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Abstract

This paper proposes a novel regularisation method for the estimation of large covariance
matrices, which makes use of insights from the multiple testing literature. The method tests the
statistical significance of individual pair-wise correlations and sets to zero those elements that
are not statistically significant, taking account of the multiple testing nature of the problem.
The procedure is straightforward to implement, and does not require cross validation. By using
the inverse of the normal distribution at a predetermined significance level, it circumvents the
challenge of evaluating the theoretical constant arising in the rate of convergence of existing
thresholding estimators. We compare the performance of our multiple testing (MT ) estimator
to a number of thresholding and shrinkage approaches in the literature in a detailed Monte
Carlo simulation study. Results show that the estimates of the covariance matrix based on MT
procedure perform well in a number of different settings and tend to outperform other estimators
proposed in the literature, particularly when the cross-sectional dimension, N , is larger than
the time series dimension, T. Finally, we investigate the relative performance of the proposed
estimators in the context of two important applications in empirical finance when N � T ,
namely testing the CAPM hypothesis and optimising the asset allocation of a risky portfolio.
For this purpose the inverse covariance matrix is of interest and we recommend a shrinkage
version of the MT estimator that ensures positive definiteness.
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1 Introduction

Robust estimation of large covariance matrices is a problem that features prominently in a number
of areas of multivariate statistical analysis (Anderson (2003)). In finance it arises in portfolio se-
lection and optimisation (Ledoit and Wolf (2003); Pesaran and Zaffaroni (2009)), risk management
(Fan, Fan and Lv (2008)) and testing of capital asset pricing models (Sentana (2009); Pesaran and
Yamagata (2012)) when the number of assets is large. In global macro-econometric modelling with
many domestic and foreign channels of interaction, large error covariance matrices must be esti-
mated for impulse response analysis and bootstrapping (Pesaran, Schuermann and Weiner (2004);
Dees, di Mauro, Pesaran, and Smith (2007)). In the area of bio-informatics, high-dimensional co-
variance matrices are required when inferring large-scale gene association networks (Carroll (2003);
Schäfer and Strimmer (2005)). Large covariance matrices are further encountered in fields including
meteorology, climate research, spectroscopy, signal processing and pattern recognition.

Assuming that the N ×N dimensional population covariance matrix, Σ, is invertible, one way
of obtaining a suitable estimator is to appropriately restrict the off-diagonal elements of its sam-
ple equivalence denoted by Σ̂. Numerous methods have been developed to address this challenge,
predominantly in the statistics literature. Some approaches are regression-based and make use of
suitable decompositions of Σ such as the Cholesky decomposition (see Pourahmadi (1999, 2000),
Rothman, Bickel, Levina and Zhu (2010), Abadir, Distaso and Zikes (2012), among others). Others
include banding or tapering methods as proposed by Bickel and Levina (2004, 2008a) and Wu and
Pourahmadi (2009), which are better suited to the analysis of longitudinal data as they take advan-
tage of the natural ordering of the underlying observations. On the other hand, popular methods
of regularisation of Σ̂ exist in the literature that do not make use of such ordering assumptions.
These include the two broad approaches of shrinkage and thresholding.1

The idea of shrinkage dates back to the seminal work of Stein (1956) who proposed the shrinkage
approach in the context of regression models so as to minimize the mean square error of the
regression coeffi cients. The method intentionally introduces a bias in the estimates with the aim
of reducing its variance. In the context of variance-covariance matrix estimation the estimated
covariances are shrunk towards zero element-wise. More formally, the shrinkage estimator is defined
as a weighted average of the sample covariance matrix and an invertible covariance matrix estimator
known as the shrinkage target. A number of shrinkage targets have been considered in the literature
that take advantage of a priori knowledge of the data characteristics under investigation. For
example, Ledoit and Wolf (2003) in a study of stock market returns consider Sharpe (1963) and
Fama-French (1997) market based covariance matrix specifications as targets.2 Ledoit and Wolf
(2004) suggest a modified shrinkage estimator that involves a convex linear combination of the
unrestricted sample covariance matrix with the identity matrix. This is recommended by the
authors for more general situations where no natural shrinking target exists. Numerous other
estimators based on the same concept but using different shrinkage targets are proposed in the
literature such as by Haff (1980, 1991), Lin and Perlam (1985), Dey and Srinivasan (1985), and
Donoho, Johstone, Kerkyacharian and Pickard (1995). On the whole shrinkage estimators are
considered to be stable, robust and produce positive definite covariance matrices by construction.
However, they focus on shrinking the over-dispersed sample covariance eigenvalues but not the
corresponding eigenvectors which are also inconsistent under shrinkage (Johnstone and Lu (2004)).
Further, their implemetation involves weights that themselves depend on unknown parameters.

Thresholding is an alternative regularisation technique that involves setting off-diagonal ele-

1See Pourahmadi (2011) for an extensive review of general linear models (GLS) and regularisation based methods
for estimation of the covariance matrix.

2Other shrinkage targets include the ‘diagonal common variance’, the ‘common covariance’, the ‘diagonal unequal
variance’, the ‘perfect positive correlation’and the ‘constant correlation’target. Examples of structured covariance
matrix targets can be found in Daniels and Kass (1999, 2001), Hoff (2009) and Fan, Fan and Lv (2008), among others.
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ments of the sample covariance matrix that are in absolute value below certain ‘threshold’value(s),
to zero. This approach includes ‘universal’thresholding put forward by Bickel and Levina (2008b),
and ‘adaptive’thresholding proposed by Cai and Liu (2011). Universal thresholding applies the
same thresholding parameter to all off-diagonal elements of the unconstrained sample covariance
matrix, while adaptive thresholding allows the threshold value to vary across the different off-
diagonal elements of the matrix. Also, the selected non-zero elements of Σ̂ can either be set at
their sample estimates or somewhat adjusted downward. These relate to the concepts of ‘hard’
and ‘soft’ thresholding, respectively. The thresholding approach traditionally assumes that the
underlying (true) covariance matrix is sparse, where sparseness is loosely defined as the presence
of a suffi cient number of zeros on each row of Σ such that it is absolute summable row (column)-
wise. However, Fan, Liao and Mincheva (2011, 2013) show that the regularization techniques can
be applied to Σ̂ even if the underlying population covariance matrix is not sparse, so long as the
non-sparseness is characterised by an approximate factor structure.3 The thresholding method re-
tains symmetry of the sample variance-covariance matrix but does not necessarily deliver a positive
definite estimate of Σ if N is large relative to T . The main diffi culty in applying this approach
lies in the estimation of the thresholding parameter. The method of cross-validation is primarily
used for this purpose which is convoluted, computationally intensive and not appropriate for all
applications. Indeed, cross-validation assumes stability of the underlying covariance matrix over
time which may not be the case in many applications in economics and finance.4

In this paper, we propose an alternative thresholding procedure using a multiple testing (MT )
estimator which is simple and practical to implement. As suggested by its name, it makes use
of insights from the multiple testing literature to test the statistical significance of all pair-wise
covariances or correlations, and is invariant to the ordering of the underlying variables. It sets
the elements associated with the statistically insignificant correlations to zero, and retains the
significant ones. We apply the multiple testing procedure to the sample correlation matrix denoted
by R̂, rather than Σ̂, so as to preserve the variance components of Σ̂. Further, we counteract the
problem of size distortions due to the multiple testing problem by use of Bonferroni (1935, 1936)
and Holm (1979) corrections. We compare the absolute values of the non-diagonal entries of R̂
with a parameter determined by the inverse of the normal distribution at a prespecified significance
level, p. The MT estimator is shown to be reasonably robust to the typical choices of p used
in the literature (10% or 5%), and converges to the population correlation matrix R at a rate of

Op

(√
mNN
T

)
under the Frobenius norm, where mN is the number of non-diagonal elements in

each row of R that are non-zero, which is assumed to be bounded in N .
In many applications, including those to be considered in this paper, an estimate of the inverse

covariance matrix Σ−1 is required. Since traditional thresholding does not necessarily lead to a pos-
itive definite matrix, a number of methods have been developed in the literature that produce sparse
inverse covariance matrix estimates. A popular approach applies the penalised likelihood with a
LASSO penalty to the off-diagonal terms of Σ−1. See, for example, Efron (1975), D’Aspremont,
Banerjee and Elghaoui (2008), Rothman, Bickel, Levina, and Zhu (2008), Yuan and Lin (2007),
and Peng, Wang, Zhou and Zhu (2009). The existing approaches are rather complex and compu-
tationally extensive. In addition, though convergence to Σ−1 is achieved in this manner, the same
methods can not be used to estimate a reliable Σ estimate. If both the covariance matrix and
its inverse are of interest, the shrinkage approach is to be recommended. We propose a shrinkage
estimator, R̂LW , that is applied to the sample correlation matrix R̂ rather than Σ̂ in order to

3Earlier work by Fan, Fan and Lv (2008) use a strict factor model to impose sparseness on the covariance matrix.
Friedman, Hastie and Tibshirani (2008) apply the lasso penalty to loadings in principal component analysis to achieve
a sparse representation.

4Other contributions to the thresholding literature include the work of Huang, Liu, Pourahmadi, and Liu (2006),
Rothman, Levina and Zhu (2009), Cai and Zou (2009, 2010), and Wang and Zou (2010), among others.
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avoid distortions to its variance components. It is motivated by the work of Schäfer and Strimmer
(2005), which in turn is based on the theoretical results of Ledoit and Wolf (2003). Their procedure,
however, ignores the bias of the empirical correlation coeffi cients which we take into account in the
case of our proposed estimator, R̂LW . This estimator can also be used in conjunction with our
multiple testing approach. In light of this, we consider a supplementary shrinkage estimator applied
to our regularised MT correlation matrix. In this case, the shrinkage parameter is derived from
the minimisation of the squared Frobenius norm of the difference between two inverse matrices: a
recursive estimate of the inverse matrix of interest (which we take as the MT estimator), and the
inverse of a suitable reference matrix (which we take to be R̂LW ). This supplementary shrinkage
estimator will be denoted by S-MT .

We compare the small sample performance of the MT , S-MT and R̂LW estimators with a
number of extant regularised estimators in the literature for large-dimensional covariance matrices
in an extended Monte Carlo simulation study. We consider two approximately sparse and two exactly
sparse covariance structures. The simulation results show that the proposed multiple testing and
shrinkage based estimators are robust to the different covariance matrix specifications employed,
and perform favourably when compared with the widely used regularisation methods considered in
our study, especially when N is large relative to T.

We further evaluate and compare the multiple testing approach to existing thresholding and
shrinkage techniques, in the context of testing the Fama-French (2004) capital asset pricing model
(CAPM) and implementing portfolio optimization using a similar factor setting. For this purpose
we make use of the S-MT estimator as the inverse of the estimated covariance matrix is required.
Key challenges in tackling these problems are explored and discussed.

The rest of the paper is organised as follows: Section 2 outlines some preliminaries and de-
finitions. Section 3 introduces our multiple testing (MT ) procedure and presents its theoretical
properties. Section 4 discusses issues of invertibility of the MT estimator in finite samples and
advances our recommended R̂LW and S-MT estimators. Section 5 provides an overview of a num-
ber of existing key regularisation techniques. The small sample properties of the MT estimator,
its adjusted shrinkage version (S-MT ) and R̂LW are investigated in Section 6. Applications to
testing the Fama- French CAPM and portfolio optimization are found in Section 7. Finally Section
8 concludes.

