubene, and Zumer (2007), who 

investigate the inflows of foreign direct investment into Central and Eastern European 

countries, focusing on the analysis of productivity spillovers. Using firm-level data on 

manufacturing industries for the period 2000–2005, they estimate the total factor productivity 

of domestic firms using the Levinsohn and Petrin (2003) approach. Kátay and Wolf (2008) 

construct a proxy for capacity utilization, allowing them to estimate firm-level total factor 

productivity that is clean of cyclical capacity utilization, and use these estimates in the 

decomposition of value added growth in Hungarian manufacturing industries in 1993–2004 

into the contributions of primary inputs and total factor productivity growth.

Each production function for an individual firm is an approximation of an underlying 

production function around the point of current operation. Industries use different 

technologies and the individual firm technologies may have a different shape than the 

aggregate overall industry production function.8

In this paper, we correct for measurement error in capital in the estimation of production 

functions. We do so by using appropriate instruments for capital in the Wooldridge (2009) 

method. We also modify the Levinsohn and Petrin (2003) approach (LP hereafter) to 

estimating production functions in their TFP procedure, which is implemented in Stata (see 

Petrin, Poi, and Levinsohn, 2004), correcting for the measurement error in capital. Using a 

                                                
7 Returns to scale in individual manufacturing industries in Hungary and Bulgaria in 1995–2001 are estimated in 
Dobrinsky et al. (2008) and used in the estimation of mark-ups. In particular, constant returns are rejected for 
most manufacturing industries in Bulgaria in favor of decreasing returns and approximately for a half of 
industries in Hungary in favor of increasing returns. Dobrinsky et al. (2008) argue that the lower returns to scale 
in Bulgaria than in Hungary are consistent with the different transition paths of these two economies. They also 
find that small firms often operate with decreasing returns to scale.
8 For an illustration of this feature, we refer the reader to Earnhart and Lizal (2006), and mainly Earnhart and 
Lizal (2011), who examine the link between production and pollution emissions from the perspective of the 
shape of the relationship and find that certain industries exhibit the commonly assumed linear dependence of 
emissions on production while other industries show a more complex pattern. In particular, both the metals 
sector and the energy sector enjoy economies of scale of emissions vis-à-vis production at lower production 
levels, while facing diseconomies of scale at higher production levels. In contrast, the chemicals sector 
encounters neither economies nor diseconomies of scale, with an apparent proportional relationship between 
emissions and production.
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two-stage approach, we generate predicted values of capital in the first stage of the LP routine 

and use these predictions as the capital data input in the LP method together with the

prediction error of the capital. We also modify the current LP non-parametric bootstrap used 

to obtain the standard errors of the coefficient estimates to account for the instrumental 

variable regression in the first stage. We demonstrate that measurement error correction

significantly raises the coefficient estimates of capital, leading to a situation where increasing 

returns cannot be rejected in some manufacturing industries.

The paper is organized as follows. Section 2 describes the methodology, focusing on the LP

and Wooldridge (2009) approaches and describing the correction in measurement error in 

capital. Section 3 describes the data, while in Section 4 we report the results. Section 5 

concludes the paper.

2. Estimation Strategy

To illustrate the identification of production functions, let us consider a standard Cobb-

Douglas production function (omitting firm subscripts)

,0 tttltkt lky     (1)

where yt is the log of real value added (or revenue), kt is the log of quasi-fixed input (real 

capital), lt is the log of freely variable input (labor),9 and εt is an iid error term. The 

productivity shock ωt is unobservable to the econometrician but known to the firm, which 

decides on production and factor utilization. The unobserved productivity shock ωt is 

therefore correlated with factor inputs, so that estimating (1) with ordinary least squares

without controlling for ωt yields biased parameter estimates.

