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Abstract

This paper provides conditions under which parameters of fixed-effect dynamic mod-

els are identified with unequally spaced panel data. Under predeterminedness, weak sta-

tionarity, and empirically testable rank conditions, AR(1) parameters are identified if

τ, τ + 1,∆t + τ,∆t + τ + 1 ∈ T holds for some τ > 0 and ∆t > 0, where T is the set

of all the time gaps. This result extends to models with multiple covariates, higher-order

autoregressions, time-varying trends, and partially linear models. For the NLS Original

Cohorts: Older Men, personal interviews took place in 1966, 67, and 69, and the above

condition is satisfied with T = {0, 1, 2, 3}, i.e., (τ,∆t) = (0, 2). Applying our method to

this data set, we obtain estimates of the AR(1) parameter for earning dynamics ranging

from .34 to .59.
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1 Introduction

In economics, numerous empirical questions have been answered through the dynamic panel

data model of the form

yit = γyit−1 + βxit + αi + εit, (1.1)

where yit is an observed state variable, xit is an observed covariate, αi is an unobserved individ-

ual fixed effect, and εit is an idiosyncratic error. Among others, method-of-moment approaches

(e.g., Anderson and Hsiao, 1981; Arellano and Bond, 1991; Ahn and Schmidt, 1995; Blundell

and Bond, 1998; Hahn, 1999) enjoy practical and theoretical advantages to attract a large

group of users. These methods exploit the instrumental orthogonality of the first difference

εit − εit−1 = (yit − yit−1) − γ(yit−1 − yit−2) − β(xit − xit−1) as well as other supplementary

moment restrictions. As such, they require observation of yit for at least three consecutive time

periods (or alternatively two pairs of two consecutive time periods).

Many panel surveys are conducted with unequal time spacing, and may not provide the

required set of time periods. For the NLS Original Cohorts: Older Men, for example, personal

interviews were conducted in 1966, 67, 69, 71, 76, 81, and 90.1 This data set contains neither

three consecutive time periods nor two pairs of two consecutive time periods. We thus fail to

difference out the fixed effect from equation (1.1), and cannot directly adapt the aforementioned

approaches to construct moment restrictions.

Given that the standard method-of-moment approaches are not generally effective once

panel data exhibit unequal time spacing, can we develop similarly useful alternative estimation

methods? Through this paper, we answer this question by providing conditions under which

parameters (γ, β) of the model (1.1) are identified even if panel data are unequally spaced. In

addition to the relatively standard assumptions such as predeterminedness, weak stationarity,

and empirically testable rank conditions, we require certain patterns of unequal time spacing

for the parameters to be identified. It is also shown that many of the unequally spaced panel

data sets from the US and the UK satisfy our requirement of spacing patterns.

We are not the first to study unequally spaced panel data. Rosner and Munoz (1988)

1They conducted mail or telephone interviews in 1968, 73, 75, 78, 80, and 83, but responses through different

media of communication should be carefully distinguished for survey analysis.
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use linear interpolation to approximate missing data for dynamic panel models. Jones and

Boadi-Boateng (1991) take the parametric maximum likelihood solution for static panel models

with serial correlation. Baltagi and Wu (1999) propose a feasible GLS procedure for static

panel models with serial correlation. McKenzie (2001) show consistent estimation of dynamic

(pseudo) panel models, but this method requires observation of covariates in the missing time

periods. Millimet and McDonough (2013) apply a variety of estimation methods for dynamic

panel models and report their finite sample performances.

This paper differs from each of these preceding papers in terms of two or more of the

following six points. First, most importantly, we prove identification, and specifically propose

general spacing patterns as sufficient conditions for identification. Second, we deal with dynamic

models which exhibit more complications than static models. Third, parametric distributional

assumptions are not imposed. Forth, our approach does not rely on interpolation or imputation.

Fifth, our method does not require partial observation in missing time periods. Sixth, our model

can allow for arbitrary correlation among the observed state, the unobserved fixed effect, and

the observed covariates.

With all these advantages, we admit that our identification result is based on a non-trivial

set of assumptions. As mentioned earlier, we assume predeterminedness and weak stationarity.

While predeterminedness is often innocuous in applications, the weak stationarity can be re-

strictive in some applications, particularly with those state variables that grow or accumulate

over time. Later in this paper, we provide a remedy to alleviate this stationarity assumption

by introducing time-varying means and variances. Our rank condition is empirically testable,

and can also be handled by the existing methods of weak-rank-robust inference.

Our key requirement for identification is that τ, τ + 1,∆t + τ,∆t + τ + 1 ∈ T holds for

some τ > 0 and ∆t > 0, where T is the set of all the time gaps. None of the preceding papers

proposes such general spacing patterns as sufficient (or necessary) condition for identification.

This requirement is satisfied with T = {0, 1, 2, 3}, i.e., (τ,∆t) = (0, 2), for the NLS Original

Cohorts: Older Men, which we picked as an example earlier. This paper contributes to the body

of our knowledge and provides a guidance to practitioners by formally ensuring identification

of dynamic fixed-effect models under the stylized patterns of unequally spaced panel data.
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2 A Basic Model

We first fix index notations for unequally spaced panel data. Let T be the set of all observed

time periods. Define the set of survey gaps by T = {|t1 − t2| : t1, t2 ∈ T}. Also define the set of

gap-associated survey years by T (τ) = {t ∈ T : t+τ ∈ T} for each gap τ ∈ T , and let T (τ) = φ

if τ 6∈ T . For the NLS Original Cohorts: Older Men, introduced in the previous section,

personal interviews were conducted in 1966, 67, 69, 71, 76, 81, and 90. In this case, we have

T = {66, 67, 69, 71, 76, 81, 90}, T = {0, 1, 2, 3, 4, 5, 7, 9, 10, 12, 14, 15, 19, 21, 23, 24}, T (0) = T ,

T (1) = {66}, T (2) = {67, 69}, T (3) = {66}, T (4) = {67}, T (5) = {66, 71, 76}, and so on.

Let us first consider the following simple first-order autoregressive model for illustration.

yit = γyit−1 + βxit + αi + εit (2.1)

where yit is an observed state variable, xit is an observed covariate, αi is an unobserved individ-

ual fixed effect, and εit is an unobserved idiosyncratic shock for individual i at period t. This

baseline model has two parameters, γ and β. The dynamic process (2.1) is equipped with the

following set of model assumptions.

Assumption 1 (Predeterminedness). Ei[yitεis] = 0 and Ei[xitεis] = 0 whenever s > t.

Assumption 2 (Weak Stationarity). For each individual i = 1, 2, · · · , N :

(i) µ̄i := Ei(xit) and µ̃i := Ei(yit) are t-invariant.

(ii) σ̄2
i := V ari(xit) and σ̃2

i := V ari(yit) are t-invariant.

(iii) ψ̄iτ := Covi(xit, xit+τ ) and ψ̃iτ := Covi(yit, yit+τ ) are t-invariant.

(iv) Ψiτ := Covi(yit, xit+τ ) and Ψi−τ := Covi(xit, yit+τ ) are t-invariant.

For a primitive structural model that sufficiently satisfies this weak stationarity assumption,

one can consider the linear VAR structure for (yit, xit+1) with sub-unit coefficient restrictions for

example, where one of the two equations is (2.1). An obvious disadvantage of Assumption 2 is

that it prohibits time-varying means and variances of the state variable, whereas time variations

are fairly common for many economic variables, particularly those that grow or accumulate over

time. We will relax this restriction by introducing time-varying means and variances later in

Section 6.1.
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3 Identification under Unequal Spacing

Our identification strategy under unequally spaced dynamic panel data is as follows. Let t1 and

t2 be two time periods in T such that t1 > t2. Taking the difference of the dynamic equation

(2.1) between these two time periods yields

yit1 − yit2 = γ(yit1−1 − yit2−1) + β(xit1 − xit2) + (εit1 − εit2)

Multiplying both sides of this equation by yit2−1−τ and xit2−1−τ , we obtain the following two

equations.

yit2−1−τ (yit1 − yit2) = γyit2−1−τ (yit1−1 − yit2−1) + βyit2−1−τ (xit1 − xit2) + yit2−1−τ (εit1 − εit2)

xit2−1−τ (yit1 − yit2) = γxit2−1−τ (yit1−1 − yit2−1) + βxit2−1−τ (xit1 − xit2) + xit2−1−τ (εit1 − εit2)

We take the expectation Ei of the above two equations for each individual i as follows.