The largest and the smallest eigenvalues of the N×N matrixA = (aij) are denoted by λmax (A)

and λmin (A) respectively, tr (A) =
∑N

i=1 aii is its trace, ‖A‖1 = max1≤j≤N
{∑N

i=1 |aij |
}
is its

maximum absolute column sum norm, ‖A‖∞ = max1≤i≤N
{∑N

j=1 |aij |
}
is its maximum absolute

row sum norm, ‖A‖F =
√
tr (A′A) is its Frobrenius norm, and ‖A‖ = λ

1/2
max (A′A) is its spectral

(or operator) norm. When A is a vector, both ‖A‖F and ‖A‖ are equal to the Euclidean norm.

2 Large covariance matrix estimation: Some preliminaries

Let {xit, i ∈ N, t ∈ T}, N ⊆ N, T ⊆ Z, be a double index process where xit is defined on a suitable
probability space (Ω, F, P ). i can rise indefinitely (i→∞) and denotes units of an unordered
population. Conversely, the time dimension t explicitly refers to an ordered set, and can too tend
to infinity (t→∞). We assume that for each i, xit is covariance stationary over t, and for each t,
xit is cross-sectionally weakly dependent (CWD), as defined in Chudik, Pesaran and Tosetti (2011).
For each t ∈ T the variance-covariance matrix of xt = (x1t, ..., xNt)

′ is given by

V ar (xt) = E
(
xtx

′
t

)
= (σij,t) = Σt, (1)
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where, for simplicity of exposition and without loss of generality it is assumed that E(xt) = 0, Σt

is an N ×N symmetric, positive definite real matrix with its (i, j)th element, σij,t, given by

σii,t = E [xit − E (xit)]
2 < K, (2)

σij,t = E [(xit − E (xit)) (xjt − E (xjt))] ,

for i, j = 1, ..., N , t = 1, ..., T , σii,t > 0 and K is a finite generic constant independent of N . The
diagonal elements of Σt are represented by the N ×N diagonal matrix Dt, such that

Dt = Diag(σ11,t, σ22,t, ..., σNN,t). (3)

Following the literature we now introduce the concepts of approximate and exact sparseness of
a matrix.

Definition 1 The N ×N matrix A is approximately sparse if, for some q ∈ [0, 1) ,

mN = max
i≤N

∑
j≤N
|aij,t|q

does not grow too fast as N → ∞. Exact sparseness is established when setting q = 0. Then,
mN = maxi≤N

∑
j≤N I (aij,t 6= 0) is the maximum number of non-zero elements in each row and is

bounded in N , where I (.) denotes the indicator function.

Given the above definition and following Remark 2.2 and Proposition 2.1(a) of Chudik, Pesaran
and Tosetti (2011), it follows that under the assumption that xit is CWD, then Σt can only have
a finite number of non-zero elements, namely ‖Σt‖1 = O (1). See also Bailey, Holly and Pesaran
(2013) and Pesaran (2013).

The estimation of Σt gives rise to three main challenges: the sample Σt becomes firstly ill-
conditioned and secondly non-invertible as N increases relative to T , and thirdly Σt is likely to
become unstable for T suffi ciently large. The statistics literature thus far has predominantly focused
on tackling the first two problems while largely neglecting the third. On the other hand, in the
finance literature time variations in Σt are allowed when using conditionally heteroskedastic models
such as the Dynamic Conditional Correlation (DCC) model of Engle (2002) or its generalization
in Pesaran and Pesaran (2010). However, the DCC approach still requires T > N and it is not
applicable when N is large relative to T . This is because the sample correlation matrix is used as
the estimator of the unconditional correlation matrix which is assumed to be time invariant.

One can adopt a non-parametric approach to time variations in variances (volatilities) and
covariances and base the sample estimate of the covariance matrix on high frequency observations.
As measures of volatility (often referred to as realized volatility) intra-day log price changes are
used in the finance literature. See, for example, Andersen, Bollerslev, Diebold and Labys (2003),
and Barndorff-Nielsen and Shephard (2002, 2004). The idea of realized volatility can be adapted
easily for use in macro-econometric models by summing squares of daily returns within a given
quarter to construct a quarterly measure of market volatility. Also, a similar approach can be used
to compute realized measures of correlations, thus yielding a realized correlation matrix. However,
such measures are based on a relatively small number of time periods. For example, under the best
case scenario where intra-daily observations are available, weekly estimates of realized variance and
covariances are based typically on 48 intra-daily price changes and 5 trading days, namely T = 240,
which is less than the number of securities often considered in practice in portfolio optimisation
problems. T can be increased by using rolling windows of observations over a number of weeks or
months, but there is a trade off between maintaining stability of the covariance matrix and the size
of the time series observations. As T is increased, by considering longer time spans, the probability
of the covariance matrix remaining stable over that time span is accordingly reduced.
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In this paper we assume that T is suffi ciently small so that Σt remains constant over the selected
time horizon and we concentrate on addressing the remaining two challenges in the estimation of
Σt. We suppress subscript t in Σt and Dt and evaluate the sample variance-covariance matrix
estimator of Σ, denoted by Σ̂, with elements

σ̂ij = T−1
T∑
t=1

(xit − x̄i) (xjt − x̄j) , for i, j = 1, ..., N (4)

where x̄i = T−1
∑T

t=1 xit. The diagonal elements of Σ̂ are collected in D̂ = diag(σ̂ii, i = 1, 2, ..., N).

3 Regularising the sample correlation matrix: A multiple testing
(MT) approach

We propose a regularisation method that follows the thresholding literature, where typically, as
mentioned in the introduction, non-diagonal elements of the sample covariance matrix that fall
below a certain level or ‘threshold’in absolute terms are set to zero. Our method tests the statistical
significance of all distinct pair-wise covariances or correlations of the sample covariance matrix Σ̂,
N (N − 1) /2 in total. As such this family of tests is prone to size distortions arising from possible
dependence across the individual pair-wise tests. We take into account these ‘multiple testing’
problems in estimation in an effort to improve support recovery of the true covariance matrix. Our
multiple testing (MT ) approach is applied directly to the sample correlation matrix. This ensures
the preservation of the variance components of Σ̂ upon transformation, which is imperative when
considering portfolio optimisation and risk management. Our method is invariant to the ordering
of the variables under consideration, it is computationally effi cient and suitable for application in
the case of high frequency observations making it considerably robust to changes in Σ over time.

Recall the cross-sectionally weakly correlated units xit, i = 1, ..., N, t = 1, ..., T, with sparse
variance-covariance matrix Σ defined in (1), and with diagonal elements collected in (3), where
subscript t has been suppressed. Consider the N ×N correlation matrix corresponding to Σ given
by

R = D−1/2ΣD−1/2 = (ρij), where D = Diag (Σ) ,

with
ρij = ρji =

σij√
σiiσjj

, i, j = 1, ..., N

where σij is given in (2). The reasons for opting to work with the correlation matrix rather than its
covariance counterpart are primarily twofold. First, the main diagonal of R is set to unity element-
wise by construction. This implies that the transformation of R back to Σ leaves the diagonal
elements of Σ unaffected, a desirable property in many financial applications. Second, given that
all entries in R are bounded from above and below (−1 ≤ ρij ≤ 1, i, j = 1, ..., N), potentially
one can use a so called ‘universal’parameter to identify the non-zero elements in R rather than
making entry-dependent adjustments which in turn need to be estimated. This feature is in line
with the method of Bickel and Levina (2008b) but shares the properties of the adaptive threholding
estimator developed by Cai and Lui (2011).5

We proceed to the sample correlation matrix, R̂ = (ρ̂ij),

R̂ = D̂
−1/2

Σ̂D̂
−1/2

,

5Both approaches are outlined in Section 5.
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with elements

ρ̂ij = ρ̂ji =
σ̂ij√
σ̂iiσ̂jj

=

∑T
t=1 (xit − x̄i) (xjt − x̄j)(∑T

t=1 (xit − x̄i)2
)1/2 (∑T

t=1 (xjt − x̄j)2
)1/2

, i = 1, 2, ..., N, t = 1, 2, ..., T,

(5)
where σ̂ij and σ̂ii are given in (4).

Then, assuming that for suffi ciently large T the correlation coeffi cients ρ̂ij are approximately
normally distributed as

ρ̂ij ∼ N
(
µij , ω

2
ij

)
, (6)

where (using Fisher’s (1915) bias correction - see also Soper (1913)) we have

µij = ρij −
ρij(1− ρ2

ij)

2T
and ω2

ij =
(1− ρ2

ij)
2

T
.

Joint tests of ρij = 0 for i = 1, 2, ..., N − 1, j = i+ 1, ..., N can now be carried out, allowing for the
cross dependence of the individual tests using a suitable multiple testing (MT ) procedure. This
yields the following MT estimator of R,

R̃MT =
(
ρ̃ij
)

=
[
ρ̂ijI(

√
T
∣∣ρ̂ij∣∣ > bN )

]
, i = 1, 2, ..., N − 1, j = i+ 1, ..., N. (7)

where6

bN = Φ−1

(
1− p

2f(N)

)
. (8)

Parameter bN is of special importance. It is determined by the inverse of the cumulative distribution
function of the standard normal variate, Φ−1 (.) , using a prespecified overall size, p, selected for
the joint testing problem. It is clear that for relatively large T , T ρ̂2

ij ∼ χ2
1.
7 The size of the test is

normalised by f (N) . This controls the size correction that is imposed on the individual tests in
(7). We explain the reasoning behind the choice of f(N), in what follows.

As mentioned above, testing the null hypothesis that ρij = 0 for i = 1, 2, ..., N−1, j = i+1, ..., N
can result in spurious outcomes, especially when N is larger than T , due to multiple tests being
conducted simultaneously across the distinct elements of R̂. The overall size of the test can then
suffer from distortions and needs to be controlled.

Suppose that we are interested in a family of null hypotheses, H01, H02, ...,H0r and we are
provided with corresponding test statistics, Z1T ,Z2T , ...., ZrT , with separate rejection rules given
by (using a two sided alternative)

Pr (|ZiT | > CViT |H0i ) ≤ piT ,

where CViT is some suitably chosen critical value of the test, and piT is the observed p-value for
H0i. Consider now the family-wise error rate (FWER) defined by

FWERT = Pr [∪ri=1 (|ZiT | > CViT |H0i )] ,

6The indicator function I(.) used in (7), is in line with the concept of ‘hard’ thresholding. Hard thresholding
implies that all elements of Σ̂ or R̂ that drop below a certain level in absolute terms are set to zero and the remaining
ones are equated to their original sample covariance or correlation coeffi cients. Multiple testing (MT ) does not
consider functions used in the ‘soft’thresholding literature - see Antoniadis and Fan (2001), Rothman, Levina and
Zhu (2009), and Cai and Liu (2011) among others, or the smoothly clipped absolute deviation (SCAD) approach -
see Fan (1997), and Fan and Li (2001).

7Note that in place of ρ̂ij , i, j = 1, ..., N one can also use the Fisher transformation of ρ̂ij which could provide a
closer approximation to the normal distribution. But our simulation results suggest that in our application there is
little to choose between using ρ̂ij or its Fisher’s transform.
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and suppose that we wish to control FWERT to lie below a pre-determined value, p. Bonferroni
(1935, 1936) provides a general solution, which holds for all possible degrees of dependence across
the separate tests. By Boole’s inequality we have

Pr [∪ri=1 (|ZiT | > CViT |H0i )] ≤
r∑
i=1

Pr (|ZiT | > CViT |H0i )

≤
r∑
i=1

piT .