The simultaneity problem can be solved using method of moments techniques (Blundell and 

Bond, 2000), which involve differencing. While differencing removes the unobserved 

individual productivity shock, it also removes much of the variation in the explanatory 

variables. In addition, Wooldridge (2009) shows that the instruments are weakly correlated 

with the differenced explanatory variables, leading to bias in finite samples. Other literature 

therefore focuses on finding proxy variables for productivity shocks and then uses the 

                                                
9 Given these assumptions, one could use the equality of the marginal product of labor and the price of labor 
(wage) as another identification restriction. However, if wages are set in bargaining process, the equality will not 
hold. Therefore, we, as the other literature, do not involve such restriction.
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information in the proxies to invert out productivity from the residual. For example, Olley and 

Pakes (1996) use investment as a proxy for the unobserved productivity shock in a two-step 

estimation of production functions. On the other hand, Levinsohn and Petrin (2003) argue that 

many firms have zero-investment observations, leading to efficiency loss in the estimation

using the Olley and Pakes approach, while non-convex adjustment costs may also affect the 

responsiveness of investment to the shocks. We also add that the firm may even wish to 

disinvest and such cases are not directly distinguishable from zero investment observations 

and one would need to employ an endogenous switching regression framework which would 

complicate the matters even more. As a solution, Levinsohn and Petrin still rely on a two-step 

approach, but use intermediate inputs such as materials or energy to invert out the unobserved 

productivity shock.

In the Levinsohn and Petrin approach, demand for the intermediate input is assumed to 

depend on the firm’s capital kt and the productivity shock ωt:

 ., ttt kfm  (2)

Under mild assumptions about the firm’s production technology, Levinsohn and Petrin 

demonstrate that the intermediate demand function (2) is monotonically increasing in ωt so 

that it can be inverted as 

 ., ttt mkg (3)

The final identification restriction assumes that ωt follows a first-order Markov process

 
,1

|
tttt

E  


(4)

where ξt is an innovation to productivity that is uncorrelated with quasi-fixed capital kt, but 

not necessarily with labor lt.

Petrin, Poi, and Levinsohn (2004) implement in Stata the method of Levinsohn and Petrin,

based on third-order polynomial approximation of the unknown function in (3). Using (3), 

equation (1) becomes

  ttttltkt mkglky   ,0 (5)

or

  ,,1 ttttt mkly   (6)

where

0),,|( tttt mklE  (7)
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and

   0, , .t t k t t tk m k g k m     (8)

In (6), a third-order polynomial approximation in kt and mt is substituted in place of Φt and the 

parameter βl is estimated using ordinary least squares. This completes the first stage of the 

Levinsohn-Petrin routine.

In the second stage, the coefficient βk is identified. First, estimated values of Φt are computed 

from (6) as

.1 ttt ly


  (9)

Then for a candidate value βk
* it is possible to calculate (up to a constant) a prediction of ωt

using

.
*

tktt k 


(10)

A consistent non-parametric approximation to  
1

|
tt

E  is given by the predicted values 

from the regression

� � � �2 3

1 1 10 1 2 3t t t t t               (11)

which is called �
1[ | ].t tE    Given � *,l k  , and �

1[ | ]t tE    , the estimate of βk is defined as a 

solution to the minimization of the squared sample residuals

� � *

2
*

1 1min [ | ] .
k

t t k t t t
t

y l k E


       (12)

Finally, a bootstrap based on random sampling from observations is used to construct 

standard errors for the estimates of βl and βk.

Levinsohn and Petrin assume that given the quasi-fixed capital, the firm decides on labor and 

then, given the labor, determines the use of material input. On the other hand, Ackerberg et al. 

(2006) argue that decisions on labor lt and intermediate input mt are taken simultaneously, so 

that the approach of Levinsohn and Petrin suffers from collinearity problems. Given that (2) 

holds and that lt does not enter ft in (2), labor may also be chosen as lt=h(kt,ωt). While h is a 

different function than f, substituting (3) yields lt=h(kt,g(kt,mt))=i(kt,mt). Labor is thus a 
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function of capital and material input, invalidating the identification of the labor coefficient in 

the first step.10

Instead of a two-step approach, Wooldridge (2009) proposes to estimate βl and βk in one step. 

Given a production function (1), assume that the error term εt is uncorrelated with labor, 

capital, and material input as in (7), but also with all lags of these:

.0),,,...,,,,,,|( 111111  mklmklmklE ttttttt (13)

Another assumption in Wooldridge (2009) is to restrict the dynamics of unobserved 

productivity shocks as

  ,,)()|(,...),,,|( 1111111   tttttttttt mkgjjEmklkE  (14)

where ωt-1=g(kt-1,mt-1) is used. Now for productivity innovations at we can write

,)( 1 ttt aj   (15)

where

.0),,,...,,,,|( 111111  mklmklkaE ttttt (16)