Ei(yit2−1−τ (yit1 − yit2)) = (3.1)

γEi(yit2−1−τ (yit1−1 − yit2−1)) + βEi(yit2−1−τ (xit1 − xit2)) + Ei(yit2−1−τ (εit1 − εit2))

Ei(xit2−1−τ (yit1 − yit2)) = (3.2)

γEi(xit2−1−τ (yit1−1 − yit2−1)) + βEi(xit2−1−τ (xit1 − xit2)) + Ei(xit2−1−τ (εit1 − εit2))

In order to further simplify (3.1) and (3.2), we now invoke Assumptions 1 and 2. First, the

predeterminedness in Assumption 1 implies Ei(yit2−1−τ (εit1 − εit2)) = 0 and Ei(xit2−1−τ (εit1 −

εit2)) = 0 for any τ ≥ 0, vanishing the last term on the right-hand side of each of equations

(3.1) and (3.2). Second, the weak stationarity in Assumption 2 allows us to define the following

t-invariant cross-sectional random variables.

(i) Ziτ := ψ̃iτ + µ̃2
i = Ei(yityit+τ ), where Ziτ is t-invariant.

(ii) ziτ := ψ̄iτ + µ̄2
i = Ei(xitxit+τ ), where ziτ is t-invariant.

(iii) ζiτ := Ψiτ + µ̃iµ̄i = Ei(yitxit+τ ), where ζiτ is t-invariant.

(iv) ζi−τ := Ψi−τ + µ̃iµ̄i = Ei(xityit+τ ), where ζi−τ is t-invariant.
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With these properties implied by Assumptions 1 and 2, we can rewrite (3.1) and (3.2) as

Zi∆t+τ+1 − Ziτ+1 = γ(Zi∆t+τ − Ziτ ) + β(ζi∆t+τ+1 − ζiτ+1) and

ζi−(∆t+τ+1) − ζi−(τ+1) = γ(ζi−(∆t+τ) − ζi−τ ) + β(zi∆t+τ+1 − ziτ+1)

respectively, where ∆t = t1−t2 denotes the gap between the two time periods, t1 and t2. Taking

the cross-sectional means E of each of the above two equations yields

Z∆t+τ+1 − Zτ+1 = γ(Z∆t+τ − Zτ ) + β(ζ∆t+τ+1 − ζτ+1) (3.3)

ζ−(∆t+τ+1) − ζ−(τ+1) = γ(ζ−(∆t+τ) − ζ−τ ) + β(z∆t+τ+1 − zτ+1) (3.4)

where Zτ := E[Ziτ ], zτ := E[ziτ ], ζτ := E[ζiτ ], and ζ−τ := E[ζi−τ ] for short-hand notations.

Equations (3.3) and (3.4) involve twelve cross-sectional moments: Z∆t+τ+1, Zτ+1, Z∆t+τ ,

Zτ , ζ∆t+τ+1, ζτ+1, ζ−(∆t+τ+1), ζ−(τ+1), ζ−(∆t+τ), ζ−τ , z∆t+τ+1, and zτ+1. Due to the t-invariance

implied by Assumption 2, the first one of these moments, Z∆t+τ+1, can be observed as the cross-

sectional moment of yityit+∆t+τ+1 for any t ∈ T (∆t + τ + 1) provided that T (∆t + τ + 1) 6= φ

is true. Likewise, all the cross sectional moments in (3.3) and (3.4) can be observed using

unequally spaced panel data if T (τ) 6= φ, T (τ + 1) 6= φ, T (∆t+ τ) 6= φ, and T (∆t+ τ + 1) 6= φ

are true.

Once all the cross-sectional moments in (3.3) and (3.4) are observed from unequally spaced

panel data, we can solve the system to explicitly identify the structural parameters (γ, β) byγ
β

 =
1

|∆|

(z∆t+τ+1 − zτ+1)(Z∆t+τ+1 − Zτ+1) + (ζτ+1 − ζ∆t+τ+1)(ζ−(∆t+τ+1) − ζ−(τ+1))

(ζ−τ − ζ−(∆t+τ))(Z∆t+τ+1 − Zτ+1) + (Z∆t+τ − Zτ )(ζ−(∆t+τ+1) − ζ−(τ+1))


(3.5)

where |∆| = (Z∆t+τ −Zτ )(z∆t+τ+1− zτ+1)− (ζ−(∆t+τ)− ζ−τ )(ζ∆t+τ+1− ζτ+1), provided that the

following empirically testable rank condition is satisfied.

Assumption 3 (Empirically Testable Rank Condition). |∆| 6= 0.

This identification result is summarized as a theorem below.

Theorem 1 (Identification). If Assumptions 1, 2, and 3 are satisfied for (2.1), and unequally

spaced panel data have T (τ) 6= φ, T (τ + 1) 6= φ, T (∆t + τ) 6= φ, and T (∆t + τ + 1) 6= φ, then

(γ, β) is identified by the formula (3.5).
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Remark 1. The condition T (τ) 6= φ, T (τ + 1) 6= φ, T (∆t + τ) 6= φ and T (∆t + τ + 1) 6= φ

provided in the theorem is equivalent to the alternative writing τ, τ + 1,∆t+ τ,∆t+ τ + 1 ∈ T

used in the abstract and the introductory section for succinctness.

Given that T (0) 6= φ is always true whenever T 6= φ is true, we can consider two represen-

tative cases of unequal spacing structures under which all of these index sets, T (τ), T (τ + 1),

T (∆t+ τ), and T (∆t+ τ + 1), are nonempty. These two cases are formalized by Definitions 1

and 2 below.

Definition 1 (UK Spacing). If panel data with unequal spacing has T (τ) 6= φ, T (τ + 1) 6= φ,

and T (τ + 2) 6= φ for some base gap τ , then we call its spacing structure the “UK spacing.”

Example 1 (UK Spacing). The following is a list of unequally spaced British panel data sets

listed in Millimet and McDonough (2013; Table 1).

1958 National Child Development Study T = {7, 11, 16, 23, 33, 42, 46, 50}

1970 British Cohort Study T = {5, 10, 16, 26, 30, 34, 38, 42}

Millennium Cohort Study T = {0, 3, 5, 7}

National Pupil Database T = {7, 11, 14, 16}

Each of these panel data sets has the UK spacing structure. 1958 National Child Development

Study has T (7) 6= φ, T (8) 6= φ, and T (9) 6= φ. 1970 British Cohort Study has T (4) 6= φ,

T (5) 6= φ, and T (6) 6= φ. Millennium Cohort Study has T (2) 6= φ, T (3) 6= φ, and T (4) 6= φ.

National Pupil Database has T (2) 6= φ, T (3) 6= φ, and T (4) 6= φ.

Definition 2 (US Spacing). If panel data with unequal spacing has T (1) 6= φ, T (∆t) 6= φ, and

T (∆t+ 1) 6= φ for some gap ∆t ∈ N, then we call its spacing structure the “US spacing.”

Remark 2. When T = {1, 2, 4}, the unequal panel data can be characterize as either “UK

spacing” or “US spacing”. In this case, ∆t = 1, τ = 0, we only require T (1) 6= φ and T (2) 6= φ.

Example 2 (US Spacing). The following is a list of unequally spaced American panel data sets

listed in Millimet and McDonough (2013; Table 1).
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NLS Original Cohorts: Older Men T = {66, 67, 69, 71, 76, 81, 90}

Current Population Survey T = {· · · , 3, 4, 13, 14, · · · }

Early Childhood Longitudinal Survey-K T = {3, 4, 8, 12, 18}

National Longitudinal Survey of Youth 1979 T = {· · · , 93, 94, 96, 98, · · · }

Panel Study of Income Dynamics T = {· · · , 96, 97, 99, 01, · · · }

Each of these panel data sets has the US spacing structure. NLS Original Cohorts: Older

Men has T (1) 6= φ and T (2) 6= φ. Current Population Survey has T (1) 6= φ, T (9) 6= φ,

and T (10) 6= φ. Early Childhood Longitudinal Survey-Kindergarten Cohort2 has T (1) 6= φ,

T (4) 6= φ, and T (5) 6= φ. National Longitudinal Survey of Youth 1979 has T (1) 6= φ and

T (2) 6= φ. Panel Study of Income Dynamics has T (1) 6= φ and T (2) 6= φ.

These two spacing patterns, namely the UK spacing and the US spacing, satisfy the general

condition required in Theorem 1. We state this result as a corollary below.

Corollary 1 (Identification under UK and US Spacing). If Assumptions 1 and 2 are satisfied

for (2.1), then we have the following two results as consequences of Theorem 1.