Hence to achieve FWERT ≤ p, it is suffi cient to set piT ≤ p/r. Bonferroni’s procedure can be
quite conservative and tends to lack power. An alternative step-down procedure is proposed by
Holm (1979) which is more powerful than Bonferroni’s procedure, without imposing any further
restrictions on the degree to which the underlying tests depend on each other. If we abstract from
the T subscript and order the p-values of the tests so that

p(1) ≤ p(2) ≤ .... ≤ p(r)

are associated with the null hypotheses, H(01), H(02), ...,H(0r), respectively, Holm’s procedure rejects
H(01) if p(1) ≤ p/r, rejects H(01) and H(02) if p(2) ≤ p/(r − 1), rejects H(01), H(02) and H(03) if
p(3) ≤ p/(r−2), and so on. Returning to (7) we observe that under the null i and j are unconnected,
and ρ̂ij is approximately distributed as N

(
0, T−1

)
. Therefore, the p-values of the individual tests

are (approximately) given by pij = 2
[
1− Φ

(√
T
∣∣ρ̂ij∣∣)] for i = 1, 2, ..., N − 1, j = i + 1, ..., N ,

with the total number of tests being carried out given by r = N(N − 1)/2. To apply the Holm
procedure we need to order these p-values in an ascending manner, which is equivalent to ordering∣∣ρ̂ij∣∣ in a descending manner. Denote the largest value of ∣∣ρ̂ij∣∣ over all i 6= j, by

∣∣∣ρ̂(1)

∣∣∣, the second
largest value by

∣∣∣ρ̂(2)

∣∣∣, and so on, to obtain the ordered sequence ∣∣∣ρ̂(s)

∣∣∣, for s = 1, 2, ..., r. Then the

(i, j) pair associated with
∣∣∣ρ̂(s)

∣∣∣ are connected if ∣∣∣ρ̂(s)

∣∣∣ > Φ−1
(

1− p/2
r−s+1

)
, otherwise disconnected,

for s = 1, 2, ..., r , where p is the pre-specified overall size of the test.8 Note that if the Bonferroni
approach is implemented no such ordering is required and to see if the (i, j) pair is connected it

suffi ces to assess whether
∣∣ρ̂ij∣∣ > Φ−1

(
1− p/2

N(N−1)/2

)
.

There is also the issue of whether to apply the multiple testing procedure to all distinct N(N −
1)/2 non-diagonal elements of R̂ = (ρ̂ij) simultaneously, or to apply the procedure row-wise,
by considering N separate families of N − 1 tests defined by ρi0j = 0, for a given i0, and j =
1, 2, .., N , j 6= i0. The theoretical results of subsection (3.1) show that using f (N) = N(N − 1)/2
in (8) rather than f (N) = (N − 1) as N → ∞, provides a faster rate of convergence towards R
under the Frobenius norm. However, simulation results of Section 6 indicate that in finite samples
f (N) = (N − 1) can provide R̃MT estimates that perform equally well and even better than when
f (N) = N(N − 1)/2 is considered, depending on the setting. Note that multiple testing using the
Holm approach can lead to contradictions if applied row-wise. To see this consider the simple case
where N = 3 and p values for the three rows of R̂ are given by − p1 p2

p1 − p3

p2 p3 −

 .

Suppose that p1 < p2 < p3. Then ρ13 = 0 is rejected if p2 < p when Holm’s procedure is applied
to the first row, and rejects ρ13 = 0 if p2 < p/2 when the procedure is applied to the third row. To

8 In the Monte Carlo experiments we consider both p = 0.05 and 0.10, but find that the MT method is reasonably
robust to the choice of p.
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circumvent this problem in practice, if one of the ρ13 hypotheses is rejected but the other is accepted
then we set both relevant elements in R̃MT to ρ̂13 using this example. The row-wise application of
Bonferroni’s procedure is not subject to this problem since it applies the same p-value of p/(N −1)
to all elements of R̂.9

After applying multiple testing to the unconditional sample correlation matrix, we recover the
corresponding covariance matrix Σ̃MT by pre- and post-multiplying R̃MT by the square root of the
diagonal elements of Σ̂, so that

Σ̃MT=D̂
1/2
R̃MT D̂

1/2
. (9)

It is evident that since bN is given and does not need to be estimated, the multiple testing
procedure of (7) is also computationally effi cient. This contrasts with traditional thresholding
approaches which face the challenge of evaluating the theoretical constant, C, arising in the rate
of convergence of their estimators. The computationally intensive cross validation procedure is
typically employed for the estimation of C, which is further discussed in Section 5.

Finally, in the presence of factors in the data set xt (as in the setting used in Fan, Liao and
Mincheva (2011, 2013 - FLM)), we proceed as shown in FLM by estimating the variance covariance
matrix of the residuals ût = (û1t, ..., ûNt)

′ obtained from defactoring the data, Σ̂û, and applying
the multiple testing approach to Σ̂û.10 In this case, (7) is modified to correct for the degrees of
freedom, m, associated with the defactoring regression:

ρ̃û,ij = ρ̂û,ijI(
√
T −m

∣∣ρ̂û,ij∣∣ > bN ), i = 1, 2, ..., N − 1, j = i+ 1, ..., N (10)

where

ρ̂û,ij = ρ̂û,ji =

∑T
t=1

(
ûit − ̂̄ui) (ûjt − ̂̄uj)[∑T

t=1

(
ûit − ̂̄ui)2]1/2 [∑T

t=1

(
ûjt − ̂̄uj)2]1/2

, i = 1, 2, ..., N, t = 1, 2, ..., T.

For an empirical application of the multiple testing approach using defactoring and the Holm
procedure, see also Bailey, Holly and Pesaran (2013).

3.1 Theoretical properties of the MT estimator

In this subsection we investigate the asymptotic properties of theMT estimator defined in (7). We
establish its rate of convergence under the Frobenius norm as well as the conditions for consistent
support recovery via the true positive rate (TPR) and the false positive rate (FPR), to be defined
below. We begin by stating a couple of assumptions that will be used in our proofs.

Assumption 1 Let R̂= (ρ̂ij) be the sample correlation matrix, and suppose that (for suffi ciently
large T )

ρ̂ij ∼ N
(
µij , ω

2
ij

)
, (11)

where

µij = E(ρ̂ij) = ρij −
ρij(1− ρ2

ij)

2T
+
G(ρij)

T 2
, (12)

ω2
ij = V ar(ρ̂ij) =

(1− ρ2
ij)

2

T
+
K(ρij)

T 2
, (13)

and G(ρij) and K(ρij) are bounded in ρij and T , for all i and j = 1, 2, ..., N .

9Other multiple testing procedures can also be considered and Efron (2010) provides a recent review. But most
of these methods tend to place undue prior restrictions on the dependence of the underlying test statistics while the
Bonferroni and Holm methods are not subject to this problem.
10We consider an example of multiple testing on regression residuals in our simulation study of Section 6.
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The analytical expressions for the mean and variance of ρ̂ij in (12) and (13) of Assumption 1 can
be found in Soper, Young, Cave, Lee and Pearson (1917).

Assumption 2 The population correlation matrix, R = (ρij), is sparse according to Definition 1
such that only mN of its non-diagonal elements in each row are non-zero satisfying the condition

0 < ρmin <
∣∣ρij∣∣ < ρmax < 1,

with mN being bounded in N . The remaining N(N −mN −1) non-diagonal elements of R are zero
(or the sum of their absolute values is bounded in N).

Assumption 2 implies exact sparseness under Definition 1.

Theorem 1 (Rate of convergence) Denote the sample correlation coeffi cient of xit and xjt over
t = 1, 2, ..., T by ρ̂ij and the population correlation matrix by R = (ρij), which obey Assumptions 1
and 2 respectively. Also let f(N) be an increasing function of N , such that

ln [f(N)]

T
= o(1), as N and T →∞.

Then

E
∥∥∥R̃MT −R

∥∥∥2

F
=
∑∑
i 6=j

E(ρ̃ij − ρij)2 = O

(
mNN

T

)
, (14)

if N/T → 0 as N and T →∞, in any order, where R̃MT = (ρ̃ij)

ρ̃ij = ρ̂ijI

(∣∣ρ̂ij∣∣ > bN√
T

)
, with bN = Φ−1

(
1− p

2f(N)

)
> 0,

and p is a given overall Type I error.
Proof. See Appendix A.

Result (14) implies that
∥∥∥R̃MT −R

∥∥∥
F

= Op(
√

mNN
T ) which proves (mNN)−1/2T 1/2 -consistency

of the multiple testing correlation matrix estimator R̃MT under the Frobenius norm.

Theorem 2 (Support Recovery) Consider the true positive rate (TPR) and the false positive
rate (FPR) statistics computed using the multiple testing estimator ρ̃ij = ρ̂ijI

(∣∣ρ̂ij∣∣ > bN√
T

)
, given

by

TPR =

∑∑
i 6=j

I(ρ̃ij 6= 0, and ρij 6= 0)∑∑
i 6=j

I(ρij 6= 0)
(15)

FPR =

∑∑
i 6=j

I(ρ̃ij 6= 0, and ρij = 0)∑∑
i 6=j

I(ρij = 0)
, (16)

respectively, where bN is defined as in Theorem 1, and ρ̂ij and ρij obey Assumptions 1 and 2,
respectively. Then with probability tending to 1, FRP = 0 and TPR = 1, if ρmin = min(ρij)

i 6=j
> bN√

T

as N,T →∞ in any order.
Proof. See Appendix A.
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4 Positive definiteness of covariance matrix estimator

As in the case of thresholding approaches, multiple testing preserves the symmetry of R̂ and is
invariant to the ordering of the variables. However, it does not ensure positive definiteness of the
estimated covariance matrix which is essential in a number of empirical applications including the
ones considered in Section 7. Bickel and Levina (2008b) provide an asymptotic condition that
ensures positive definiteness.11 In their theoretical work Guillot and Rajaratnam (2012) demon-
strate in more depth that retaining positive definiteness upon thresholding is governed by complex
algebraic conditions. In particular, they show that the pattern of elements to be set to zero has to
correspond to a graph which is a union of complete components. Apart from the penalised likeli-
hood approach to tackle this problem as mentioned in the introduction, more recent contributions
propose a sparse positive definite covariance estimator obtained via convex optimisation, where
sparseness is achieved by use of a suitable penalty. Rothman (2012) uses a logarithmic barrier
term, Xue, Ma and Zou (2012) impose a positive definiteness constraint, while Liu, Wang and Zhao
(2013) and Fan, Liao and Mincheva (2013) enforce an eigenvalue condition.12,13 These approaches
are rather complex and computationally quite extensive. Instead, if inversion of R̂ or Σ̂ is of inter-
est, we recommend the use of LW type shrinkage estimator, but applied to the sample correlation,
R̂, or the MT estimated correlation matrix, R̃MT . This is motivated by the work of Schäfer and
Strimmer (2005) and the theoretical results of Ledoit and Wolf (2003). However, in Schäfer and
Strimmer (2005) the bias of the empirical correlation coeffi cients is ignored, which we will take
into account in our specification of R̂LW . Compared with the Ledoit and Wolf (2004) shrinkage
covariance estimator, R̂LW has the advantage of retaining the diagonal of Σ̂ which is important
in finance applications for instance, where the diagonal elements of Σ̂ correspond to volatilities of
asset returns.14

Consider the following shrinkage estimator of R,

R̂LW = ξIN + (1− ξ)R̂, (17)

with shrinkage parameter ξ ∈ [0, 1], where R̂= (ρ̂ij). The squared Frobenius norm of the error of
estimating R by R̂LW (ξ) is given by∥∥∥R̂LW (ξ)−R

∥∥∥2

F
=

∑∑
i 6=j

[
(1− ξ)ρ̂ij − ρij

]2
=

∑∑
i 6=j

[
ρ̂ij − ρij − ξρ̂ij

]2
. (18)

The main theoretical results for the shrinkage estimator based on the sample correlation matrix
are summarised in the Theorem below.