Variable inputs lt and mt are thus correlated with productivity innovations at, but capital kt and 

all past values of lt, mt, and kt are uncorrelated with at,. Substituting (15) and (14) into (1) 

yields

   ,, 110 ttttktlt umkgjkly   (17)

where ut =at + εt and

.0),,,...,,,,|( 111111  mklmklkuE ttttt (18)

To estimate βl and βk, we need to specify the functions g and j in (17). Similarly as Levinsohn 

and Petrin, we may consider low-degree polynomials in the function g of order up to three. In 

(15), we may assume that the productivity process is a random walk with drift, so that (15) 

becomes

.1 ttt a  (19)

Plugging (19) and ωt-1=g(kt-1,mt-1) into (1) yields

    ,, 110 ttttktlt umkgkly   (20)

where ut =at + εt and (18) holds.

                                                
10 Ackerberg et al. (2006) propose an alternative approach that is still a two-step one, but unlike in Levinsohn 
and Petrin (2003), the production function parameters are identified in the second step.
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Equation (20) with polynomials in kt-1 and mt-1 of order up to three approximating for the 

function g could be estimated using pooled IV, using kt, lt-1, mt-1, kt-1, and polynomials 

containing mt-1 and kt-1 of order up to three as instruments for lt.
11 Given (16), this approach is 

robust to the Ackerberg et al. (2006) critique and unlike in Levinsohn and Petrin, 

bootstrapping is not required to obtain robust standard errors.

While value added, labor, and intermediate input are provided in the data for the identification 

of production functions, another problem is the measurement error in capital in equation (1), 

yielding biased production function estimates. In particular, the capital coefficient is 

attenuated toward zero (see Levinsohn and Petrin, 2003). Hence, we have to acknowledge that 

capital is measured with an error and one has to use a method that explicitly takes such data 

properties into account. 

To account for the measurement error in capital, we modify the Levinsohn-Petrin routine in 

the first stage, where we use instrumental variable regression instead of ordinary least squares

in (5), employing appropriate instruments for capital. In particular, given the iid measurement 

error et, the true values of capital ttt ekk 


are obtained as predicted values from the OLS 

estimation of

,...110 tNtNtt ezzk   (21)

where z1t,…, zNt are determinants (instruments) of capital and γ0 is a firm-specific fixed effect. 

Equation (5) then becomes

  ,,ˆˆ
0 ttttltkt mkglky   (22)

where

.0)|( tteE  (23)

                                                
11 This approach is used in Petrin and Levinsohn (2011). In fact, Wooldridge (2009) proposes to estimate 
equations (5) and (17) in a generalized method of moments framework as a two-equation system with the same 
dependent variable and with different sets of instruments. He argues that two-step estimators like Levinsohn and 
Petrin (2003) are inefficient because contemporaneous correlation in the errors across the equations is ignored 
and because serial correlation and heteroskedasticity are not efficiently controlled for. 
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When higher-order polynomials are used in place of g in (22), the first-step estimates in the 

Levinsohn and Petrin approach are not consistent.12 However, this can be solved by using 

linear approximation of g, which we use in one set of our results.

In the second stage, we use the predicted values of capital, so that (12) becomes

� � � *

2
*

1 1min [ | ] .
k

t t k t t t
t

y l k E


       (24)

Finally, we derive the standard errors of the coefficient estimates using a non-parametric 

bootstrap. While the Levinsohn-Petrin routine samples with replacement from firms and 

derives estimates of the standard errors from the variation in the coefficient estimates across 

the bootstrapped samples, we sample the observations from a distribution that reflects the 

uncertainty in the capital value. In particular, the capital values for each firm are drawn with 

100 replications from a distribution � ,t tk  where �tk is the predicted capital (including the 

fixed effect) from the regression (21) and ηt ~ N(0,σk
2). The parameter σk

2 is the firm-specific 

variance of predicted capital �
tk obtained by bootstrap with 1,000 replications.13

In the Wooldridge (2009) approach, the correction for measurement error in capital is 

straightforward. In particular, we have to find appropriate instruments for capital kt in (20). In 

the estimation, we use the same instruments for capital as in our modified LP approach.