(i) If T (τ) 6= φ, T (τ + 1) 6= φ, and T (τ + 2) 6= φ (UK Spacing), then (γ, β) is identified byγ
β

 =
1

|∆|

 (zτ+2 − zτ+1)(Zτ+2 − Zτ+1) + (ζτ+1 − ζτ+2)(ζ−(τ+2) − ζ−(τ+1))

(ζ−τ − ζ−(τ+1))(Zτ+2 − Zτ+1) + (Zτ+1 − Zτ )(ζ−(τ+2) − ζ−(τ+1))


with |∆| = (Zτ+1 − Zτ )(zτ+2 − zτ+1)− (ζ−(τ+1) − ζ−τ )(ζτ+2 − ζτ+1) provided |∆| 6= 0.

(ii) If T (1) 6= φ, T (∆t) 6= φ, T (∆t+ 1) 6= φ (US Spacing), then (γ, β) is identified byγ
β

 =
1

|∆|

(z∆t+1 − z1)(Z∆t+1 − Z1) + (ζ1 − ζ∆t+1)(ζ−(∆t+1) − ζ−1)

(ζ0 − ζ−∆t)(Z∆t+1 − Z1) + (Z∆t − Z0)(ζ−(∆t+1) − ζ−1)


with |∆| = (Z∆t − Z0)(z∆t+1 − z1)− (ζ−∆t − ζ0)(ζ∆t+1 − ζ1) provided |∆| 6= 0.

2In this panel data, the first two data points t = 1 and 2 are also available, but they correspond to Kinder-

garten which is structurally different from the grade school periods starting at t = 3. We thus exclude the first

two periods from the set T of time periods.
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4 Estimation under Unequal Spacing

For the dynamic model (2.1) with two parameters (γ, β) with the two constructed cross-sectional

moment restrictions (3.3) and (3.4), we achieve the explicit identifying formula (3.5) or its

special cases provided in Corollary 1. Therefore, the sample counterparts of the identifying

formulas in Corollary 1 suffice for consistent estimation of the parameters, where Zτ , zτ , and

ζτ may be estimated by

Ẑτ =
1

N

N∑
i=1

Z̄iτ ẑτ =
1

N

N∑
i=1

z̄iτ ζ̂τ =
1

N

N∑
i=1

ζ̄iτ ζ̂−τ =
1

N

N∑
i=1

ζ̄i−τ

for any Z̄iτ , z̄iτ , ζ̄iτ , and ζ̄i−τ such that Zτ = E[Z̄iτ ], zτ = E[z̄iτ ], ζτ = E[ζ̄iτ ] and ζ−τ = E[ζ̄i−τ ].

Due to the t-invariance (Assumption 2), such individual variables, Z̄iτ , z̄iτ , ζ̄iτ and ζ̄i−τ , can be

constructed by any linear combination of the form

Z̄iτ =
∑
t∈T (τ)

aτt yityit+τ z̄iτ =
∑
t∈T (τ)

bτt xitxit+τ ζ̄iτ =
∑
t∈T (τ)

cτt yitxit+τ ζ̄i−τ =
∑
t∈T (τ)

dτt xityit+τ

where aτ = (aτt )t∈T (τ), b
τ = (bτt )t∈T (τ), c

τ = (cτt )t∈T (τ) and dτ = (dτt )t∈T (τ) satisfy
∑

t∈T (τ) a
τ
t = 1,∑

t∈T (τ) b
τ
t = 1,

∑
t∈T (τ) c

τ
t = 1 and

∑
t∈T (τ) d

τ
t = 1. The sample counterpart of the identifying

formula (3.5) yields the explicit estimatorγ̂
β̂

 =
1

|∆̂|

(ẑ∆t+τ+1 − ẑτ+1)(Ẑ∆t+τ+1 − Ẑτ+1) + (ζ̂τ+1 − ζ̂∆t+τ+1)(ζ̂−(∆t+τ+1) − ζ̂−(τ+1))

(ζ̂−τ − ζ̂−(∆t+τ))(Ẑ∆t+τ+1 − Ẑτ+1) + (Ẑ∆t+τ − Ẑτ )(ζ̂−(∆t+τ+1) − ζ̂−(τ+1))


where |∆̂| = (Ẑ∆t+τ − Ẑτ )(ẑ∆t+τ+1 − ẑτ+1)− (ζ̂−(∆t+τ) − ζ̂−τ )(ζ̂∆t+τ+1 − ζ̂τ+1).

While this explicit sample-analog estimator may be appealing for ease of implementation,

the generalized method of moments (GMM) allows for a more general treatment with potential

efficiency gains. The generic GMM restriction is provided by

E(g(wi,θ0)) = 0 (4.1)

where g is a vector of functions, wi is a vector of observed variables for cross-sectional observa-

tion i, and θ0 is the true parameter vector. Our restrictions (3.3) and (3.4) under Assumption

2 can be represented by this generic moment restriction (4.1) with the following expressions
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consisting the rows of g(wi,θ).

g1tt′t′′t′′′(wi,θ) = [yit′′′yit′′′+∆t+τ+1 − yit′yit′+τ+1]

−γ[yit′′yit′′+∆t+τ − yityit+τ ]− β[yit′′′xit′′′+∆t+τ+1 − yit′xit′+τ+1] (4.2)

g2tt′t′′t′′′(wi,θ) = [xit′′′yit′′′+∆t+τ+1 − xit′yit′+τ+1]

−γ[xit′′yit′′+∆t+τ − xityit+τ ]− β[xit′′′xit′′′+∆t+τ+1 − xit′xit′+τ+1] (4.3)

for any (t, t′, t′′, t′′′) ∈ T (τ) × T (τ + 1) × T (∆t + τ) × T (∆t + τ + 1), where the parameter

vector is θ = (γ, β) and the individual data is wi = (xit, yit)t∈T . As such, our moment function

g(wi,θ) consists of 2 × |T (τ)| × |T (τ + 1)| × |T (∆t+ τ)| × |T (∆t+ τ + 1)| rows to estimate

two parameters (γ, β). This cardinality relation is of course consistent with Theorem 1, which

requires T (τ) 6= φ, T (τ + 1) 6= φ, T (∆t+ τ) 6= φ, and T (∆t+ τ + 1) 6= φ for identification.

Given the moment restriction (4.1) consisting of expressions of the forms (3.3) and (3.4),

the GMM estimator is given by

θ̂ = arg min
θ∈Θ

[
1

N

N∑
i=1

g(wi,θ)

]′
WN

[
1

N

N∑
i=1

g(wi,θ)

]

where WN is a weighting matrix. We provide low-level sufficient conditions tailored to our

model for asymptotic normality of this estimator.

Assumption 4 (Asymptotic Normality). The following conditions are satisfied.

(i) Panel data is i.i.d. across i.

(ii) (γ0, β0) ∈ intΘ, where Θ is compact in R2.

(iii) (xit, yit)t∈T have bounded fourth moments.

(iv) WN
p−→W, where W is a positive definite matrix.

Theorem 2 (Asymptotic Normality). Suppose that Assumptions 1, 2, and 3 are satisfied for

the model (2.1). If Assumption 4 is satisfied, then the GMM estimator based on the moment

function g consisting of (4.2) and (4.3) is asymptotically normal:

√
N(θ̂ − θ0)

d−→ N(0, (G′WG)
−1

G′WSWG(G′WG)
−1

)
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as N →∞, where S is finite variance matrix of g(wi,θ0) and G is given by

G = E



...
...

−[yit′′yi,t′′+∆t+τ − yityit+τ ] −[yit′′′xit′′′+∆t+τ+1 − yit′xit′+τ+1]

...
...

−[xit′′yit′′+∆t+τ − xityit+τ ] −[xit′′′xit′′′+∆t+τ+1 − xit′xit′+τ+1]

...
...


,

which is a matrix of dimension 2 |T (τ)| |T (τ + 1)| |T (∆t+ τ)| |T (∆t+ τ + 1)| by 2.

A proof of this result is provided in Section A.1 in the appendix.

Example 3 (GMM Estimation under US Spacing). Suppose that panel data (yit, xit)t∈T has the

unequal spacing structure given by T = {1, 2, 5}. In this case, the set of gaps is T = {0, 1, 3, 4}.

Since T (1) 6= φ, T (3) 6= φ, and T (4) 6= φ, the panel data exhibits the US spacing (Definition

2) with τ = 0 and ∆t = 3. Specifically, T (0) = T , T (1) = {1}, T (3) = {2}, and T (4) = {1}.