Theorem 3 (Rate of convergence and optimal shrinkage parameter) Denote the sample
correlation coeffi cient of xit and xjt over t = 1, 2, ..., T by ρ̂ij and the population correlation matrix
by R = (ρij). Suppose also that Assumptions 1 and 2 are satisfied. Then

N−1E
∥∥∥R̂LW (ξ∗)−R

∥∥∥2

F
= N−1∑∑

i 6=j
E
[
ρ̂ij − ρij − ξ∗ρ̂ij

]2
= O

(
N

T

)
, (19)

11See Section 5 for the exact specification of this condition.
12Other related work includes that of Lam and Fan (2009), Rothman, Levina and Zhu (2009), Bien and Tibshirani

(2011), Cai, Liu and Luo (2011), and Yuan and Wang (2013).
13We implement the method of Fan, Liao and Mincheva (2013) in our simulation study of Section 6. More details

regading this method can be found in Section 5 and Appendix B.
14We discuss the effect of distorting the size of asset return volatilities in the context of portfolio optimisation in

Section 7.
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where ξ∗ is the optimal value of the shrinkage parameter ξ, which is given by

ξ̂
∗

= 1−

∑∑
i 6=j

ρ̂ij

[
ρ̂ij −

ρ̂ij(1−ρ̂2
ij)

2T

]
1
T

∑∑
i 6=j

(1− ρ̂2
ij)

2 +
∑∑
i 6=j

[
ρ̂ij −

ρ̂ij(1−ρ̂2
ij)

2T

]2 .

Proof. See Appendix A.
In deriving the results of Theorem 3 we follow Ledoit and Wolf (2004, LW) and use the scaled
Frobenius norm, where ‖A‖2 = tr(A′A)/N for a N -dimensional matrix A, (see Definition 1 pp.
376 of LW).

Corollary 1

N−1E
∥∥∥R̂LW (ξ∗)−R

∥∥∥2

F
= N−1∑∑

i 6=j
E
(
ρ̂ij − ρij

)2 −N−1

[∑∑
i 6=j

E
[
ρ̂ij
(
ρ̂ij − ρij

)]]2

∑∑
i 6=j

E
(
ρ̂2
ij

)
< N−1∑∑

i 6=j
E
(
ρ̂ij − ρij

)2
.

Proof. See Appendix A.
From Corollary 1, assuming that T is suffi ciently large so that ρij can be reasonably accurately
estimated by ρ̂ij , we would expect the shrinkage estimator to have smaller mean squared error than
R̂ . Recovery of the corresponding variance-covariance matrix Σ̂LW (ξ∗) is performed as in (23).

The shrinkage estimator R̂LW can also be used as a supplementary tool to achieve invertibility
of our multiple testing estimator. Using a shrinkage parameter derived through a grid search
optimisation procedure described below, positive definiteness of R̃MT is then guaranteed.

Following Ledoit and Wolf (2004)15, we set as benchmark target the N ×N identity matrix IN .
Then, our shrinkage on multiple testing (S-MT ) estimator is defined by

R̃S-MT = λIN + (1− λ)R̃MT , (20)

where the shrinkage parameter λ ∈ [λ0, 1], and λ0 is the minimum value of λ that produces a
non-singular R̃S-MT (λ0) matrix.

First note that shrinkage is again deliberately implemented on the correlation matrix R̃MT

rather than on Σ̃MT . In this way we ensure that no shrinkage is applied to the volatility measures.
Second, the shrinkage is applied to non-zero elements of R̃MT , and as a result the shrinkage
estimator, R̃S-MT , has the same optimal non-zero/zero patterns achieved for R̃MT . This is in
contrast to approaches that impose eigenvalue restrictions to achieve positive definiteness.

The criterion used in the final selection of the shrinkage parameter in (20) involves the inverse
of two matrices. Specifically, we consider a reference correlation matrix, R0, which is selected to
be well-conditioned, robust and positive definite. Next, over a grid of λ bounded from below and
above by λ0 and 1, R̃MT (λ) is evaluated. Since both R0 and R̃MT (λ) are positive definite, the
difference of their inverses is compared over λ ∈ [λ0, 1] using the Frobenius norm. The shrinkage
parameter, λ∗, is given by

λ∗ = arg min
λ0≤λ≤1

∥∥∥R−1
0 −R̃

−1
MT (λ)

∥∥∥2

F
. (21)

15This approach is summarised in Section 5.
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Let A = R−1
0 and B (λ) = R̃

−1
MT (λ). Note that since R0 and R̃MT are symmetric∥∥∥R−1

0 −R̃
−1
MT (λ)

∥∥∥2

F
= tr

(
A2
)
− 2tr[AB (λ)] + tr[B2 (λ)]. (22)

The first order condition for the above optimisation problem is given by,

∂
∥∥∥R−1

0 −R̃
−1
MT (λ)

∥∥∥2

F

∂λ
= −2tr

(
A
∂B (λ)

∂λ

)
+ 2tr

(
B (λ)

∂B (λ)

∂λ

)
.

where

∂B (λ)

∂λ
= −R̃−1

MT (λ)
(
IN − R̃MT

)
R̃
−1
MT (λ)

= −B (λ)
(
IN − R̃MT

)
B (λ) .

Hence, λ∗ is given by the solution of

f(λ) = −tr
[
(A−B (λ))B (λ)

(
IN − R̃MT

)
B (λ)

]
= 0,

where f(λ) is an analytic differentiable function of λ for values of λ close to unity, such that B (λ)
exists.

The resulting R̃S-MT (λ∗) is guaranteed to be positive definite. This follows from Banerjee,
Ghaoui and D’Asperton (2008) who show that if a recursive procedure is initialised with a positive
definite matrix, then the subsequent iterates remain positive definite. For more details of the above
derivations and the grid search optimisation procedure see Appendix A.

Having obtained the shrinkage estimator R̃S-MT using λ∗ in (20), we construct the corresponding
covariance matrix as:

Σ̃S-MT=D̂
1/2
R̃S-MT D̂

1/2
. (23)

An important aspect of the above method is the choice of the reference matrix R0. In our
simulation study of Section 6 we considered various choices for the reference correlation matrix.
These included the identity matrix, the generalised inverse of the sample correlation matrix, the
correlation matrix derived from shrinking Σ̂ using the Ledoit and Wolf (2004) method and our
proposed R̂LW shrinkage approach described above. Our results showed that R̂LW offers superior
performance for R̃S-MT in finite samples relative to the other reference matrices. For further details
see Section 6.

5 An overview of key regularisation techniques

In this section we provide an overview of three main covariance estimators proposed in the literature
which we use in the Monte Carlo experiments for comparative analysis. Specifically, we consider
the thresholding methods of Bickel and Levina (2008b), and Cai and Liu (2011), and the shrinkage
approach of Ledoit and Wolf (2004).

5.1 Bickel-Levina (BL) thresholding

The method developed by Bickel and Levina (2008b, BL) employs ‘universal’thresholding of the
sample covariance matrix Σ̂ = (σ̂ij) , i, j = 1, ..., N . Under this approach Σ is required to be sparse
according to Definition 1. The BL thresholding estimator is given by

Σ̃BL,C =

(
σ̂ijI

[
|σ̂ij | ≥ C

√
logN

T

])
, i = 1, 2, ..., N − 1, j = i+ 1, ..., N (24)
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where I (.) is an indicator function and C is a positive constant which is unknown. The choice of
thresholding function - I (.) - implies that (24) implements ‘hard’thresholding. The consistency

rate of the BL estimator is
√

logN
T under the spectral norm of error matrix

(
Σ̃BL,C −Σ

)
. The main

challenge in the implementation of this approach is the estimation of the thresholding parameter,
C, which is usually calibrated by cross validation. 16

As argued by BL, thresholding maintains the symmetry of Σ̂ but does not ensure positive
definiteness of Σ̃BL,Ĉ . BL show that their threshold estimator is positive definite if∥∥∥Σ̃BL,C − Σ̃BL,0

∥∥∥ ≤ ε and λmin (Σ) > ε, (25)

where ‖.‖ is the spectral or operator norm and ε is a small positive constant. This condition is not
met unless T is suffi ciently large relative to N . Furthermore, it is generally acknowledged that the
cross validation technique used for estimating C is computationally expensive. More importantly,
cross validation performs well only when Σ is assumed to be stable over time. If a structural break
occurs on either side of the cross validation split chosen over the T dimension then the estimate
of C could be biased. Finally, ‘universal’ thresholding on Σ̂ performs best when the units xit,
i = 1, ..., N, t = 1, ..., T are assumed homoscedastic (i.e. σ11 = σ22 = ... = σNN ). Departure from
such a setting can have a negative impact on the properties of the thresholding parameter.

5.2 Cai and Liu (CL) thresholding

Cai and Liu (2011, CL) proposed an improved version of the BL approach by incorporating the
unit specific variances to their ‘adaptive’ thresholding procedure. In this way, unlike ‘universal’
thresholding on Σ̂, their estimator is robust to heteroscedasticity. More specifically, the thresholding
estimator Σ̃CL,C is defined as

Σ̃CL,C = (σ̂ijI [|σ̂ij | ≥ τ ij ]) , i = 1, 2, ..., N − 1, j = i+ 1, ..., N (26)

where τ ij > 0 is an entry-dependent adaptive threshold such that τ ij =
√
θ̂ijωT ,with θ̂ij =

T−1
∑T

i=1(xitxjt − σ̂ij)2 and ωT = C
√

logN/T , for some constant C > 0. The consistency rate of

the CL estimator is
√

logN
T under the spectral norm of the error matrix

(
Σ̃CL,C −Σ

)
. Parameter

C can be fixed to a constant implied by theory (C = 2 in CL) or chosen via cross validation.17

Similar concerns to BL regarding cross validation also apply here.
As with the BL estimator, thresholding in itself does not ensure positive definiteness of Σ̃CL,Ĉ .

In light of condition (25), Fan, Liao and Mincheva (2011, 2013) extend the CL approach and
propose setting a lower bound on the cross validation grid when searching for C such that the

minimum eigenvalue of their thresholded estimator is positive, λmin

(
Σ̃FLM,Ĉ

)
> 0 - for more

details see Appendix B. We apply this extension to both BL and CL procedures. The problem of
Σ̃BL,Ĉ and Σ̃CL,Ĉ not being invertible in finite samples is then resolved. However, depending on
the application, the selected C might not necessarily be optimal (see Appendix B for the relevant
expressions). In other words, the properties of the constrained Σ̃BL,Ĉ and Σ̃CL,Ĉ can deviate
noticeably from their respective unconditional versions.

16See Appendix B for details of the BL cross validation procedure. Further, Fang, Wang and Feng (2013) provide
useful guidelines regarding the specification of various parameters used in cross-validation through an extensive
simulation study.
17See Appendix B for details of the CL cross validation procedure.
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5.3 Ledoit and Wolf (LW) shrinkage

Ledoit and Wolf (2004, LW) considered a shrinkage estimator for regularisation which is based on
a convex linear combination of the sample covariance matrix, Σ̂, and an identity matrix IN , and
provide formulae for the appropriate weights. The LW shrinkage is expressed as

Σ̂LW = ρ̂1IN + ρ̂2Σ̂, (27)

with the estimated weights given by

ρ̂1 = mT b
2
T /d

2
T , ρ̂2 = a2

T /d
2
T

where

mT = N−1tr
(
Σ̂
)
, d2

T = N−1tr
(
Σ̂

2
)
−m2

T ,

a2
T = d2

T − b2T , b2T = min(b̄2T , d
2
T ),

and

b̄2T =
1

T 2

T∑
t=1

∥∥∥ẋtẋ′t − Σ̂
∥∥∥2

F

=
1

NT 2

T∑
t=1

(
N∑
i=1

ẋ2
it

)2

− 1

NT
tr
(
Σ̂

2
)
,

with ẋt = (ẋ1t, ..., ẋNt)
′ and ẋit = (xit − x̄i). Note that the Frobenius norm ‖A‖2F = tr(A′A)/N

is scaled by N which is not standard. Also, Σ̂LW is positive definite by construction. Thus, the
inverse Σ̂

−1
LW exists and is well conditioned.