3. Data Description

We estimate firm-level production functions for 2-digit NACE level manufacturing industries

(excluding petroleum and refining) using a large panel of Czech manufacturing firms with 20 

or more employees in 2002–2007 containing balance sheet and income statement information 

gathered by the Czech Statistical Office. While the dataset contains mainly financial 

variables, we complement the dataset with firm-level information on material consumption in 

                                                
12 To see the point, consider g = d1(kt–et) + d2(kt–et)

2 + d3(kt–et)
3. Then E(kt–et)

2  E2(kt–et) and E(kt–et)
3 

E3(kt–et) so that �tk cannot be used instead of kt in the estimation of (5). With the linear approximation, 

E( tk


)=E(kt–et)= E(kt) as we assumed that E(k,e)=0. In such a case, the Levinsohn-Petrin approach thus may be 

used with �tk instead of kt in (5).
13 The sampling is thus performed twice. First, the firm-specific variance of the predicted capital is obtained, 
and, second, standard LP sampling is done where capital is randomly drawn from the distribution reflecting the 
firm-specific variance of the predicted capital.
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physical units from the Czech Statistical Office. The advantage of our data compared to 

Levinsohn and Petrin (2003) and Wooldridge (2009) is that all intermediate inputs are 

reported in physical units so that there is no (even potential) problem with prices and 

deflating.14

Our sample covers economically active firms with non-zero electricity consumption and non-

zero employment in each year and without organizational changes such as mergers and 

acquisitions. In the dataset, we imputed missing values as averages of adjacent observations.15

The number of observations across industries and summary statistics are illustrated in Table 1.

The real value added growth in manufacturing industries is displayed in Figure 1. It is derived 

from the sample as the weighted sum of year-on-year growth in firms’ real value added.

---<Table 1 about here>---

---<Figure 1 about here>---

4. Estimation Results

When using balance sheets or other data, one has two competing options for calculating value 

added. The accounting measure is the sum of the firm’s sales, stocks, and new investments 

minus intermediate inputs and sales and services costs. As the balance sheets contain 

undefined values for some variables, there is a certain portion of missing values. As an 

alternative, the value added may be defined as an economic proxy utilizing the firm’s profit, 

depreciation, and wage bill. As the results do not differ qualitatively, we further limit 

ourselves to the precise accounting measure of value added described above. This is 

accompanied by 2-digit NACE deflators of value added obtained from the Czech Statistical 

Office.

The main contribution of our paper concerns the issue of capital measurement. Capital is 

defined as the sum of tangible and intangible assets at the beginning of the period, net of 

                                                
14 The dataset used in the estimation is unbalanced, which accounts for firms’ death and attrition. As firms’ exit 
depends on their productivity, there is a sample selection bias when using balanced panels. Olley and Pakes 
(1996) show that using the full sample instead of the balanced panel leads to more plausible production function 
estimates. 
15 This accounts for about 6% of all the observations. Our results are robust when these observations are dropped 
from the sample.
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depreciation. In essence, as the capital is measured using historical book value, one has to 

account for measurement error. As the capital deflator we use the average inflation rate, or, 

alternatively, the interest rate of new borrowing, which reflects the cost of capital, to verify 

whether the definition of the discount factor matters in the estimation.16

As a freely available input factor for production, we use the number of hours worked. As a 

proxy for unobserved productivity shocks we use the consumption of electricity in physical 

units (MWh). Depreciation, the full-time equivalent of the average number of employees, and 

gas consumption in physical units are used as available instruments for capital. Thus, only the 

left-hand side variable (production or value added) and one explanatory variable (capital) are 

measured in monetary terms. Measurement error in the left-hand side variable is not a 

problem (see, e.g. Kmenta, 1997). Capital thus remains the only variable that can be measured 

with an error either due to deflation or due to record keeeping of capital (book values).

The results by industries in 2003–2007 are summarized in Table 2. The first estimation 

(column 1) uses the Wooldridge (2009) approach where real capital (deflated by the inflation 

rate)17 is instrumented using depreciation, employment, and gas consumption in physical units 

as instruments. In column 2, the Wooldridge (2009) estimates are reported assuming that real 

capital is exogenous. Comparing columns 1 and 2, we see that correcting for capital 

measurement error significantly increases the coefficient estimate of capital as well as 

standard errors.

In column 3 we show the production function estimates using the LP method as implemented 

in Stata. In general, except for two industries (rubber and plastic products – NACE 25; other 

manufacturing – NACE 36–37) we do not observe a significant difference between columns 2 

and 3. The estimation using Wooldridge (2009) thus yields similar results to Levinsohn and 

Petrin (2003), while the Wooldridge (2009) estimates are robust to the Ackerberg et al. (2006) 

critique. Without assuming the measurement error in capital, both methods thus yield 

quantitatively similar results.