Therefore, the GMM function g consisting of rows of the forms (4.2) and (4.3) with t ∈ T ,

t′ = 1, t′′ = 2 and t′′′ = 1 is explicitly given by the vector

g(wi,θ) =



[yi1yi5 − yi1yi2]− γ[yi2yi5 − yi1yi1]− β[yi1xi5 − yi1xi2]

[yi1yi5 − yi1yi2]− γ[yi2yi5 − yi2yi2]− β[yi1xi5 − yi1xi2]

[yi1yi5 − yi1yi2]− γ[yi2yi5 − yi5yi5]− β[yi1xi5 − yi1xi2]

[xi1yi5 − xi1yi2]− γ[xi2yi5 − xi1yi1]− β[xi1xi5 − xi1xi2]

[xi1yi5 − xi1yi2]− γ[xi2yi5 − xi2yi2]− β[xi1xi5 − xi1xi2]

[xi1yi5 − xi1yi2]− γ[xi2yi5 − xi5yi5]− β[xi1xi5 − xi1xi2]


of 2 |T (0)| |T (1)| |T (3)| |T (4)| = 6 rows.
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5 Finite Sample Performance

5.1 Data Generating Processes

Our Monte Carlo design is based on a linear vector autoregression of (yit, xit). Specifically, the

data generating process is given by

yit = γyit−1 + βxit + αi + εit

xit = ρxit−1 + αi + ξit

By construction of the dynamic model, the lagged regressor yit−1 is endogenous, i.e., it is

dependent on αi. In addition, the common fixed effect αi between the two equations makes xit

an endogenous covariate too. Throughout our Monte Carlo experiments, we use ρ = 0.5. The

error terms are generated independently across i and t according to

αi ∼ N(0, 1), εit ∼ N(0, 1), ξit ∼ N(0, 1),

After generation of the initial values (yit, xit), we wait for ten time periods to pass so we

can ensure that the artificial data ‘enter’ the stationary distribution required by our baseline

identification theorem.3 For the core parameters (γ, β), we employ the five different DGP

scenarios listed in Table 1 (A). In addition, we consider the four patterns of unequal spacing

listed in Table 1 (B). We note that each of these spacing patters satisfies our requirement for

identification stated in Theorem 1.

5.2 Simulation Results

We run 1,000 Monte Carlo replications with N = 1, 000 units of cross-sectional observations

for each combination of the DGP parameters and spacing patterns listed in Table 1. Results

based on the continuously updating GMM estimator (CUE)4 are summarized in Tables 2, 3, 4,

and 5 for the spacing patterns 1, 2, 3, and 4, respectively. In each of these tables, we report the

3In our preliminary analysis, we also waited for 100 time periods, but the results are similar. In the interest

of time, therefore, we choose to run only ten preliminary iterations to establish the stationarity requirement.
4For the spacing pattern 4, the model is just-identified and thus we use the closed-form estimator instead.
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standard evaluation criteria, including the mean, the bias, the standard deviation, the mean

absolute error, the root mean squared error, the 90% coverage rate, and the 95% coverage rate.

For the US spacing patterns (Tables 2–4), the estimation results under DGPs 1, 2, and 4

tend to behave well overall. The results under DGPs 3 and 5, on the other hand, produce larger

biases and variances. The coverage probabilities under DGPs 3 and 5 are also biased relative to

the designed probabilities. Likewise, the results under the UK spacing pattern shown in Table 5

do not look better than those under the US spacing patterns. We impute these results to weak

satisfaction of the rank condition, i.e., Assumption 3, as opposed to the other assumptions. As

mentioned previously, this assumptions is empirically testable. Using the matrix rank test of

Kleibergen and Paap (2006), we count the number of times that we reject the null hypothesis

of reduced rank against the alternative of full rank. The last column in each of the tables

lists the full rank rate (FRR) produced by this number divided by the number of Monte Carlo

replications. Observe that the null hypothesis is seldom rejected under the UK spacing.

In light of the possibility that the rank condition may be only weakly satisfied, our natural

question is whether there is a way to conduct robust inference. If hypothesis testing is our goal,

then we can use some of the existing tools of weak-identification-robust tests. Applying our

GMM restrictions to the K test (Kleibergen, 2005; Theorem 1), we produce the 90% and 95%

coverage probabilities of (γ, β) robustly against the weak satisfaction of the rank condition.

Table 6 shows the Monte Carlo results. Compared to the coverage probabilities displayed in

Tables 2–5, the simulated coverage probabilities in Table 6 are far more accurately close to

the designed probabilities, even for the UK spacing pattern. These results are based on the

joint test for (γ, β), but we remark that similar inference may be conducted for each of the two

parameters using Theorem 2 of Kleibergen (2005).

In summary, our Monte Carlo results support our identification and estimation theories.

In case results do not appear well, it is due only to a weak satisfaction of the rank condition

(Assumption 3), and one can still use robust inference tools to overcome these limitations.
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6 Extensions

We focused on the simple baseline model in the previous sections for clarity of exposition to

illustrate our identification and estimation approaches. However, this model is too restrictive

with several respects to be useful in practice. In the current section, we present how our

identification strategy applies to general classes of models by relaxing the previous restrictions.

6.1 Time Varying Means and Variances

One restrictive feature of the baseline result is the requirement of the weak stationarity stated

in Assumption 2. This assumption prohibits time-varying means and variances, whereas time

variations are fairly common for many economic variables, particularly those that grow or

accumulate over time. One way to incorporate time variations in our model is through location-

/scale-normalized random variables.

Let y∗it and x∗it denote the true state variable and the true covariate, respectively. For

short-hand notations, we define the following cross-sectional moments for each time period t.

µyt = E(y∗it) µyt = E(x∗it) δyt = V ar(y∗it) δxt = V ar(x∗it). (6.1)

We define the location-/scale-normalized versions of the true variables by

yit =
y∗it − µ

y
t√

δyt
xit =

x∗it − µxt√
δxt

, (6.2)

and consider the model (2.1) for these normalized random variables equipped with Assumptions

1, 2, and 3. With this modification, the true variables y∗it and x∗it may exhibit time variations

in both means and variances. Clearly, the baseline model (2.1) is a special case with µyt = µyt

and µxt = µxt′ for all t, t′ ∈ T , and δyt = δxt = 1 for all t.

To understand the primitive dynamic process under the current location-/scale-normalization,

substitute (6.2) in (2.1) to produce

y∗it = γty
∗
it−1 + βtx

∗
it + αivt + wt + εit, (6.3)

where

γt =
γ
√
δyt√

δyt−1

, βt =
β
√
δyt√
δxt

, vt =
√
δyt , wt = µyt −

γµyt−1

√
δyt√

δyt−1

− βµxt
√
δyt√

δxt
, (6.4)
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and εit =
√
δyt εit. Note that this primitive model is a dynamic panel model with interactive

fixed effects αivt as well as time-fixed effect wt, studied in the panel data literature (Holtz-Eakin,

Newey, and Rosen, 1988; Ahn, Lee, and Schmidt, 2001; Bai, 2009).

Identification of the primitive structural parameters (γt, βt) follows from identification of

(γ, β) and the moments in (6.1). Clearly, the moments in (6.1) are identified for each t ∈ T

by the observed panel data (y∗it, x
∗
it). Therefore, the normalized random variables (yit, xit) can

be constructed for each t ∈ T by (6.2). Once we construct the normalized random variables

(yit, xit) which we assume to follow the baseline process (2.1) with Assumptions 1, 2, and 3, we

can apply Theorem 1 to identify (γ, β). Specifically, (γ, β) is identified byγ
β

 =
1

|∆|

(z∆t+τ+1 − zτ+1)(Z∆t+τ+1 − Zτ+1) + (ζτ+1 − ζ∆t+τ+1)(ζ−(∆t+τ+1) − ζ−(τ+1))

(ζ−τ − ζ−(∆t+τ))(Z∆t+τ+1 − Zτ+1) + (Z∆t+τ − Zτ )(ζ−(∆t+τ+1) − ζ−(τ+1))


(6.5)

where

|∆| = (Z∆t+τ − Zτ )(z∆t+τ+1 − zτ+1)− (ζ−(∆t+τ) − ζ−τ )(ζ∆t+τ+1 − ζτ+1)

Ziτ = Ei

[
(y∗it − E[y∗it])(y

∗
it+τ − E[y∗it+τ ])√

Var(y∗it)
√

Var(y∗it+τ )

]
, Zτ = E(Ziτ )

ziτ = Ei

[
(x∗it − E[x∗it])(x

∗
it+τ − E[x∗it+τ ])√

Var(x∗it)
√

Var(x∗it+τ )

]
, zτ = E(ziτ )

ζiτ = Ei

[
(y∗it − E[y∗it])(x

∗
it+τ − E[x∗it+τ ])√

Var(y∗it)
√

Var(x∗it+τ )

]
, ζτ = E(ζiτ )

ζi−τ = Ei

[
(x∗it − E[x∗it])(y

∗
it+τ − E[y∗it+τ ])√

Var(x∗it)
√

Var(y∗it+τ )

]
, ζ−τ = E(ζi−τ ).