As explained in LW and in subsequent contributions to this literature, shrinkage can be seen
as a trade-off between bias and variance in estimation of Σ, as captured by the choices of ρ1 and
ρ2. Note however that LW do not require these paramters to add up to unity, and it is possible for
the shrinkage method to place little weight on the data (ie the correlation matrix). Of particular
importance is the effect that LW shrinkage has on the diagonal elements of Σ̂ which renders it
inappropriate for use in impulse response analysis where the size of the shock is calibrated to the
standard deviation of the variables. Further, even though shrinkage adjusts the over-dispersion of
the unconstrained covariance eigenvalues, it does not correct the corresponding eigenvectors which
are also inconsistent (Johnstone and Lu (2004)). But unlike the thresholding approaches considered
in this paper, the LW methodology does not require Σ to be sparse.

6 Small sample properties

We evaluate the small sample properties of our proposed multiple testing (MT ) estimator, its
positive definite S-MT version and our shrinkage estimator on the sample correlation matrix by
use of a Monte Carlo simulation study. For comparative purposes we also report results for the three
widely used regularisation approaches described in Section 5. We consider four experiments: (A) a
first order autoregressive specification (AR); (B) a first order spatial autoregressive model (SAR);
(C) a banded matrix with ordering used in CL (Model 1); (D) a covariance structure that is based
on a pre-specified number of non-zero off-diagonal elements. The first two experiments produce
standard covariance matrices used in the literature and comply to approximate sparse covariance
settings. The latter two are examples of exact sparse covariance matrices. Results are reported for
N = {30, 100, 200, 400} and T = {60, 100}. As explained in Section 2, we are interested in our MT
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and shrinkage estimators producing covariance matrix estimates that are not only well-conditioned
(and, when needed, invertible) but also relatively stable over time. For this purpose we conduct
our simulation exercises using values of T that are relatively small but still suffi cient to produce
reliable covariance/correlation coeffi cient estimates. A robustness analysis is also conducted for
these setups. All experiments are based on R = 500 replications.

Experiment A We consider the AR(1) covariance matrix with decaying coeffi cient, φ,

Σ = (σij) =
1

1− φ2



1 φ φ2 · · · φN−1

φ 1
...

φ2 φ
. . .

...
... · · · · · · . . . φ

φN−1 · · · · · · φ 1


N×N

,

with its inverse given by

Σ−1 =
(
σij
)

=



1 −φ 0 · · · 0

−φ 1 + φ2 ...

0 −φ . . .
...

... · · · −φ 1 + φ2 −φ
0 · · · · · · −φ 1


N×N

.

The corresponding correlation matrix R=
(
ρij
)
is given by R =

(
1−φ2

)
Σ. For this example,

Σ−1 = Q′Q, where

Q = (qij) =



√
1− φ2 0 0 · · · 0

−φ 1
...

0 −φ . . .
...

... · · · −φ 1 0
0 · · · · · · −φ 1


N×N

.

Our data generating process is then given by

Qx
(r)
t = ε

(r)
t , t = 1, ..., T. (28)

Here x(r)
t = (x

(r)
1t ,x

(r)
2t , ...,x

(r)
Nt)
′, ε

(r)
t = (ε

(r)
1t ,ε

(r)
2t , ...,ε

(r)
Nt)
′ and ε(r)

it ∼ IIDN(0, 1) are generated for each
replication r = 1, ..., R.

Equivalently, (28) can be written as

x
(r)
1t =

1√
1− φ2

ε
(r)
1t ,

x
(r)
it = φx

(r)
i−1,t + ε

(r)
it , for i = 2, ..., N.

We set φ = 0.7. The sample covariance matrix of x(r)
t is computed as

Σ̂
(r)

= T−1
T∑
t=1

ẋ
(r)
t ẋ

(r)′
t , (29)

15



for each replication r, where ẋ(r)
t =

(
ẋ

(r)
1t , ..., ẋ

(r)
Nt

)′
, ẋ

(r)
it =

(
x

(r)
it − x̄

(r)
i

)
and x̄(r)

i = T−1
∑T

t=1 x
(r)
it ,

for i = 1, ..., N . The corresponding sample correlation matrix, R̂
(r)
is expressed as

R̂
(r)

= D̂
−1/2(r)

Σ̂
(r)
D̂
−1/2(r)

, (30)

where D̂
(r)

=diag( σ̂
(r)
ii , i = 1, 2, ..., N).

Experiment B Here we examine a standard first-order spatial autoregressive model (SAR).
The data generating process for replication r is now

x
(r)
t = ϑWx

(r)
t + ε

(r)
t

= (IN − ϑW )−1ε
(r)
t , t = 1, ..., T, (31)

where x(r)
t = (x

(r)
1t , x

(r)
2t , ..., x

(r)
Nt)
′, ϑ is the spatial autoregressive parameter, ε(r)

it ∼ IIDN(0, σii), and

σii ∼ IID
(

1
2 + χ2(2)

4

)
. Therefore, E(σii) = 1 and σii is bounded away from zero, for i = 1, ..., N .

The weights matrixW is row-standardized with all units having two neighbours except for the first
and last units that have only one neighbour

W =



0 1 0 · · · · · · 0 0
1/2 0 1/2 · · · · · · 0 0
0 1/2 0 · · · · · · 0 0
...

...
...

...
...

...
...

0 0 0 · · · 1/2 0 1/2
0 0 0 · · · 0 1 0


N×N

.

This ensures that the largest eigenvalue ofW is unity and the strength of cross-sectional dependence
of x(r)

t is measured by ϑ. We set ϑ = 0.4. The population covariance matrix Σ is given by

Σ = (IN − ϑW )−1D(IN − ϑW ′)−1,

where D = diag(σ11, σ22, ...., σNN ), and

Σ−1 = (IN − ϑW ′)D−1(IN − ϑW ).

Finally,
R = D−1/2ΣD−1/2.

We generate the sample covariance and correlation matrices Σ̂ and R̂ as in experiment A using
(29) and (30).

Experiment C Next we consider a banded matrix with ordering, following Model 1 of Cai
and Liu (2011):

Σ = diag(A1 +A2),

where A1 = (σij)1≤i,j≤N/2, σij = (1 − |i−j|10 )+ and A2 = 4IN/2. Σ is a two block diagonal (non-
invertible) matrix, A1 is a banded and sparse covariance matrix, and A2 is a diagonal matrix with
4 along the diagonal. Here x(r)

t = (x
(r)
1t ,x

(r)
2t , ...,x

(r)
Nt)
′ are generated as IIDN -variate random vectors

from the normal distribution with mean 0 and covariance matrix Σ. As before, we compute the
sample covariance and correlation matrices Σ̂ and R̂ using (29) and (30).
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Experiment D We analyse a covariance structure that explicitly controls for the num-
ber of non-zero elements of the population correlation matrix. First we draw N × 1 vectors
b= (b1, b2, ..., bN )′ as Uniform (0.7, 0.9) for the first and last Nb (< N) elements, where Nb =

[
N δ
]

and set the remaining middle elements to zero. The resulting population correlation matrix R is
given by

R = IN + bb′ − B̌2
,

where B̌=diag (b) is of N ×N dimension.
The degree of sparseness of R is determined by the value of the parameter δ. We are interested

in weak cross-sectional dependence, so we focus on the case where δ < 1/2 following Pesaran (2013),
and set δ = 0.25.

Further, we impose heteroskedasticity on the main diagonal ofΣ by generatingD=Diag(σ11, σ22,
..., σNN ) such that σii ∼ IID

(
1/2 + χ2(2)/4

)
, i = 1, 2, ..., N as in Experiment B. Then, Σ becomes

Σ = D1/2RD1/2.

We obtain the Cholesky factor of R, P , and generate Q = D1/2P which is then used in the
data generating process

x
(r)
t = Qε

(r)
t , t = 1, ..., T. (32)

Again, we compute the sample covariance and correlation matrices Σ̂ and R̂ using (29) and
(30).

6.1 Robustness analysis

In order to assess the robustness of our multiple testing (MT ) and shrinkage methodologies we also
conduct the following analysis:

1. We consider a more complex setting where x(r)
t represent the error terms in a regression. We

set u(r)
it = x

(r)
it , for i = 1, 2, ...., N, t = 1, 2, ..., T for notational convenience, where u(r)

it are
constructed as in experiments A-D. Then for each replication r, we generate

y
(r)
it = δi + γiz

(r)
it + u

(r)
it , for i = 1, 2, ...., N, t = 1, 2, ..., T, (33)

where δi ∼ IIDN (1, 1), and

z
(r)
it = ζiz

(r)
i,t−1 +

√
1− ζ2

i ν
(r)
it , for i = 1, 2, ...., N, t = −49, ..., 0, 1, ..., T,

with zi,−50 = 0, and νit ∼ IIDN (0, 1) . We discard the first 50 observations. The observed

regressors, z(r)
it , are therefore strictly exogenous and serially correlated, and could possibly

also be cross-sectionally dependent. We set ζi = 0.9. Further we allow for slope heterogeneity
by generating γi ∼ IIDN (1, 1) for i = 1, 2, ...., N .18

2. We allow for departures from normality for the errors ε(r)
it in experiments A-D. Therefore,

in each case we also generate ε(r)
it ∼ IID((χ2(2) − 2)/4), for i = 1, 2, ...., N and r = 1, ..., R

and repeat the steps in (29) and (30). We evaluate our results using the sample covariance
matrix.19

18Note that in this instance the multiple testing approach is corrected for the degrees of freedom. Hence, as in (10)√
T is replaced by

√
T −m, where m is equal to the number of regressors in (33) including the intercept.

19We also considered using Fisher’s z-transformation of the sample correlation coeffi cients in (30), given by:

Z
(r)
ij =

1

2
ln

1 + ρ̂
(r)
ij

1− ρ̂(r)
ij

, i, j = 1, ..., N,

for r = 1, ..., R. Results were very similar.
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6.2 Evaluation metrics: Spectral / Frobenius norms and support recovery

In all experiments we apply the four regularisation techniques described above: (i) our proposed
approach of multiple testing (implemented by row and on the full matrix) on R̂ (Σ̃MTR , Σ̃MTF ),
(ii) BL thresholding on Σ̂ (Σ̃BL,Ĉ), (iii) CL thresholding on Σ̂ (Σ̃CL,2, Σ̃CL,Ĉ), and (iv) LW

shrinkage on Σ̂ (Σ̂LW ), with the regularised covariance matrices given in parenthesis. We also
consider (v) LW shrinkage on R̂ (Σ̂LW (ξ∗)) and (vi) shrinkage on multiple testing estimator R̃MT

(Σ̃S-MTR or Σ̃S-MTF ). These approaches are evaluated predominantly for comparison with the
inverse covariance matrices. For both BL and CL thresholding procedures we further impose the
FLM extension which ensures positive definiteness of the estimated matrices. 20

Where regularisation is performed on the correlation matrix we reconstruct the corresponding
covariance matrix in line with (9). We compute the spectral norm of the deviations of each of the
regularised covariance matrices from their respective true Σ in experiments A-D:∥∥AΣ̊

∥∥ =
∥∥∥Σ−Σ̊

∥∥∥ , (34)

for Σ̊= {Σ̃MTR , Σ̃MTF , Σ̃S-MTR , Σ̃S-MTF , Σ̃BL,Ĉ , Σ̃CL,2, Σ̃CL,Ĉ , Σ̂LW }, where Ĉ is a constant eval-
uated through cross-validation - see Appendix B for details. We also evaluate the Frobenius norm
of the difference displayed in (34), denoted by ‖.‖F . With regard to the behaviour of the inverse
covariance matrices we evaluate ∥∥BΣ̊−1

∥∥ =
∥∥∥Σ−1−Σ̊

−1
∥∥∥ , (35)

for Σ̊
−1

= {Σ̃−1
S-MTR

, Σ̃
−1
S-MTF

, Σ̃
−1

BL,Ĉ∗ , Σ̃
−1

CL,Ĉ∗ , Σ̂LW (ξ∗) , Σ̂
−1
LW }, where Ĉ∗ is a constant estimated

through cross-validation over a reduced grid suggested by Fan, Liao and Mincheva (2013) (see
Appendix B for details). Again, we also calculate the Frobenius norm of the difference displayed
in (35).