---<Table 2 about here>---

                                                
16 A significant amount of literature deals with the issue of using the right discount factor for capital; see, for 
example, Levinsohn and Petrin (2003). 
17 We also used the interest rate of new borrowing as an alternative capital deflator. The results are similar and 
are available from the authors on request.
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In column 4 of Table 2, we use the LP method with correction for the measurement error in 

real capital. In particular, we estimate (21) using OLS and generate predicted values of capital 

that are then used as the capital data input to the LP method. The modified non-parametric 

bootstrap is employed to get corrected standard errors of the coefficients. 

As in the Wooldridge (2009) approach (columns 1 and 2), we observe a major difference 

between columns 4 and 3 in Table 2 in all industries except for manufacture of wood (NACE 

20–22); the coefficient associated with real capital often more than double, while the changes 

in the labor coefficient estimates are minor.18 Based on our results using the Wooldridge 

(2009) and Levinsohn and Petrin (2003) approaches we see that measurement error in capital 

is a substantial problem that affects production function estimates. Not accounting for the 

measurement error in capital yields an estimate biased toward zero.

As we have shown in Section 2, using predicted values of real capital in the first stage of the 

LP routine with a higher order polynomial yields inconsistent estimates. We therefore repeat 

the estimation in columns 3 and 4 in Table 2, assuming linear approximation in place of the 

function g in equations (5) and (22). The results of this exercise are reported in columns 5 and 

6 in Table 2. The difference in the coefficient estimates between columns 3 and 5 and 

between columns 4 and 6 is small in most industries, suggesting that measurement error in 

capital affects the estimates more than specific assumptions approximating the unknown 

function g in equations (5) and (22).

Our finding of a higher coefficient estimate of capital after accounting for the measurement 

error in capital resembles the results in Gorodnichenko (2010) who replicated estimates of 

standard production function estimation procedures, including the Levinsohn and Petrin, 

using the same Chilean dataset as in Levinsohn and Petrin (2003). His structural estimator 

accounts for measurement errors which may explain why he finds a significantly higher 

coefficient estimate of capital.

                                                
18 Similar results are obtained when using gas consumption as a proxy to invert out the unobserved productivity 
shock in the LP routine and electricity consumption as an instrument for real capital. These alternative results are 
available from the authors upon request.
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The correction for measurement error of capital affects returns to scale. Table 3 repeats the 

returns to scale estimates from columns 1–4 in Table 2 for manufacturing industries. While 

most industries using the standard methods of Wooldridge (2009) and Levinsohn and Petrin 

(2003) exhibit constant or decreasing returns to scale (see columns 2 and 3 in Table 3), we 

cannot reject the presence of increasing returns in a number of industries when the estimation 

is corrected for measurement error in capital (columns 1 and 4). The difference in the results 

hinges on the correction of measurement error in capital, while the degree of the polynomial 

used in the estimation does not play a crucial role.

5. Conclusions

Based on our results we conclude that the measurement error of capital is a substantial 

problem that affects production function estimates. The estimated capital coefficient 

approximately doubles (depending on the particular industry) when we control for capital 

measurement error. The estimated standard errors of the coefficients naturally also increase 

when measurement error in capital is assumed, although the difference in the coefficients is so 

substantial that one can reject the identity of the coefficient with and without measurement 

error control. Consequently, while the majority of industries using standard Wooldridge 

(2009) and Levinsohn and Petrin (2003) estimation exhibit constant or (in)significantly

decreasing returns to scale, measurement error correction sometimes leads to a situation 

where even increasing returns to scale cannot be rejected.

To sum up, we conclude that an estimation that ignores possible measurement error in capital 

might suffer from significant underestimation of the effect of capital on value added

formation and that the contribution of capital to value added growth in Czech manufacturing 

industries was probably higher in 2003–2007 than based on estimates without controlling for 

measurement error in capital. 
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Appendix

Table 1: Summary statistics

N Mean Std. Dev.