(6.6)

We summarize this result as a theorem below.

Theorem 3 (Identification). If Assumptions 1, 2, and 3 are satisfied for (2.1) with the location-

/scale-normalized variables (yit, xit) defined in (6.2), and unequally spaced panel data have

T (τ) 6= φ, T (τ + 1) 6= φ, T (∆t + τ) 6= φ, and T (∆t + τ + 1) 6= φ, then (γ, β) is identified by

the formula (6.5) with (6.6).

Since the cross-sectional moments in (6.1) are identified for each t ∈ T , the time-varying

coefficients (γt, βt, vt, wt) in the primitive model (6.3) are identified by (6.4) for each t ∈ T .

This result is stated as a corollary below.

15



Corollary 2. If Assumptions 1, 2, and 3 are satisfied for (2.1) with the location-/scale-

normalized variables (yit, xit) defined in (6.2), and unequally spaced panel data have T (τ) 6= φ,

T (τ + 1) 6= φ, T (∆t + τ) 6= φ, and T (∆t + τ + 1) 6= φ, then (γt, βt, vt, wt) is identified by the

formula (6.4) for each t ∈ T .

To estimate the parameters, we stack the moment restrictions (6.1) to the GMM criterion. In

other words, with the parameter vector θ = (γ, β, (µyt )t∈T , (µ
x
t )t∈T , (δ

y
t )t∈T , (δ

x
t )t∈T ), the vector

g(wi,θ) of moment functions consists of (4.2) and (4.3) concatenated with the additional 4×|T |

rows of the form

g3t = y∗it − µ
y
t g5t = (y∗it − µ

y
t )

2 − δyt

g4t = x∗it − µxt g6t = (x∗it − µxt )2 − δxt

for all t ∈ T . We thus obtain 2 × |T (τ)| × |T (τ + 1)| × |T (∆t+ τ)| × |T (∆t+ τ + 1)| + 4 |T |

restrictions to estimate 2 + 4 |T | parameters.

Example 3′ (GMM Estimation under US Spacing with Time-Varying Means and Variances).

We continue with Example 3, but now relax the stationarity assumption by allowing time-

varying means and variances. In this case, the vector g(wi,θ) of moment functions can be

constructed by 

[yi1yi5 − yi1yi2]− γ[yi2yi5 − yi1yi1]− β[yi1xi5 − yi1xi2]

[yi1yi5 − yi1yi2]− γ[yi2yi5 − yi2yi2]− β[yi1xi5 − yi1xi2]

[yi1yi5 − yi1yi2]− γ[yi2yi5 − yi5yi5]− β[yi1xi5 − yi1xi2]

[xi1yi5 − xi1yi2]− γ[xi2yi5 − xi1yi1]− β[xi1xi5 − xi1xi2]

[xi1yi5 − xi1yi2]− γ[xi2yi5 − xi2yi2]− β[xi1xi5 − xi1xi2]

[xi1yi5 − xi1yi2]− γ[xi2yi5 − xi5yi5]− β[xi1xi5 − xi1xi2]


of 2 |T (0)| |T (1)| |T (3)| |T (4)| = 6 rows obtained in Example 3, concatenated with

(
y∗i1 − µ

y
1, y∗i2 − µ

y
2, y∗i5 − µ

y
5, (y∗i1 − µ

y
1)2 − δy1 , (y∗i2 − µ

y
2)2 − δy2 , (y∗i5 − µ

y
5)2 − δy5 ,

x∗i1 − µx1 , x∗i2 − µx2 , x∗i5 − µx5 , (x∗i1 − µx1)2 − δx1 , (x∗i2 − µx2)2 − δx2 , (x∗i5 − µx5)2 − δx5
)′

of additional 4 |T | = 12 rows. Thus, moment function g(wi,θ) has the total of 18 rows to

estimate the total of 14 parameters, θ = (γ, β, µy1, µ
y
2, µ

y
5, µ

x
1 , µ

x
2 , µ

x
5 , δ

y
1 , δ

y
2 , δ

y
5 , δ

x
1 , δ

x
2 , δ

x
5 ).
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We remark that the asymptotic distributions of the time-varying parameters (γt, βt, vt, wt) of

the primitive process (6.3) can be obtained by applying the Delta method to the transformation

formulas provided in (6.4).

6.2 Multiple Covariates and Higher Order Process

The identification and estimation theories developed for the baseline model (2.1) can be ex-

tended to models with multivariate covariates and higher order autoregressive process. This

extension does not induce any theoretical complication relative to the baseline model. However,

higher-order processes require somewhat richer data structure while still allowing for unequal

spacing. Consider the model with K-variate covariates and p-th order autoregressive process:

yit =

p∑
j=1

γjyit−j +Xitβ + αi + εit (6.7)

where Xit = (x1it, x2it, · · · , xKit) denotes the covariate vector for individual i at time t. This

vector is accompanied by the parameter vector β = (β1, β2, · · · , βK)′.

We can derive identification in the same way as the one we presented in Section 3 for the

baseline model (2.1). To avoid cumbersome subscript notations, we proceed with the case of

∆t = 1 and τ = 0 in this section. We remark that similar arguments will also follow with other

choices of ∆t and τ . Thus, take the first difference, ∆t = 1, of (6.7) to get

yit − yit−1 =

p∑
j=1

γj(yit−j − yit−1−j) + (Xit −Xit−1)β + εit

Multiply this equation separately by the vectors Y ′ = (yit−2, yit−3, · · · , yit−p, yit−p−1)′ and

X ′it−2 = (x1it−2, x2it−2, · · · , xKit−2)′, and taking the first moment for each individual i yield

Ei[Y
′(yit − yit−1)] =

p∑
j=1

γjEi[Y
′(yit−j − yit−1−j)] + Ei[Y

′(Xit −Xit−1)]β

Ei[X
′
it−2(yit − yit−1)] =

p∑
j=1

γjEi[X
′
it−2(yit−j − yit−1−j)] + Ei[X

′
it−2(Xit −Xit−1)]β

under Assumption 1. Taking the cross-sectional expectations on these equations under As-
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sumption 2, we obtain the system of p+K equations:

Z2 − Z1 =

p∑
j=1

γj(Z|2−j| − Z|1−j|) +
K∑
k=1

(ζk,2 − ζk,1)βk

...

Zp+1 − Zp =

p∑
j=1

γj(Z|p+1−j| − Z|p−j|) +
K∑
k=1

(ζk,p+1 − ζk,p)βk

ζ1,−2 − ζ1,−1 =

p∑
j=1

γj(ζ1,j−2 − ζ1,j−1) +
K∑
k=1

(z1k,2 − z1k,1)βk

...

ζK,−2 − ζK,−1 =

p∑
j=1

γj(ζK,j−2 − ζK,j−1) +
K∑
k=1

(zKk,2 − zKk,1)βk

(6.8)

consisting of the t-invariant cross-sectional moments Z1, · · · , Zp+1 defined in Section 3, as well

as the newly defined t-invariant cross-sectional moments:

zκk,τ = E(xκitxkit+τ ) ζk,τ = E(yitxkit+τ ) ζk,−τ = E(xkityit+τ )

The cross-sectional moments, Z1, · · · , Zp+1, ζk,−2, ζk,−1, · · · , ζk,p−1, zκk,1, and zκk,2, included

in the system 6.8 are fully observed if T (1) 6= φ, · · · , T (p + 1) 6= φ are true. Given that all

the relevant cross-sectional moments are observed, the (p + K)-dimensional parameter vector

can be identified through the system (6.8) of p + K equations, provided that the following

empirically testable rank condition is satisfied.

Assumption 3′ (Empirically Testable Rank Condition). (6.8) admits a unique solution.

Theorem 4 (Identification). If Assumptions 1, 2, and 3′ are satisfied for (6.7), and un-

equally spaced panel data have T (1) 6= φ, · · · , and T (p + 1) 6= φ, then the parameter vector

(γ1, · · · , γp,β′)′ is identified by the solution to the system (6.8).

6.3 Partially Linear Semiparametric Models

This paper has focused on parametric autoregressive equations so far. We now demonstrate how

our approach under unequally spaced panels can similarly handle partially linear semiparametric
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models. Consider the first-order autoregressive model of the form

yit = γyit−1 +m(xit) + αi + εit (6.9)

where m is an unknown function that takes a scalar covariate xit. We allow the covariate xit

to be correlated with the fixed effect αi.

