Subjective Belief, Risk Information and Earthquake Insurance Purchase

Michio Naoi (Keio U.)
Takuya Ishino (Kanazawa Seiryo U.)
Miki Seko (Musashino U.)

- Limited insurance coverage against earthquake
 - √ % HHs covered by earthquake insurance = 27% (General Insurance Association of Japan, 2012)
 - ✓ Also common in other countries:
 - □ California = 11% (2000), Turkey = 19.4% (2006)
 - ✓ Why do so many households not insure against earthquakes?

- Misperception of potential risk
 - ✓ Majority of homeowners underestimate house destruction risks due to earthquake
 - Median subjective prob. = 5%
 - □ Objective prob. = 5–25%

Seismic Scale	Under estimation	Good estimation	Over estimation	
House destruction risk				
6+	0.54	0.22	0.25	
7	0.59	0.21	0.21	

Source: Fujimi and Kakimoto (2012, Table 6)

- Disseminating risk information
 - ✓ Policy aiming at providing better information for consumers, and enhancing insurance coverage
 - ✓ Effectiveness of the policy depends on...
 - 1. How consumers perceive the probability/magnitude of a loss *ex-ante*
 - 2. To what extent additional risk information alters consumer's perception *ex-post*

- Purpose of the paper
 - ✓ Theory:
 - To develop a simple model of insurance purchase where consumers have imperfect knowledge about the potential risk but have an opportunity to seek for better information
 - Empirical analysis:
 - To test the theoretical predictions using observed insurance behavior
 - To examine whether providing risk information (e.g., earthquake hazard map) has any causal effect on insurance decision

- Setting (Kunreuther and Pauly, 2004)
 - ✓ Insurance decision:
 - lacktriangle Risk averse consumers, having wealth (W) and facing a risk of a loss (L), want to determine how much insurance (I) to purchase
 - ✓ Imperfect knowledge:
 - \square Consumers believe that the probability has n possible values $(p_j; j=1,\cdots,n)$ with subjective "weights" (w_j)
 - ✓ Information search:
 - \blacksquare Consumers can search for and obtain information about the loss probability at a fixed search cost (C)

- Insurance Decision without Search
 - ✓ Expected utility:

EU(No Search)

$$= \sum_{j=1}^{n} w_j [p_j U(W - L + (1 - r)I) + (1 - p_j)U(W - rI)]$$

= $\hat{p}U(W - L + (1 - r)I) + (1 - \hat{p})U(W - rI)$

✓ Linear in average subjective probability:

$$\hat{p} = \sum_{j} w_{j} p_{j}$$

- Insurance Decision without Search (cont'd)
 - ✓ Optimal insurance amount:

$$\max_{I} EU(No\ Search) \text{ s.t. } 0 \leq I^* \leq L$$

✓ Insurance decision:

$$a^* = {0 \brace 1} \text{ if } \hat{p} {\leq \rbrace} \frac{rU'(W)}{(1-r)U'(W-L) + rU'(W)}$$
 (3)

- Insurance Decision with Searching
 - ✓ Amount of insurance for each subjective probability estimate:

$$I_j^* \equiv \arg \max_{I} p_j U(W - L + (1 - r)I) + (1 - p_j)U(W - rI)$$

✓ Expected utility:

$$\begin{split} & & \text{EU}(Search) \\ & = \sum_{j=1}^{n} w_{j} \big[p_{j} U \big(W - L + (1-r) I_{j}^{*} \big) + \big(1 - p_{j} \big) U \big(W - r I_{j}^{*} \big) \big] - C \end{split}$$

- Decision to search for information:
 - ✓ The consumer will search for information on the probability of a loss only if $EU(Search) \ge EU(No\ Search)$
- Potential trade-off:
 - \checkmark Fixed search cost (C)
 - ✓ Choosing optimal insurance demand for each "scenario" (p_i)

- Three possible outcomes:
 - 1. No search (s = 0) & No insurance (a = 0) if \hat{p} is relatively low
 - 2. Search (s = 1) if \hat{p} is moderate
 - 3. No search (s=0) & Buy insurance (a=1) if \hat{p} is relatively high

- Effect of additional information:
 - ✓ Additional information will alter the subjective estimate of the loss probability (\hat{p}')
 - ✓ After obtaining additional information, insurance decision is made based on the updated subjective probability

$$a^* = {0 \brace 1} \text{ if } \hat{p}' {\leq \rbrace} \frac{rU'(W)}{(1-r)U'(W-L) + rU'(W)}$$
 (6)