Manufacture of food products, beverages and tobacco products (NACE 15–16)

Log real value added 1510 10.384 1.305

Log hours worked 1510 12.164 0.983

Log capital 1510 10.709 1.671

Log real capital 1510 10.597 1.667

Log electricity consumption 1510 13.912 1.453

Log depreciation 1510 8.600 1.624

Log employment 1510 4.701 0.972

Log gas consumption 1510 12.319 1.764

Manufacture of textiles, wearing apparel and leather (NACE 17–19)

Log real value added 829 10.316 1.288

Log hours worked 829 12.056 1.073

Log capital 829 9.709 2.117

Log real capital 829 9.599 2.117

Log electricity consumption 829 13.081 2.102

Log depreciation 829 7.638 1.971

Log employment 829 4.670 1.070

Log gas consumption 829 11.321 1.865

Manufacture of wood, pulp and paper, publishing and printing (NACE 20–22)

Log real value added 620 10.468 1.444

Log hours worked 620 12.030 1.025

Log capital 620 10.415 1.932

Log real capital 620 10.302 1.930

Log electricity consumption 620 13.545 2.107

Log depreciation 620 8.334 1.874

Log employment 620 4.595 1.021

Log gas consumption 620 11.288 2.183

Manufacture of chemicals (NACE 24)

Log real value added 444 11.443 1.372

Log hours worked 444 12.238 1.031

Log capital 444 11.364 1.792

Log real capital 444 11.247 1.793

Log electricity consumption 444 14.135 2.355

Log depreciation 444 9.295 1.730

Log employment 444 4.805 1.043

Log gas consumption 444 12.555 2.273

Manufacture of rubber and plastic products (NACE 25)

Log real value added 613 11.192 1.248

Log hours worked 613 12.338 1.029

Log capital 613 10.885 1.560

Log real capital 613 10.771 1.555

Log electricity consumption 613 14.174 1.690

Log depreciation 613 8.924 1.537

Log employment 613 4.902 1.030

Log gas consumption 613 11.240 1.737
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Table 1 (continued)
Manufacture of other non-metallic mineral products (NACE 26)

Log real value added 728 11.197 1.443

Log hours worked 728 12.381 1.094

Log capital 728 11.183 1.844

Log real capital 728 11.068 1.844

Log electricity consumption 728 14.522 1.900

Log depreciation 728 9.053 1.866

Log employment 728 4.948 1.091

Log gas consumption 728 12.917 2.420

Manufacture of metals (NACE 27–28)

Log real value added 1673 10.491 1.240

Log hours worked 1673 12.188 1.056

Log capital 1673 10.390 1.813

Log real capital 1673 10.278 1.810

Log electricity consumption 1673 13.928 1.887

Log depreciation 1673 8.363 1.718

Log employment 1673 4.754 1.059

Log gas consumption 1673 11.837 1.855

Manufacture of machinery and other equipment (NACE 29)

Log real value added 1510 10.826 1.231

Log hours worked 1510 12.221 1.044

Log capital 1510 10.280 1.732

Log real capital 1510 10.167 1.729

Log electricity consumption 1510 13.335 1.714

Log depreciation 1510 8.299 1.646

Log employment 1510 4.771 1.049

Log gas consumption 1510 11.261 1.712

Manufacture of electrical and optical machinery and equipment (NACE 30–33)

Log real value added 1250 11.012 1.407

Log hours worked 1250 12.310 1.202

Log capital 1250 10.213 1.871

Log real capital 1250 10.099 1.870

Log electricity consumption 1250 12.966 1.944

Log depreciation 1250 8.206 1.902

Log employment 1250 4.876 1.213

Log gas consumption 1250 10.889 1.748

Manufacture of motor vehicles and other transport equipment (NACE 34–35)

Log real value added 669 11.584 1.613

Log hours worked 669 12.850 1.265

Log capital 669 11.459 2.066

Log real capital 669 11.342 2.065

Log electricity consumption 669 14.298 1.956

Log depreciation 669 9.493 2.110

Log employment 669 5.416 1.269

Log gas consumption 669 12.263 1.792

Manufacture of furniture, other manufacturing, recycling (NACE 36–37)

Log real value added 622 10.152 1.308

Log hours worked 622 12.055 0.958

Log capital 622 10.175 1.533

Log real capital 622 10.064 1.531

Log electricity consumption 622 12.992 1.525

Log depreciation 622 8.007 1.465

Log employment 622 4.638 0.977

Log gas consumption 622 10.940 1.647
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Figure 1: Real value added growth in manufacturing industries
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Table 2: Production function estimates in 2003–2007

(1) (2) (3) (4) (5) (6)

Man. of food (NACE 15–16)

Log hours 0.636*** 0.686*** 0.700*** 0.690*** 0.700*** 0.687***

[0.0403] [0.0372] [0.0348] [0.0347] [0.0323] [0.0383]