This class of models has been studied in the literature under the setting of regularly spaced

panel data. With exogenous covariates, Baltagi and Li (2002a) propose a kernel-based instru-

mental variable estimator, while Baltagi and Li (2002b) propose a series estimator. Lee (2013)

considers a model without the strict exogeneity. Our major contribution to the existing liter-

ature is the capability of identifying this class of models even under unequal spacing in panel

data. To this end, we strengthen Assumption 2, and in addition assume that the nonparametric

function m is square integrable as follows.

Assumption 2′ (Stationarity). For each individual i = 1, 2, · · · , N : the distribution of (yit, xit)

is jointly stationary.

Assumption 5 (Square Integrability).
∫
m(x)2dx exists.

Note that the Lebesgue L2(R) space is a separable Hilbert space, and therefore Assumption

5 guarantees that m can be represented by an orthogonal basis. For instance, we consider the

sequence h = (h1(x), h2(x), h3(x), · · · ) of the Hermite polynomials.5 It then follows that there

exists a unique sequence β = (β1, β2, β3, · · · )′ such that

m(x) =
∞∑
q=1

βqhq(x)

holds for all x ∈ R. Substitute this series representation in (6.9) to write the model as

yit = γyit−1 +
∞∑
q=1

βqhq(xit) + αi + εit. (6.10)

Let t1 and t2 be two time periods in T such that t1 > t2. Taking the difference of the

dynamic equation (6.10) between these two time periods yields

yit1 − yit2 = γ(yit1−1 − yit2−1) +
∞∑
q=1

βq(hq(xit1)− hq(xit2)) + (εit1 − εit2)

5It consists of h1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − 3x, and so on. The general Hermite polynomials has

the leading element h0(x) = 1, but we omit the intercept term because the additive fixed effect captures it.
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Multiplying both sides of this equation by yit2−1−τ and hr(xit2−1−τ ) for r = 1, 2, 3, · · · , we obtain

the following equations.

yit2−1−τ (yit1 − yit2) = γyit2−1−τ (yit1−1 − yit2−1)

+
∞∑
q=1

βqyit2−1−τ (hq(xit1)− hq(xit2)) + yit2−1−τ (εit1 − εit2)

hr(xit2−1−τ )(yit1 − yit2) = γhr(xit2−1−τ )(yit1−1 − yit2−1)

+
∞∑
q=1

βqhr(xit2−1−τ )(hq(xit1)− hq(xit2)) + hr(xit2−1−τ )(εit1 − εit2)

where r runs across 1, 2, 3, · · · . We take the expectation Ei of the above two equations for each

individual i as follows.

Ei(yit2−1−τ (yit1 − yit2)) = (6.11)

γEi(yit2−1−τ (yit1−1 − yit2−1)) +
∞∑
q=1

βqEi(yit2−1−τ (hq(xit1)− hq(xit2)))

Ei(hr(xit2−1−τ )(yit1 − yit2)) = (6.12)

γEi(hr(xit2−1−τ )(yit1−1 − yit2−1)) +
∞∑
q=1

βqEi(hr(xit2−1−τ )(hq(xit1)− hq(xit2)))

where r runs across 1, 2, 3, · · · , and Ei(yit2−1−τ (εit1−εit2)) = 0 and Ei(hr(xit2−1−τ )(εit1−εit2)) =

0 follow from Assumption 1.

The strong stationarity in Assumption 2′ allows us to define the following t-invariant cross-

sectional random variables for r = 1, 2, 3, · · · and q = 1, 2, 3, · · · .

(i) Ziτ := Ei(yityit+τ ), where Ziτ is t-invariant.

(ii) zrqiτ := Ei(hr(xit)hq(xit+τ )), where zrqiτ is t-invariant.

(iii) ζqiτ := Ei(yithq(xit+τ )), where ζqiτ is t-invariant.

(iv) ζri−τ := Ei(hr(xit)yit+τ ), where ζri−τ is t-invariant.

With these properties implied by Assumptions 1 and 2′, we can rewrite (6.11) and (6.12) as

Zi∆t+τ+1 − Ziτ+1 = γ(Zi∆t+τ − Ziτ ) +
∞∑
q=1

βq(ζ
q
i∆t+τ+1 − ζ

q
iτ+1) and

ζri−(∆t+τ+1) − ζri−(τ+1) = γ(ζri−(∆t+τ) − ζri−τ ) +
∞∑
q=1

βq(z
rq
i∆t+τ+1 − z

rq
iτ+1)
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respectively, where ∆t = t1−t2 denotes the gap between the two time periods, t1 and t2. Taking

the cross-sectional means E of each of the above two equations yields

Z∆t+τ+1 − Zτ+1 = γ(Z∆t+τ − Zτ ) +
∞∑
q=1

βq(ζ
q
∆t+τ+1 − ζ

q
τ+1) (6.13)

ζr−(∆t+τ+1) − ζr−(τ+1) = γ(ζr−(∆t+τ) − ζr−τ ) +
∞∑
q=1

βq(z
rq
∆t+τ+1 − z

rq
τ+1) (6.14)

for r = 1, 2, 3, · · · , where Zτ := E[Ziτ ], z
rq
τ := E[zrqiτ ], ζqτ := E[ζqiτ ], and ζr−τ := E[ζri−τ ] for

short-hand notations.

Equations (6.13) and (6.14) involve cross-sectional moments of the form Z∆t+τ+1, Zτ+1,

Z∆t+τ , Zτ , ζ
q
∆t+τ+1, ζqτ+1, ζr−(∆t+τ+1), ζ

r
−(τ+1), ζ

r
−(∆t+τ), ζ

r
−τ , z

rq
∆t+τ+1, and zrqτ+1. Due to the t-

invariance implied by Assumption 2′, the first one of these moments, Z∆t+τ+1, can be observed

as the cross-sectional moment of yityit+∆t+τ+1 for any t ∈ T (∆t+ τ + 1) provided that T (∆t+

τ + 1) 6= φ is true. Likewise, all the cross sectional moments in (6.13) and (6.14) can be

observed using unequally spaced panel data if T (τ) 6= φ, T (τ + 1) 6= φ, T (∆t + τ) 6= φ, and

T (∆t+ τ + 1) 6= φ are true.

Define the operator K∆t,τ : l2(Z+)→ l2(Z+) for each φ ∈ l2(Z+) by

K∆t,τ (φ) =


φ0(Z∆t+τ − Zτ ) +

∑∞
q=1 φq(ζ

q
∆t+τ+1 − ζ

q
τ+1)

φ0(ζ1
−(∆t+τ) − ζ1

−τ ) +
∑∞

q=1 φq(z
1q
∆t+τ+1 − z

1q
τ+1)

φ0(ζ2
−(∆t+τ) − ζ2

−τ ) +
∑∞

q=1 φq(z
2q
∆t+τ+1 − z

2q
τ+1)

...


.

Once all the cross-sectional moments in (6.13) and (6.14) are observed for all r = 1, 2, 3, · · ·

and q = 1, 2, 3, · · · from unequally spaced panel data, we can solve the system to explicitly

identify the structural parameters (γ,β′) by

γ
β

 =


γ

β1

β2

...


= K−1

∆t,τ


Z∆t+τ+1 − Zτ+1

ζ1
−(∆t+τ+1) − ζ1

−(τ+1)

ζ2
−(∆t+τ+1) − ζ2

−(τ+1)

...


, (6.15)

provided that the following rank condition is satisfied.

Assumption 3′′ (Rank Condition). The operator K∆t,τ : l2(Z+)→ l2(Z+) is invertible.
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We remark that unlike the empirically testable rank condition in Assumption 3 used for

the parametric autoregressive model (2.1), the current rank condition in Assumption 3′′ is not

testable. This identification result is summarized as a theorem below.

Theorem 5 (Identification). If Assumptions 1, 2′, 3′′, and 5 are satisfied for (6.9), and un-

equally spaced panel data have T (τ) 6= φ, T (τ + 1) 6= φ, T (∆t+ τ) 6= φ, and T (∆t+ τ + 1) 6= φ,

then (γ,β′) is identified by the formula (6.15).

This identification strategy features the Fredholm equation of the first kind, which suffers

from the problem called the ill-posedness when data of finite sample is taken into the identifying

equation. Carrasco, Florens, and Renault (2007; Ch. 3, 4) propose regularized solutions to the

problem. Furthermore, the sieve semiparametric approach (Chen, 2007) is useful to obtain

asymptotic normality of γ with the infinite-dimensional nuisance parameter β representing m.