Note that as long as Σ is well defined (implying that
∥∥Σ−1

∥∥ = O (1)) then for the inverses it
holds that: ∥∥∥Σ−1−Σ̊

−1
∥∥∥ =

∥∥∥Σ−1
(
Σ̊−Σ

)
Σ̊
−1
∥∥∥

≤
∥∥Σ−1

∥∥∥∥∥Σ̊−Σ
∥∥∥∥∥∥Σ̊−1

∥∥∥ .
Only for experiment C

∥∥Σ−1
∥∥ = O (1) is not satisfied, as the population covariance matrix is not

invertible.
We report the averages of

∥∥AΣ̊

∥∥ , ∥∥AΣ̊

∥∥
F
,
∥∥BΣ̊−1

∥∥ , and ∥∥BΣ̊−1

∥∥
F
over R = 500, except for

the BL and CL cross-validation procedures when N = 400 where R = 100.21

Finally, we assess the ability of the thresholding estimators to recover the support of the true
covariance matrix via the true positive rate (TPR) and false positive rate (FPR), as defined in
(15) and (16), respectively. These are only implemented for experiments C and D. Experiments A
and B are approximately sparse matrix settings, implying the absence of zero elements in the true
covariance matrix. Also, TPR and FPR are not applicable to shrinkage techniques.

6.3 Results

We report results for the covariance matrix estimates based on the reguralisation approaches de-
scribed in Sections 3 and 5. For convenience we abbreviate these as follows: MTR and MTF (mul-
tiple testing by row and on the full sample correlation matrix), S-MTR and S-MTF (shrinkage on
20We implement the method of Fan, Liao and Mincheva (2013) in our applications of Section 7. More details

regading this method can be found in Section 5 and Appendix B.
21For the BL and CL cross-validation procedures, due to their protracted computational time, in the case of

N = 400 we set the grid increments to 4 and reduced the number of replications to R = 100. The latter is in line
with the BL and CL simulation specifications.
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multiple testing by row and on the full correlation matrix), BLCV (BL thresholding on the sample
covariance matrix using cross-validation), BLFLM (BL thresholding using FLM cross-validation
adjustment), CLCV (CL thresholding on the sample covariance matrix using cross-validation),
CLFLM (CL thresholding using FLM cross-validation adjustment) and LWR̂ (LW shrinkage on
the sample correlation matrix) and LWΣ̂ (LW shrinkage on the sample covariance matrix). We
employed both the Bonferroni and Holm corrections when implementing our multiple testing ap-
proach. For brevity of exposition simulation results are only reported for the latter case. Results
using the Bonferroni correction were comparable for all settings and are available upon request.

First we establish robustness of our MT estimator to different levels of significance, p, used
in the theoretical derivation of the parameter bN in (8). We evaluate MT by row and on the
full R̂ matrix at the 5% and 10% significance levels in experiments A-D. The results in Table 1
show that there is little difference in the numerical values of the average spectral and Frobenius
norms of (34) betweenMTR5%

(orMTF5%
) andMTR10%

(orMTF10%
) for all N and T combinations

and for all covariance matrix setups considered. Our theoretical results of Section 3.1 suggest that
asymptotically, use of f (N) = N (N − 1) /2 in multiple testing produces superior performance than
when f (N) = (N − 1) is employed. In small samples multiple testing by row appears to perform
marginally better in most cases. However, as T and N increase and depending on the experiment,
performing multiple testing on the full matrix, MTF , yields results closer to those based on by
row implementation, MTR, and even outperform them at times - see for example experiment D for
T = 100. As results are robust to the significance level, we proceed with our analysis considering
only multiple testing at the 5% level.

Tables 2-5 summarise results for experiments A to D. In all cases the top panel shows com-
parative results for the different regularisation estimators. The middle panel presents results for
the estimated inverse matrices only for the estimators that address the issue of positive definite-
ness. Finally, the bottom panel gives the results for the shrinkage coeffi cients used in the shrinkage
approaches that we consider. Note that in Table 4 the middle panel has been excluded because
the population covariance matrix Σ is itself non-invertible and therefore results for inverse matrix
estimates are not meaningful.

Starting with experiment A and focusing initially on the top panel of Table 2 results show that
multiple testing and thresholding in general ourperform the shrinkage technique under both norm
specifications and especially so as N increases. When T rises from 60 to 100 all regularisation
measures perform better (lower values for ‖.‖ and ‖.‖F ) which is expected, but MT and threshold-
ing continue to outperform shrinkage. For small N , MTR, MTF , BLCV , CLT and CLCV behave
similarly, however as N increases MTR and MTF outperform BLCV and CLT . In general, CLCV
performs better than MTF though the difference between the two diminishes at times for large N .
When the positive definite condition is imposed a clear deterioration in the value of the spectral
and Frobenius norms is noticeable uniformly across estimators. However, S-MTR and S-MTF
perform favourably relative to BLFLM and CLFLM across all (N,T ) combinations. Finally, adap-
tive thresholding (CLCV and CLFLM ) outperforms universal thresholding (BLCV and BLFLM ),
which is expected given the heteroskedasticity present in the data. Also, CL using the theoreti-
cal thresholding parameter of 2 (CLT ) produces marginally higher norms than its cross-validation
based equivalent (CLCV ), in line with results in Cai and Liu (2011). Moving on to the middle
panel of Table 2, we find that the inverse covariance matrices estimated via S-MTR and S-MTF
perform much better than those produced using BLFLM and CLFLM . In fact, the average spectral
norm of CLFLM includes some sizeable outliers, especially for small N . Still, their more reliable
Frobenius norm estimates are higher than those of the shrinkage on multiple testing estimators.
Also, though LWΣ̂ outperforms both S-MTR and S-MTF for N = {30, 100} and for both T spec-
ifications, as N rises to 200 and 400 shrinkage on thresholding appears better behaved. Finally,
of all estimators considered, shrinkage on the sample correlation matrix LWR̂ produces the lowest
norm values across the N,T combinations. Interestingly, the shrinkage parameters of the bottom
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panel of Table 2 show that LWΣ̂ imposes a progressively lower weight on Σ̂ as N increases, even
more so for smaller T . On the other hand, S-MTR, S-MTF and LWR̂ apply comparatively more
balanced weights on I and Σ̂ across the range of (N,T ) combinations. Finally, S-MTF marginally
outperforms S-MTR when considering the regularised inverse covariance matrices.

Results for experiments B to D given in Tables 3-5 are on the whole qualitatively similar to
those of experiment A, apart from some differences . The values of the spectral and Frobenius
norms are lower for these experiments, particularly so for experiments B and D. This implies that
the population covariance matrices on which the respective data generating processes are based
are themselves better conditioned. Unlike in experiment A, both MTR and MTF now not only
outperform BLCV universally, but CLCV as well. With regard to the inverse matrix comparisons,
again BLFLM and CLFLM display outlier realisations in both cases, more so for smaller N and
for both T values considered. Further, LWR̂ and LWΣ̂ perform similarly for small N but as
the cross section dimension rises LWΣ̂ clearly outperforms, especially in experiment D. Overall,
the S-MT approach remains the most appealling and the multiple testing procedure outperforms
the remaining estimators across experiments. The superior properties of adaptive thresholding
over universal thresholding are again visible. Finally, though LWΣ̂ is computationally attractive
compared to the cross-validation based thresholding approaches its performance still falls short of
the equally computationally appealing MT and S-MT . Indeed, it repeatedly shrinks the sample
covariance matrix excessively towards the structured identity matrix.

Table 6 presents results for support recovery of Σ using the original multiple testing and thresh-
olding approaches with no adjustments. Superiority ofMTR andMTF over BLCV , CLT and CLCV
is again established when comparing the true positive rates (TPR) of the estimators (FPR are uni-
formly close to zero in all cases). As T rises the TPRs improve but as N increases they drop, as
expected. The only exception is BLCV in experiment D, which shows improvement from N = 30
to N = 100 for both T specifications. In experiment C the TPRs are lower than in experiment
D. The reason for this is that in experiment D we control explicitly for the number of non-zero
elements in R and Σ and ensure that they comply to the condition set out in Theorem 2.

Finally, we comment on the results from our robustness analysis (not presented here) applied
to experiments A-D. Evaluating the estimated covariance matrices based on the residuals from
regression (33) in general produces similar outcomes to the main results of Tables 2-5. In the case
of non-normal errors, a deterioration in the values of the average spectral and Frobenius norms is
visible across all estimators and experiments. This is not surprising as these methods are based on
the assumption of normality of the underlying data. However, MT and S-MT still outperform the
remaining estimators and appear to be more robust to non-normality than the other approaches
considered. Results from the robustness analysis can be found in the accompanying supplement.

Overall, both our proposed multiple testing (MT ) and shrinkage on multiple testing (S-MT )
estimators prove to be robust to changes in the specification of the true covariance matrix Σ. If
the inverse covariance matrix is of interest LWR̂ and S-MT are more appropriate, while MT gives
better covariance matrix estimates when positive definiteness is not required. Furthermore, MT
is robust to the choice of significance level p used in the calculation of bN . Also, S-MT generates
covariance matrix estimates that better reflect the properties of the true covariance matrix Σ than
the widely used LW shrinkage approach. Compared with shrinkage on the sample correlation
matrix, the relative performance of LWR̂ and S-MT appears to depend on the case studied.

7 An application to CAPM testing and portfolio optimisation

Estimation and regularisation of large covariance matrices has wide applicability in numerous fields
as discussed in the introduction. In this section we focus on two applications in the area of finance
that rather make use of the inverse population covariance matrix, Σ−1. The first evaluates the
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limitations of testing a linear asset pricing model when the number of assets is substantially larger
than the time dimension. The second is a typical portfolio optimisation exercise in which we apply
our proposed shrinkage on multiple testing estimator. We compare our S-MT estimates with those
produced by the approach of Fan, Liao and Mincheva (2011, 2013), which adjusts Cai and Liu
(2011) adaptive thresholding for the presence of factors in the data. We also consider the Ledoit
and Wolf (2004) shrinkage approach. We do not consider here the BL methodology with the FLM
adjustment for positive definiteness, as it is computationally very expensive, especially for the
CAPM example given the large number of replications employed in this study. Also, drawing on
the results of Section 6 it is likely that BL will underperform the FLM adaptive method since
considerable heteroskedasticity exists in these settings. Further, LWR̂ largely underperforms LWΣ̂
for large N in these applications. Therefore, we do not report results for this estimator either
but we discuss the implications of the apparent superiority of LWΣ̂ under specific metrics. In both
applications we consider the following data generating process, which reflects the usual Fama-French
(2004) model specification,

yit = αi +
m∑
`=1

β`if`t + κuit, i = 1, ..., N ; t = 1, ..., T, (36)

where αi is an intercept, β`i is the loading of asset i corresponding to factor f`t, m is the number
of factors, and uit is the idiosyncratic error. The parameter κ controls for the relative dominance
of the variance of the idiosyncratic terms over the pervasive effects.