Log real capital 0.578*** 0.282*** 0.301*** 0.581*** 0.348*** 0.541***

[0.122] [0.0362] [0.0721] [0.103] [0.0519] [0.0994]

Observations 1510 1510 1510 1510 1510 1510

Firms 467 467 467 467 467 467

Returns to scale 1.214* 0.968 1.001 1.271** 1.048 1.228**

Man. of textiles (NACE 17–19)

Log hours 0.675*** 0.553*** 0.587*** 0.586*** 0.609*** 0.607***

[0.0576] [0.0866] [0.0885] [0.0851] [0.0958] [0.0881]

Log real capital 0.609*** 0.165*** 0.156* 0.305*** 0.264*** 0.298***

[0.185] [0.0487] [0.0796] [0.101] [0.0946] [0.0967]

Observations 829 829 829 829 829 829

Firms 279 279 279 279 279 279

Returns to scale 1.284 0.718*** 0.744** 0.891 0.872 0.904

Man. of wood (NACE 20–22)

Log hours 0.580*** 0.606*** 0.657*** 0.640*** 0.654*** 0.639***

[0.0737] [0.0908] [0.0971] [0.0830] [0.0900] [0.0758]

Log real capital 0.697*** 0.254*** 0.260** 0.326*** 0.315*** 0.458***

[0.144] [0.0588] [0.111] [0.118] [0.110] [0.153]

Observations 620 620 620 620 620 620

Firms 201 201 201 201 201 201

Returns to scale 1.277* 0.859 0.917 0.965 0.969 1.097

Man. of chemicals (NACE 24)

Log hours 0.624*** 0.574*** 0.610*** 0.608*** 0.629*** 0.619***

[0.100] [0.140] [0.129] [0.147] [0.115] [0.115]

Log real capital 1.997*** 0.374*** 0.465*** 1.204*** 0.424** 1.206***

[0.561] [0.0993] [0.146] [0.197] [0.185] [0.213]

Observations 444 444 444 444 444 444

Firms 120 120 120 120 120 120

Returns to scale 2.621*** 0.948 1.075 1.812*** 1.052 1.825***

Man. of rubber (NACE 25)

Log hours 0.548*** 0.618*** 0.642*** 0.629*** 0.644*** 0.623***

[0.0705] [0.0671] [0.0727] [0.0701] [0.0723] [0.0584]

Log real capital 0.733*** 0.290*** 0.464*** 0.601*** 0.451*** 0.610***

[0.136] [0.0798] [0.0792] [0.165] [0.0805] [0.152]

Observations 613 613 613 613 613 613

Firms 216 216 216 216 216 216

Returns to scale 1.281** 0.908 1.106 1.229 1.096 1.233

Man. of other mineral products (NACE 26)

Log hours 0.345*** 0.392*** 0.430*** 0.421*** 0.436*** 0.425***

[0.0514] [0.0644] [0.0606] [0.0637] [0.0601] [0.0692]

Log real capital 0.803*** 0.328*** 0.265** 0.392*** 0.297*** 0.482***

[0.191] [0.0796] [0.115] [0.132] [0.0948] [0.143]

Observations 728 728 728 728 728 728

Firms 200 200 200 200 200 200

Returns to scale 1.148 0.72*** 0.695** 0.814 0.733** 0.907
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Table 2 (continued)
(1) (2) (3) (4) (5) (6)

Man. of metals (NACE 27–28)

Log hours 0.638*** 0.664*** 0.684*** 0.680*** 0.705*** 0.700***

[0.0398] [0.0445] [0.0430] [0.0379] [0.0404] [0.0438]

Log real capital 0.575*** 0.243*** 0.247*** 0.371*** 0.228*** 0.339***

[0.104] [0.0365] [0.0551] [0.0912] [0.0596] [0.0721]

Observations 1673 1673 1673 1673 1673 1673

Firms 592 592 592 592 592 592

Returns to scale 1.213** 0.906* 0.931 1.052 0.934 1.039

Man. of machinery (NACE 29)

Log hours 0.711*** 0.812*** 0.857*** 0.849*** 0.883*** 0.874***

[0.0452] [0.0426] [0.0517] [0.0452] [0.0438] [0.0416]

Log real capital 0.633*** 0.171*** 0.185*** 0.406*** 0.193*** 0.405***

[0.108] [0.0350] [0.0363] [0.0753] [0.0422] [0.0852]