7 Empirical Application

The panel autoregression with covariates of the form (2.1) or its extensions presented in Section

6 is one of popular models of earning dynamics, and has been used at least since Ashenfelter

(1978).6 The method-of-moment approaches are particularly useful for parameter estimation

and testing, but they are not generally effective for unequally spaced panel data as argued in the

introductory section. As a consequence, researchers may well tend to use only ‘regular’ panel

data to study earning dynamics. One the other hand, we may conceivably find new empirical

evidences by using unequally spaced panel data that have not been used by other researchers

due to technical limitations.

In this section, we apply our methods to the NLS Original Cohorts: Older Men. Personal

interviews were conducted in 1966, 67, 69, 71, 76, 81, and 90, and thus the set of gap years is

given by T = {0, 1, 2, 3, 4, 5, 7, 9, 10, 12, 14, 15, 19, 21, 23, 24}. This set satisfies the condition of

identification for first-order autoregressive model with (τ,∆t) = (0, 2). In fact, the condition is

still satisfied with T = {0, 1, 2, 3} and (τ,∆t) = (0, 2) even if we drop the years 1971, 76, 81,

and 90. In this light, it was decided that we only use the survey responses in 1966, 67, and 69

6He uses this type of model for the objective of evaluating the effects of active labor market programs.
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for two purposes. First, focusing on a shorter time span mitigates the effect of macroeconomic

structural changes that may arise in the long run. Second, since a non-trivial subsample hits

the retirement age after 1970, focusing on earlier time periods allows us to suffer less from the

endogenous self-selection problems associated with post-retirement labor-leisure choice.

The earnings reported in years 1966, 67, and 69 includes wages, salary, commissions, or tips

from all jobs in years 1965, 66, and 68, respectively. The observed individual characteristics

include age, race, and education. The age is imputed from the reported birth year. The

education measures the highest grade completed at the moment of the survey in 1966. After

cleaning the data, we obtain the effective sample size of N = 2, 998. Table 7 shows summary

statistics.

While our models can accommodate additive covariates, most of the covariates being time-

invariant will be differenced out like the additive fixed effects, and the associated parameters

are unidentified. Therefore, instead of using them as additive covariates, we use the observed

individual characteristics to form subpopulations, and estimate the model parameters for each

of the constructed subpopulations. Using the method presented in Section 4, we first estimate

the AR(1) coefficient for the baseline model (2.1) assuming the weak stationarity. Results are

summarized in panel (A) of Table 8. The point estimates for γ range narrowly from .25 to .29.

The rank conditions are likely to be satisfied according to the p-values for the reduced-rank test.

Despite these robust results, an obvious disadvantage of the current analysis is the assumption

of stationarity, as earnings are hardly considered to follow stationary processes.

Following the methodology suggested in Section 6.1, we next estimate the AR(1) parameters

for the extended model (6.3) which is free from the previous stationarity assumption. Results

are summarized in panel (B) of Table 8. The estimates for γ are the estimates of the AR(1)

coefficient for the location-/scale-normalized log earnings, i.e., yit defined in (6.2) as opposed

to y∗it. The estimates for µyt and δyt are the estimates of the t-varying means and variances of

the actual log earnings defined in (6.1). Using the relations in (6.4) and these point estimates,

we recover estimates for the AR(1) coefficients, γ66 and γ68, for the actual log earnings y∗it. The

standard errors are computed using the Delta method. The rate γ66 for 1966 ranges from .35 to

.53, and the rate γ68 for 1968 ranges from .34 to .59. These imputed AR(1) coefficients tend to
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be larger for whites, those with twelve or more years of education, and/or younger individuals.

Our point estimates do not differ from the typical estimates obtained in earlier studies, and thus

confirm the existing conclusions.7 The attempt that we made at actually checking this result

using the previously unused data set makes a modest but important contribution to solidifying

the empirical knowledge of researchers.

8 Conclusions

Despite the abundance of theoretical and methodological solutions available in the ‘regular’

dynamic panel data literature, formal identification of fixed-effect dynamic models has not

been addressed under unequally spaced panel data. In this paper, we propose that certain

spacing patterns guarantee identification. Specifically, if T = {|t1 − t2| : t1, t2 ∈ T} denotes

the set of survey gaps, then we obtain identification of the AR(1) parameters provided that

τ, τ + 1,∆t+ τ,∆t+ τ + 1 ∈ T holds for some τ > 0 and ∆t > 0. This result extends to models

with multiple covariates, higher-order dynamic processes, time-varying trends, and partially

linear semiparametric models. The extension to models with time-varying trends is useful to

alleviate the restrictive stationarity assumption required for the baseline model. We propose a

GMM estimator and derive its asymptotic distribution following the standard argument. This

paper contributes to the body of our knowledge and provides a guidance to practitioners by

formally ensuring identification of dynamic fixed-effect models under the stylized patterns of

unequally spaced panel data. In addition, our proposed estimators are readily available for

empirical practitioners.8
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A Appendix

A.1 Proof of Theorem 2

Proof. We show that our assumptions imply the high-level assumptions for the asymptotic

normality of GMM estimators (Newey and McFadden, 1994; Theorem 3.4). Identification of

(γ0, β0) ∈ Θ and E[g(w,θ0)] = 0 hold under Assumptions 1, 2, and 3 by Theorem 1. The

cross-sectional i.i.d. is directly stated in Assumption 4 (i). Similarly, (γ0, β0) ∈ intΘ and the

compactness of Θ are directly stated in Assumption 4 (ii). The vector g of moment functions

is continuously differentiable with its definitions given by (4.2) and (4.3). E[‖g(w,θ0)‖2] <

∞ and E[supθ∈Θ‖g(wi,θ)‖] < ∞ follow from the concrete expressions of g given by (4.2)

and (4.3) under the compact parameter space of Assumption 4 (ii) and the bounded fourth

moment of Assumption 4 (iii). Similarly, E[supθ∈Θ‖Dθg(wi,θ)‖] <∞ follows from the concrete

expressions of g given by (4.2) and (4.3) under Assumption 4 (iii). The random vector g(wi,θ0)

has finite variance matrix S under Assumption 4 (iii). The assumption that WN
p−→ W is

directly stated in Assumption 4 (iv). Lastly, the non-singularity of G′WG is implied by the

positive-definiteness of W in Assumption 4 (iv) and by the fact that Assumption 3 implies that

the (2 |T (τ)| |T (τ + 1)| |T (∆t+ τ)| |T (∆t+ τ + 1)|) × 2 matrix G = E[Dθg(wi,θ)]|θ=θ0 given

with rows of the form

−[yit′′yi,t′′+∆t+τ − yityit+τ ] −[yit′′′xit′′′+∆t+τ+1 − yit′xit′+τ+1]

−[xit′′yit′′+∆t+τ − xityit+τ ] −[xit′′′xit′′′+∆t+τ+1 − xit′xit′+τ+1]

has rank dim(θ) = 2. Therefore, by Newey and McFadden (1994; Theorem 3.4), the stated

conclusion holds.

A.2 Tables
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(A) Data Generating Processes

γ β

DGP 1 0.75 0.25

DGP 2 0.50 0.50

DGP 3 0.25 0.75

DGP 4 0.75 0.75

DGP 5 0.25 0.25

(B) Patterns of Unequal Spacing

Available Periods

Pattern 1: US Spacing 1, 2, 6

Pattern 2: US Spacing 1, 2, 5

Pattern 3: US Spacing 1, 2, 4

Pattern 4: UK Spacing 1, 3, 6, 10

Table 1: (A) Five pairs of data generating parameters and (B) four patterns of unequal spacing.



CUE

DGP True MC Mean MC Bias MC SD MAE RMSE 90% CR 95% CR FRR

1 γ 0.75 0.7497 -0.0003 0.0384 0.0304 0.0384 0.9010 0.9490 1.0000

β 0.25 0.2463 -0.0037 0.1027 0.0817 0.1027 0.9110 0.9590

2 γ 0.50 0.5007 0.0007 0.0447 0.0362 0.0447 0.8880 0.9420 1.0000

β 0.50 0.4994 -0.0006 0.1055 0.0835 0.1054 0.9050 0.9500

3 γ 0.25 0.2521 0.0021 0.0511 0.0413 0.0512 0.8520 0.9110 1.0000

β 0.75 0.7465 -0.0035 0.1163 0.0921 0.1163 0.8800 0.9380

4 γ 0.75 0.7461 -0.0039 0.0431 0.0339 0.0433 0.8930 0.9350 1.0000

β 0.75 0.7561 0.0061 0.1530 0.1201 0.1530 0.9000 0.9500

5 γ 0.25 0.2497 -0.0003 0.0491 0.0395 0.0490 0.8600 0.9140 1.0000

β 0.25 0.2537 0.0037 0.0885 0.0685 0.0885 0.9030 0.9560

Table 2: Monte Carlo simulation results for the US spacing pattern 1 (t = 1, 2, 6).