KHPS & JHPS

- ✓ Household-level longitudinal data
- ✓ Started in 2004 (KHPS) and 2009 (JHPS), with approx. 4,000 initial households
- ✓ Conducted every January each year
- ✓ Household/respondent characteristics

- Post-Quake Survey of KHPS/JHPS
 - ✓ Follow-up to the regular survey of KHPS/JHPS:
 - □ 1st round: June 2011 / 2nd round: Oct. 2011
 - □ N = 4,215 & 3,591
 - ✓ Questionnaire:
 - Earthquake loss & damage
 - □ Post-disaster situations of the respondents, including employment, housing, consumption and income
 - Insurance and disaster mitigation activities

- Insurance decision
 - ✓ Question about earthquake insurance status in the PQS
 - Already covered by EQ insurance prior to the Great East
 Japan Earthquake
 - □ Not covered but plan to purchase EQ insurance in the future
 - Not covered and do not plan to purchase it in the future
 - ✓ <u>Our sample</u>: Homeowners not covered by earthquake insurance in the pre-quake period
 - ✓ Dummy var. = 1 if R plans to buy insurance

Risk information

- ✓ Whether or not the respondent obtained the regional hazard information such as earthquake hazard map provided by the local governments
 - external risk information for potential insurance customers which may alter their *ex-ante* subjective probability
- ✓ Dummy var. = 1 if respondents obtained hazard information and 0 otherwise

- Objective earthquake probability
 - ✓ Probabilistic Seismic Hazard Map (PSHM)
 - ✓ Probability that earthquakes with JMA seismic intensity of 6⁻ will take place in the next 30 years
- Other geospatial data
 - ✓ Insurance premium
 - ✓ Distance from the coastline
 - ✓ Site liquefaction index

- Other control variables
 - ✓ Respondent's age, sex, marital status, household size, income, wealth, self-reported house value (KHPS/JHPS2011)
 - ✓ Self-reported score of fear/anxiety toward possible aftershocks (1st round PQS)

Empirical Model

Subjective probability of a loss

$$\hat{p}(s) = f(p^o, x) + \beta s + \varepsilon \tag{8}$$

- $\checkmark \hat{p}(s)$: (unobservable) subjective probability
- $\checkmark p^o$: 30-year probability (PSHM)
- $\checkmark x$: control variables
- ✓ s: dummy var. whether R obtained risk info.

Empirical Model

Insurance purchase (eqns. (3) & (6))

$$a = \begin{cases} 0 \\ 1 \end{cases} \quad \text{if} \quad \hat{p}(s) \begin{cases} \leq \\ \geq \end{cases} g(r, W, L) \tag{7}$$

- $\checkmark a$: insurance purchase
- $\checkmark r$: insurance premium
- $\checkmark W$: household wealth
- ✓ L: potential loss from a quake (= proxied by a self-reported house value)

Empirical Model

- Causal effect of obtaining risk information:
 - $\checkmark \beta$ in equation (8)
- Probit model with endogenous variable:
 - \checkmark s can be endogenous
 - ✓ IVs: variables regarding the cost of obtaining information (C)
 - Whether paper- or web-based earthquake hazard information is available in the respondent's municipality (with latter variable interacted with resp's internet access at home)

Empirical Results

- Standard probit model
 - ✓ Assuming exogeneity of s

Plan to purchase insurance (yes = 1)	Coef.	AME
Obtained the regional hazard info. (yes = 1)	0.1998*	0.0744
Wealth (in 10 mil. JPY)	-0.1048*	-0.0299
Wealth ²	0.0086+	
Self-reported house value (in 10 mil. JPY)	0.1777+	0.0407
Self-reported house value ²	-0.0386+	
Insurance premium (Single-family, detached)	-0.0348	-0.0129
(condominium)	-0.4052*	-0.1211

Empirical Results

Probit model with binary endog. var.

Plan to purchase insurance (yes = 1)	Coef.	AME
Obtained the regional hazard info. (yes = 1)	0.0780*	0.0291
First-stage results		
Paper-based hazard info. available (yes = 1)	0.3666*	0.1286
Web-based hazard info. × Internet access		
Web info. = $0 \times$ Internet access at home = 0	(Omitted)	
Web info. = $0 \times$ Internet access at home = 1	0.1400	0.0513
Web info. = $1 \times$ Internet access at home = 0	0.2178	0.0791
Web info. = $1 \times$ Internet access at home = 1	0.2928+	0.1052

Conclusion

Theory

✓ To present a simple model of insurance purchase where consumers have imperfect knowledge about the potential risk but have an opportunity to obtain better risk information

Empirical analysis

✓ obtaining the regional disaster hazard information makes the consumer's subjective probability of a loss significantly higher, thereby facilitating insurance demand