Observations 1510 1510 1510 1510 1510 1510

Firms 502 502 502 502 502 502

Returns to scale 1.344*** 0.983 1.041 1.255*** 1.076 1.279***

Man. of electrical and optical machinery (NACE 30–33)

Log hours 0.728*** 0.820*** 0.845*** 0.843*** 0.868*** 0.862***

[0.0392] [0.0485] [0.0493] [0.0453] [0.0402] [0.0396]

Log real capital 0.747*** 0.172*** 0.204** 0.336*** 0.162* 0.344***

[0.122] [0.0437] [0.0837] [0.115] [0.0886] [0.0975]

Observations 1250 1250 1250 1250 1250 1250

Firms 367 367 367 367 367 367

Returns to scale 1.475*** 0.993 1.049 1.179 1.03 1.206**

Man. of motor vehicles (NACE 34–35)

Log hours 0.642*** 0.647*** 0.719*** 0.685*** 0.717*** 0.690***

[0.0861] [0.0812] [0.0911] [0.0794] [0.0868] [0.0788]

Log real capital 0.597*** 0.13 0.174 0.576*** 0.171 0.623***

[0.176] [0.0923] [0.115] [0.145] [0.107] [0.136]

Observations 669 669 669 669 669 669

Firms 192 192 192 192 192 192

Returns to scale 1.239 0.777** 0.894 1.261 0.888 1.314**

Man. other (NACE 36–37)

Log hours 1.112*** 1.055*** 1.093*** 1.089*** 1.101*** 1.101***

[0.0971] [0.135] [0.137] [0.125] [0.119] [0.138]

Log real capital 0.758 0.140* 0.270** 0.752** 0.247** 0.837**

[0.485] [0.0783] [0.135] [0.321] [0.118] [0.363]

Observations 622 622 622 622 622 622

Firms 206 206 206 206 206 206
Returns to scale 1.87* 1.196 1.363** 1.841** 1.348** 1.937**

Notes: Standard errors in brackets, *** p<0.01, ** p<0.05, * p<0.1. Real value of capital (deflated by the average inflation 
rate). Returns to scale (log labor + log real capital) and significance level of Wald test of constant returns reported.
           (1) Wooldridge (2009); real capital is instrumented using depreciation, employment, and gas consumption.
           (2) Wooldridge (2009).
           (3) Levinsohn-Petrin (2003).
           (4) Levinsohn-Petrin (2003); real capital is instrumented using depreciation, employment, and gas consumption.
           (5) Levinsohn-Petrin (2003); linear approximation used in (6).
           (6) Levinsohn-Petrin (2003); real capital is instrumented using depreciation, employment, and gas consumption; linear 

approximation used in (6).
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Table 3: Returns to scale in Czech manufacturing industries, 2003–2007
(1) (2) (3) (4)

Food products, beverages and tobacco products (NACE 15–16) 1.214* 0.968 1.001 1.271**

Textiles, wearing apparel and leather (NACE 17–19) 1.284 0.718*** 0.744** 0.891

Wood, pulp and paper, publishing and printing (NACE 20–22) 1.277* 0.859 0.917 0.965

Chemicals (NACE 24) 2.621*** 0.948 1.075 1.812***

Rubber and plastic products (NACE 25) 1.281** 0.908 1.106 1.229

Other non-metallic mineral products (NACE 26) 1.148 0.72*** 0.695** 0.814

Metals (NACE 27–28) 1.213** 0.906* 0.931 1.052

Machinery and other equipment (NACE 29) 1.344*** 0.983 1.041 1.255***

Electrical and optical machinery and equipment (NACE 30–33) 1.475*** 0.993 1.049 1.179

Motor vehicles and other transport equipment (NACE 34–35) 1.239 0.777** 0.894 1.261

Furniture, other manufacturing, recycling (NACE 36–37) 1.87* 1.196 1.363** 1.841**
Notes: Returns to scale (log labor + log real capital) and significance level of Wald test of constant returns reported.
           *** p<0.01, ** p<0.05, * p<0.1.
           (1) Wooldridge (2009); real capital is instrumented using depreciation, employment, and gas consumption.
           (2) Wooldridge (2009).
           (3) Levinsohn-Petrin (2003).
           (4) Levinsohn-Petrin (2003); real capital is instrumented using depreciation, employment, and gas consumption.