CUE

DGP True MC Mean MC Bias MC SD MAE RMSE 90% CR 95% CR FRR

1 γ 0.75 0.7495 -0.0005 0.0422 0.0340 0.0422 0.9030 0.9430 1.0000

β 0.25 0.2483 -0.0017 0.1018 0.0804 0.1018 0.8870 0.9460

2 γ 0.50 0.5007 0.0007 0.0471 0.0379 0.0471 0.8820 0.9310 1.0000

β 0.50 0.5008 0.0008 0.1052 0.0829 0.1051 0.9030 0.9440

3 γ 0.25 0.2529 0.0029 0.0519 0.0417 0.0519 0.8450 0.9000 1.0000

β 0.75 0.7473 -0.0027 0.1164 0.0929 0.1164 0.8920 0.9430

4 γ 0.75 0.7480 -0.0020 0.0456 0.0361 0.0456 0.9050 0.9350 1.0000

β 0.75 0.7514 0.0014 0.1357 0.1077 0.1357 0.9010 0.9510

5 γ 0.25 0.2524 0.0024 0.0494 0.0400 0.0495 0.8580 0.9220 1.0000

β 0.25 0.2521 0.0021 0.0955 0.0748 0.0955 0.9070 0.9510

Table 3: Monte Carlo simulation results for the US spacing pattern 2 (t = 1, 2, 5).



CUE

DGP True MC Mean MC Bias MC SD MAE RMSE 90% CR 95% CR FRR

1 γ 0.75 0.7501 0.0001 0.0511 0.0406 0.0511 0.8920 0.9210 1.0000

β 0.25 0.2492 -0.0008 0.1013 0.0801 0.1013 0.8930 0.9440

2 γ 0.50 0.5005 0.0005 0.0507 0.0409 0.0507 0.8840 0.9420 1.0000

β 0.50 0.5034 0.0034 0.1078 0.0850 0.1078 0.9040 0.9410

3 γ 0.25 0.2513 0.0013 0.0533 0.0414 0.0533 0.8530 0.9010 1.0000

β 0.75 0.7504 0.0004 0.1236 0.0989 0.1235 0.8810 0.9410

4 γ 0.75 0.7482 -0.0018 0.0534 0.0423 0.0534 0.8860 0.9340 1.0000

β 0.75 0.7506 0.0006 0.1225 0.0967 0.1224 0.9080 0.9490

5 γ 0.25 0.2508 0.0008 0.0516 0.0408 0.0516 0.8520 0.9080 1.0000

β 0.25 0.2533 0.0033 0.1095 0.0887 0.1095 0.9020 0.9480

Table 4: Monte Carlo simulation results for the US spacing pattern 3 (t = 1, 2, 4).

GMM (Just Identified)

DGP True MC Mean MC Bias MC SD MAE RMSE 90% CR 95% CR FRR

1 γ 0.75 -0.9987 -1.7487 61.9761 7.2989 61.9698 0.9280 0.9580 0.0150

β 0.25 3.0046 2.7546 145.5485 12.9666 145.5018 0.9860 0.9960

2 γ 0.50 -1.5413 -2.0413 65.1228 5.0320 65.1222 0.9190 0.9460 0.0300

β 0.50 0.3391 -0.1609 41.6676 5.5829 41.6471 0.9610 0.9770

3 γ 0.25 -0.7701 -1.0201 26.5555 2.4351 26.5618 0.9510 0.9800 0.0320

β 0.75 0.2446 -0.5054 33.8003 3.3229 33.7871 0.9660 0.9860

4 γ 0.75 1.2339 0.4839 63.0417 7.1836 63.0120 0.9100 0.9420 0.0210

β 0.75 0.0020 -0.7480 135.2561 14.4443 135.1906 0.9780 0.9920

5 γ 0.25 0.8350 0.5850 28.7486 3.8446 28.7402 0.9660 0.9800 0.0110

β 0.25 0.9519 0.7019 24.4595 3.7175 24.4573 0.9750 0.9850

Table 5: Monte Carlo simulation for the UK spacing pattern 4 (t = 1, 3, 6, 10).



DGP US Spacing UK Spacing

t = 1, 2, 6 t = 1, 2, 5 t = 1, 2, 4 t = 1, 3, 6, 10

90% KS 95% KS 90% KS 95% KS 90% KS 95% KS 90% KS 95% KS

1 0.9150 0.9550 0.9060 0.9500 0.8770 0.9360 0.8940 0.9390

2 0.8980 0.9560 0.8910 0.9530 0.8940 0.9380 0.8990 0.9500

3 0.9030 0.9470 0.8870 0.9450 0.8950 0.9470 0.8990 0.9500

4 0.8970 0.9480 0.9120 0.9580 0.8870 0.9440 0.9000 0.9520

5 0.8870 0.9390 0.8900 0.9530 0.8860 0.9440 0.8990 0.9460

Table 6: Monte Carlo simulation results for the coverage probabilities of the K statistic.



(A) Summary Statistics

Year Log Earnings Age White Education Sample Size

1965 8.5849 50.9316 0.6828 9.4043 2998

(0.7514) (4.3073) (0.4655) (3.8957)

1966 8.6452

(0.7239)

1968 8.7508

(0.7418)

(B) Composition

Age at 1965 6 50 Age at 1965 > 50

Education > 12 White 517 White 386

Non-White 101 Non-White 72

Education < 12 White 504 White 640

Non-White 344 Non-White 434

Table 7: Summary statistics of the NLS Original Cohorts: Older Men. (A) The displayed

numbers are the sample means. The numbers in parentheses are the standard deviations. (B)

The size of the eight subsamples categorized by the observed characteristics.



(A) Basic Model with Stationarity

Full Sample White Non-White Educ>12 Educ<12 Age650 Age>50

γ 0.2693 0.2719 0.2652 0.2908 0.2533 0.2666 0.2719

(0.0162) (0.0199) (0.0274) (0.0212) (0.0219) (0.0213) (0.0244)

Rank p-Val 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(B)Extended Model with Time-Varying Means and Variances

Full Sample White Non-White Educ>12 Educ<12 Age650 Age>50

γ 0.4364 0.4741 0.3622 0.5276 0.4030 0.5296 0.3502

(0.0693) (0.0971) (0.0910) (0.1279) (0.0754) (0.0908) (0.0951)

µy65 8.5849 8.7776 8.1700 8.9589 8.3755 8.6556 8.5172

(0.0137) (0.0142) (0.0259) (0.0172) (0.0174) (0.0185) (0.0201)

µy66 8.6452 8.8304 8.2466 8.9928 8.4507 8.7220 8.5718

(0.0132) (0.0135) (0.0254) (0.0174) (0.0166) (0.0171) (0.0198)

µy68 8.7508 8.9227 8.3808 9.0985 8.5562 8.8284 8.6766

(0.0135) (0.0144) (0.0255) (0.0195) (0.0165) (0.0188) (0.0192)

δy65 0.5644 0.4124 0.6397 0.3195 0.5794 0.5008 0.6160

(0.0284) (0.0274) (0.0554) (0.0269) (0.0370) (0.0394) (0.0406)

δy66 0.5239 0.3734 0.6152 0.3256 0.5294 0.4298 0.6029

(0.0276) (0.0263) (0.0541) (0.0286) (0.0361) (0.0308) (0.0442)

δy68 0.5500 0.4256 0.6174 0.4091 0.5234 0.5200 0.5675

(0.0315) (0.0347) (0.0563) (0.0566) (0.0353) (0.0478) (0.0412)

γ66 0.4204 0.4512 0.3551 0.5326 0.3852 0.4906 0.3464

(0.0654) (0.0900) (0.0882) (0.1264) (0.0706) (0.0819) (0.0927)

γ68 0.4472 0.5062 0.3628 0.5914 0.4007 0.5825 0.3397

(0.0780) (0.1172) (0.0975) (0.1741) (0.0805) (0.1173) (0.0966)

Rank p-Val 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 8: Estimation results. The displayed numbers indicate the point estimates, and the

numbers in parentheses indicate standard errors. Panel (A) shows estimates for the baseline

model that assumes stationarity. Panel (B) shows estimates for the extended model with time-

varying means and variances. The bottom row of each panel shows p-values for rank tests.