7.1 Testing a linear Capital Asset Pricing Model

In our first application we set κ = 1 and determine the parameters and rhs variables in (36)
following PY. These aim at approximating the conditions prevailing in the S&P 500 data set over
the period of September 1989 to September 2011. We refer to Section 5 (p. 19-22) of Pesaran
and Yamagata (2012) for details regarding the generation of yit.When testing for market effi ciency
in essence the hypothesis tested is that all intercept terms αi, i = 1, ..., N are equal to zero or
H0 : α = 0, where α = (α1, ..., αN )′. A number of tests have been developed in the literature which
predominantly focus on the case where the number of assets is either limited compared to the time
dimension (N < T ) or if N > T then these assets are collected in a group of porfolios to handle
the issue of dimensionality - see Gibbons, Ross and Shanken (1989), Beaulieu, Dufour and Khalaf
(2007), Gungor and Luger (2009, 2011), among others. Pesaran and Yamagata (2012) provide a
comprehensive review of such methods and their limitations. In turn, they propose a test statistic
using (36), which under normality of ut = (u1t, ..., uNt)

′ can be written as

J(Σu) =
(τ ′TMFτT ) α̂′Σ−1

u α̂−N√
2N

→d N (0, 1) as N →∞ for any fixed T ≥ m+ 1, (37)

where α̂ are estimates ofα, τT is a T×1 vector of ones andMF = IT−F (F′F)−1 F′, F = (f1, f2, ..., fT )′ ,
ft = (f1t, ..., fmt)

′. Σu is the variance-covariance matrix of the error terms ut. When Σu is known
this test is valid for any T > m+1, but if an estimator of Σ−1

u is inserted in (37), then PY show that
J(Σ̂u) →d N (0, 1) only if N log(N)

T → 0, which requires N < T . To illustrate this point we repeat
part of the Monte Carlo simulation in PY for N = {50, 100, 500} and T = {60, 100}, where we
plug-in Σ̃−1

û,S-MTR
, Σ̃−1

û,S-MTF
, Σ̃−1

û,FLMCV
and Σ̂−1

û,LWΣ̂
as estimates of Σ−1

u in (37) and report the size

and power of the test.22 We focus on cases (ii) and (iv) of PY where the errors are cross-sectionally
weakly correlated and are assumed normal - case (ii), and non-normal - case (iv).

22First, yit, i = 1, ..., N, t = 1, ..., T are defactored following Fan, Liao and Mincheva (2011). Then, Σ̂û is estimated
from the resulting residuals, ûit, i = 1, ..., N, t = 1, ..., T .
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As shown in Table 7, considerable size distortions are visible when either of the estimators is
used for N > T . Size only improves as T increases. Looking at the relative performance of the
four estimators there is little difference between the four approaches when T = 60. As T increases
to 100 again results are very similar for all methods with FLMCV slightly outperforming the rest
of the estimators for small N , but S-MT prevailing for larger N .

To overcome this problem PY propose the following simple test statistic that ignores the off-
diagonal elements of Σu,

JPY =
N−1/2

∑N
i=1

(
t2i − υ

υ−2

)
(

υ
υ−2

)√
2(υ−1)
(υ−4)

[
1 + (N − 1) ρ̂2

] ,
where υ = T −m− 1, and ti denotes the standard t-ratio of αi in the OLS regression of individual
asset returns, and ̂̄ρ2 =

2

N(N − 1)

∑N
i=2

∑i−1
j=1 ρ̂

2
ijI
(
υρ̂2

ij ≥ bN
)
, (38)

ρ̂ij = û′i.ûj./

√
(û′i.ûi.)

(
û′j.ûj.

)
, I(.) is an indicator function and bN is defined in (8).23 Size and

power for this test are summarised in Table 7. The results show that the JPY controls well for size
and displays high power even when N � T . For a detailed analysis of this test statistic see Pesaran
and Yamagata (2012). This exercise is based on 2000 replications.

7.2 Large portfolio optimisation

Our second application focuses on the subject of optimal risk-return tradeoff in portfolio investment,
analysed in the seminal work of Markowitz (1952) and further developed by Sharpe (1964), Lintner
(1965) and Ross (1976) with the introduction of the capital asset pricing model and arbitrage
pricing theory. Since then, Chamberlain (1983), Chamberlain and Rothschild (1983), Green and
Hollifield (1992), Sentana (2004) and Pesaran and Zaffaroni (2009) among others, have considered
the implications of using the factor model in finding the tangency portfolio when the number of
asset returns becomes very large (N → ∞). Here, we use the factor model specification given by
(36) where the intercepts are generated as αi ∼ IIDN(1, 0.52), the factors as

f`t ∼ IIDN(0, 1), ` = 1, 2, 3; t = 1, ..., T,

and the corresponding factor loadings as

β`i ∼ IIDU(µv` − 0.5, µv` + 0.5), ` = 1, 2, 3; i = 1, ..., N,

with µv` =
√

1/3 for all `, so that
∑m

`=1 µ
2
v`
σ2
`f = 1, where σ2

`f = 1 by construction.
Finally, the idiosyncratic errors uit are generated to be heteroskedastic and weakly cross-

sectionally dependent. Specifically, we adopt the same spatial autoregressive model (SAR) of
experiment B in Section 6 to generate ut = (u1t, u2t, ..., uNt)

′.
Stacking over units i in (36) we have

yt = α+B′ft + κut, t = 1, ..., T,

where α = (α1, ..., αN )′, B = (β1, ...,βm)′, βi = (βi1, ..., βiN )′ , and ft = (f1t, ..., fmt)
′.24 The

population value of Σy is computed using

Σy = B′Σf B+ κ2Σu = B′Σf B+ κ2(IN − ρW )−1D(IN − ρW ′)−1

23Pesaran and Yamagata (2012) use Bonferroni by row when computing (38).
24The population values of σ2

i , β`i for i = 1, 2, ..., N and ` = 1, 2, 3 are generated once and fixed throughout the
replications.
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where D =diag(σ2
1, σ

2
2, ..., σ

2
N ) and Σf is set to its population value of Σf = E (ftf

′
t) = I3. For the

computation of the inverse it is convenient to use

Σ−1
y = κ−2Σ−1

u − κ−4Σ−1
u B

′ (I3 + κ−2BΣ−1
u B

′)−1
BΣ−1

u ,

where Σ−1
u = (IN − ρW ′)D−1(IN − ρW ).

We consider the following combinations of sample sizes N = {50, 100, 200, 400}, T = {60, 100},
for κ = {1, 2, 3, 4} and spatial autoregressive parameter ϑ = 0.4. The number of replications is set
to R = 500.

As analysed in Markowitz (1952) the global optimal mean-variance portfolio is the stock portfo-
lio that has the lowest risk and highest expected return payoff. The risk attributes are summarised
in the covariance matrix Σy. Simplifying the problem by assuming common mean returns equating
to unity, the solution to this porfolio optimisation problem amounts to minimizing the following:

min
w
w
′
Σyw, s.t. w′ e = 1,

where e is an N × 1 vector of ones and w = (w1, ..., wN )′ is a vector of portfolio weights. The
estimated weights of the global optimal portfolio are given by

ŵ =
Σ̂
−1
y e

e′Σ̂
−1
y e

,

where Σ̂y = T−1
∑T

t=1 yty
′
t. The estimated return variance of the portfolio, σ̂

2
GOP , is then

σ̂2
GOP =

e′Σ̂
−1
y Σ̂yΣ̂

−1
y e(

e′Σ̂
−1
y e

)2 =
(
e′Σ̂

−1
y e

)−1
. (39)

Once again, using the inverse of the sample covariance matrix Σ̂y in (39) is problematic when
N � T . We proceed to regularise Σ̂y using the same estimators as in the CAPM testing exercise.
Given the existence of factors in (36) first we extract them via OLS following Fan, Liao and
Mincheva (2011) and compute the de-factored components, v̂t = κût. Then, we regularise the
sample covariance matrix Σ̂v̂ = T−1

∑T
t=1 v̂tv̂

′
t, and compute,

Σ̊y = B̂
′
Σ̂fB̂ + Σ̊v̂,

where Σ̊y and Σ̊v̂ are the regularised versions of Σ̂y and Σ̂v̂. Here Σ̊y ={
Σ̃y,S-MTR , Σ̃y,S-MTF , Σ̃y,FLMCV

, Σ̂y,LWΣ̂

}
.25 The inverse of Σ̊y is computed as

Σ̊
−1
y =

(
B̂
′
Σ̂fB̂ + Σ̊v̂

)−1
= Σ̊

−1
v̂ − Σ̊

−1
v̂ B̂

′ (
Σ̂
−1
f + B̂Σ̊

−1
v̂ B̂

′)−1
B̂Σ̊

−1
v̂ .

We evaluate the following relationships across the different versions of Σ̊y:

1. The bias term of the estimated return variance σ̂2
GOP of the portfolio

1

R

R∑
r=1

(
σ2
GOP − σ̂

2 (r)
GOP

)
=

1

R

R∑
r=1

 1

e′Σ−1
y e
− 1

e′Σ̊
−1 (r)
y e

 .

25The equivalent regularisation estimators of Σ̂v̂ are Σ̊v̂ =
{

Σ̃v̂,S-MTR , Σ̃v̂,S-MTF , Σ̃v̂,FLMCV , Σ̂v̂,LW
Σ̂

}
.
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2. The corresponding root-mean-square error (RMSE)√√√√ 1

R

R∑
r=1

(
σ2
GOP − σ̂

2 (r)
GOP

)2
=

√√√√√ 1

R

R∑
r=1

 1

e′Σ−1
y e
− 1

e′Σ̊
−1 (r)
y e

2

.

3. The RMSE of the Euclidean norm of the optimal portfolio weights

1

R

R∑
r=1


√√√√ 1

N

N∑
i=1

(
wi − ẘ(r)

i

)2

 ,
where

w =
Σ−1
y e

e′Σ−1
y e

and ẘ =
Σ̊
−1
y e

e′Σ̊
−1
y e

.

4. The average of norms - both spectral and Frobenius - for all Σ̊
−1
y , given by

1

R

R∑
r=1

∥∥∥Σ−1
y − Σ̊−1 (r)

y

∥∥∥ .
We also report the average shrinkage parameter estimates corresponding to each Σ̊

−1
v̂ estimator.

In Table 8 we only report results for κ = 1. Those for κ = 2, 3, 4, where increased dominance of
the error term is considered, can be found in the accompanying supplement. As noted in Pesaran
and Zaffaroni (2009) the mean-variance effi cient portfolio (MV) is a function of the inverse of the
variance matrix of the asset returns. However, the workings of this relationship are considerably
complex and assessment of the performance of the estimated MV portfolio is not always clear cut.
For this reason we consider the use of more than one statistical measures.

We first look at the bias and RMSE of the estimated return variance σ̂2
GOP of the global

optimal portfolio when using the different regularisation techniques. Using S-MT at the 5% or
10% significance level appears to produce more accurate σ̂2

GOP estimates compared with FLMCV

for small N, though FLMCV does better as N increases for both T = {60, 100} specifications. In
this case, it is S-MTF that delivers lower bias compared with S-MTR. Further, LWΣ̂ persistently
generates the most accurate σ̂2

GOP estimates out of all other estimators, however at the same time
it shrinks the sample covariance matrix considerably more than either of the four versions of S-MT
for all N and T , as shown in the last column of Table 8. This is in line with the findings of Section
6. This extended shrinkage, where in fact the variance components of the estimated covariance
matrix become a fraction of their original values, is precisely what causes the LWΣ̂ method to work
so well. In the context of portfolio optimisation this implies that the reduced overall risk estimated
is not due to selecting the optimal cross-return fluctuations while disregarding less important asset
return co-movements, but rather a result of artificially dampening the volatilities of individual asset
returns. Though desirable, results using this metric should be treated with caution. Turning to
the RMSE of the portfolio weights these appear similar for all estimators. From the fifth column
of Table 8 it is evident that S-MT produces marginally more accurate estimates than the other
methods across all (N,T ) combinations. Finally, the spectral and Frobenius norm results for the
inverse variance matrix of the optimal portfolio estimates follow the ranking shown in Section 6.
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8 Concluding Remarks

This paper considers the issue of regularising large covariance matrices particularly in the case
where the cross-sectional dimension N of the data under consideration exceeds the time dimension,
T, and the sample variance-covariance matrix, Σ̂, becomes non-invertible. A novel regularisation
estimator (MT ) is proposed that uses insights from the multiple testing literature to enhance the
support of the true covariance matrix. It is applied to the sample correlation matrix thus keeping
the variance components of Σ̂ intact. It is shown that the resultant estimator has convergence

rate of
√

mNN
T under the Frobenius norm, where mN is bounded in N . Further, it is robust to

random permutations of the underlying observations and it is computationally simple to implement.
Multiple testing is also suitable for application to high frequency observations, rendering it robust
to changes in Σ over time. If regularisation of both Σ̂ and its inverse is of interest then we
recommend shrinkage applied to the sample correlation matrix. This method can also be used for
supplementary regularisation of our multiple testing estimator and ensures its invertibility.

Monte Carlo simulation findings are supportive of the theoretical properties ofMT . They show
favourable performance of both versions of the MT estimator compared with a number of key
regularisation techniques in the literature as well as their robustness to different covariance ma-
trix settings and deviations from the main assumptions of the underlying theory. The challenges
of testing a capital asset pricing model and estimating a global optimal portfolio when the num-
ber of assets is large are explored in two empirical applications of the MT method among other
regularisation approaches.

The problems of invertibility and robustness of estimated large covariance matrices to time
variations of the underlying variances and covariances of Σ are topics that continue to concern the
research community and are interesting areas for future study.
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Table 1: Multipe testing (MT ) estimator
Normally distributed errors

5% and 10% significance level - averages over 500 replications
Experiment A

N = 30 N = 100 N = 200 N = 400
Spectral Frobenius Spectral Frobenius Spectral Frobenius Spectral Frobenius

T = 60

MTR5%
4.426 7.924 5.691 16.254 6.112 23.981 6.481 35.128

MTF5%
5.187 9.117 6.614 19.059 7.163 28.482 7.735 42.602

MTR10%
4.241 7.646 5.495 15.733 5.937 23.287 6.328 34.181

MTF10%
5.007 8.825 6.467 18.612 6.994 27.823 7.538 41.455

T = 100

MTR5%
3.492 6.249 4.540 12.863 4.941 18.999 5.341 27.872

MTF5%
4.025 7.138 5.384 15.258 5.891 23.010 6.296 34.339

MTR10%
3.373 6.044 4.395 12.487 4.791 18.486 5.192 27.167

MTF10%
3.887 6.911 5.237 14.816 5.757 22.382 6.193 33.529

Experiment B
T = 60

MTR5%
1.419 3.334 1.634 6.477 2.012 10.093 2.170 14.753

MTF5%
1.557 3.926 1.755 7.407 2.098 11.187 2.243 15.997

MTR10%
1.378 3.180 1.613 6.241 1.988 9.795 2.153 14.400

MTF10%
1.525 3.790 1.731 7.313 2.095 11.131 2.242 15.964

T = 100

MTR5%
1.029 2.303 1.284 4.559 1.618 7.256 1.749 10.835

MTF5%
1.220 2.858 1.522 6.160 1.938 9.894 2.046 14.659

MTR10%
1.001 2.238 1.251 4.365 1.565 6.916 1.712 10.332

MTF10%
1.169 2.690 1.494 5.901 1.906 9.588 2.022 14.335

Experiment C
T = 60

MTR5%
2.194 4.061 3.299 8.479 3.866 12.568 4.299 18.400

MTF5%
2.394 4.336 3.949 9.650 4.725 14.710 5.333 22.164

MTR10%
2.214 4.131 3.257 8.531 3.794 12.604 4.215 18.417

MTF10%
2.325 4.236 3.811 9.394 4.577 14.320 5.182 21.594

T = 100

MTR5%
1.686 3.110 2.518 6.435 2.876 9.483 3.221 13.884

MTF5%
1.730 3.199 2.836 7.082 3.307 10.716 3.774 16.110

MTR10%
1.729 3.189 2.513 6.549 2.857 9.605 3.193 14.023

MTF10%
1.704 3.152 2.762 6.920 3.227 10.465 3.688 15.745

Experiment D
T = 60

MTR5%
0.656 1.197 1.061 2.185 0.998 2.980 1.400 4.343

MTF5%
0.728 1.245 1.513 2.512 1.487 3.195 2.416 4.818

MTR10%
0.678 1.259 1.054 2.293 1.014 3.163 1.357 4.568

MTF10%
0.687 1.200 1.394 2.397 1.366 3.106 2.248 4.705

T = 100

MTR5%
0.488 0.902 0.763 1.653 0.730 2.310 0.920 3.331

MTF5%
0.468 0.852 0.798 1.589 0.743 2.154 1.120 3.224

MTR10%
0.512 0.962 0.787 1.775 0.766 2.493 0.951 3.608

MTF10%
0.467 0.853 0.780 1.574 0.723 2.141 1.054 3.178

MTR=Multiple testing by row, MTF=Multiple testing on full R̂ matrix. Both estimators use Holm method at 5% and 10%

significance level.
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Table 2: Comparison of regularisation estimators applied to sparse covariance matrix Σ̂
Experiment A - normally distributed errors

Averages over 500 replications
N = 30 N = 100 N = 200 N = 400

Spectral Frobenius Spectral Frobenius Spectral Frobenius Spectral Frobenius

Sparse covariance matrix Σ

T = 60

MTR 4.426 7.924 5.691 16.254 6.112 23.981 6.481 35.128
MTF 5.187 9.117 6.614 19.059 7.163 28.482 7.735 42.602

S-MTR 5.784 8.736 7.170 18.475 7.572 27.568 7.882 40.656
S-MTF 6.450 9.898 7.774 20.867 8.172 31.149 8.506 46.079
BL∗CV 4.284 7.497 5.648 16.028 6.384 24.347 6.963 36.414

BL∗FLM 8.543 14.503 9.142 27.137 9.223 38.570 9.267 54.679
CLT 5.566 9.705 7.537 21.611 8.263 33.149 8.729 49.729

CL∗CV 4.088 7.339 5.228 15.610 5.785 23.612 6.274 35.382
CL∗FLM 8.512 14.446 9.130 27.098 9.220 38.555 9.265 54.668
LWΣ̂ 4.221 7.039 7.002 18.704 8.206 30.743 8.890 48.020

T = 100

MTR 3.492 6.249 4.540 12.863 4.941 18.999 5.341 27.872
MTF 4.025 7.138 5.384 15.258 5.891 23.010 6.296 34.339

S-MTR 4.763 7.048 6.197 15.374 6.675 23.267 7.066 34.772
S-MTF 5.460 8.102 6.884 17.646 7.367 26.768 7.736 40.089
BL∗CV 3.336 5.829 4.383 12.439 4.893 18.775 5.496 28.182

BL∗FLM 8.527 14.450 9.114 27.043 9.187 38.438 9.228 54.503
CLT 4.140 7.336 5.695 16.169 6.323 24.760 6.931 37.571

CL∗CV 3.247 5.757 4.144 12.227 4.585 18.407 5.000 27.459
CL∗FLM 8.434 14.299 9.095 26.980 9.181 38.409 9.228 54.491
LWΣ̂ 3.393 5.683 6.039 16.076 7.503 27.550 8.489 44.737

Inverse of sparse covariance matrix Σ−1

T = 60

S-MTR 4.065 5.261 4.747 10.269 4.994 15.033 5.174 21.862
S-MTF 4.101 5.023 4.457 9.992 4.559 15.130 4.719 22.754
BL∗FLM 5.683 7.348 5.868 13.663 5.941 19.403 6.002 27.487
CL∗FLM 2.5E+02 8.723 1.2E+02 14.302 6.298 19.404 7.520 27.514
LWR̂ 2.216 3.920 3.421 9.028 3.818 13.865 3.995 20.560
LWΣ̂ 2.523 4.187 4.038 10.674 4.666 16.953 5.074 25.610

T = 100

S-MTR 3.505 5.053 4.302 10.068 4.612 14.825 4.862 21.651
S-MTF 4.053 5.190 4.731 9.987 4.969 14.637 5.134 21.425
BL∗FLM 29.820 7.590 5.822 13.731 5.879 19.496 5.925 27.623
CL∗FLM 7.1E+03 13.561 6.9E+03 18.230 32.454 19.744 4.1E+02 29.356
LWR̂ 1.712 3.368 3.042 8.254 3.601 13.124 3.896 19.965
LWΣ̂ 1.927 3.480 3.511 9.463 4.285 15.764 4.846 24.669

Srinkage parameters
on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂

T = 60

S-MTR 0.389 0.611 0.474 0.526 0.513 0.487 0.545 0.455
S-MTF 0.414 0.586 0.494 0.506 0.534 0.466 0.564 0.436
LWR̂ 0.157 0.843 0.306 0.694 0.377 0.623 0.425 0.575
LWΣ̂ 0.443 0.770 0.898 0.534 1.202 0.377 1.458 0.244

T = 100

S-MTR 0.309 0.691 0.400 0.600 0.445 0.555 0.483 0.517
S-MTF 0.352 0.648 0.435 0.565 0.480 0.520 0.522 0.478
LWR̂ 0.109 0.891 0.248 0.752 0.331 0.669 0.396 0.604
LWΣ̂ 0.298 0.846 0.678 0.650 0.988 0.491 1.296 0.333

∗ For N = 400 and T = 60, 100 replications are set to 100. For all other N,T combinations replications are set to 500.

MTR=Multiple testing by row; MTF=Multiple testing on full R̂ matrix. Both use Holm method at 5% significance level.

S-MTR=Shrinkage on MT by row; S-MTF=Shrinkage on MT on full R̂ matrix.

BL=Bickel and Levina universal thresholding; CL= Cai and Liu adaptive thresholding.

CV uses cross-validation parameter; FLM uses Fan, Liao and Michela grid adjustment; T uses theoretical parameter.

LW=Ledoit and Wolf shrinkage: Σ̂ on sample covariance matrix; R̂ on sample correlation matrix.
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Table 3: Comparison of regularisation estimators applied to sparse covariance matrix Σ̂
Experiment B - normally distributed errors

Averages over 500 replications
N = 30 N = 100 N = 200 N = 400

Spectral Frobenius Spectral Frobenius Spectral Frobenius Spectral Frobenius

Sparse covariance matrix Σ

T = 60

MTR 1.419 3.334 1.634 6.477 2.012 10.093 2.170 14.753
MTF 1.557 3.926 1.755 7.407 2.098 11.187 2.243 15.997

S-MTR 1.435 3.323 1.657 6.388 2.003 9.859 2.144 14.428
S-MTF 1.559 3.876 1.759 7.360 2.093 11.136 2.238 15.964
BL∗CV 1.615 3.941 1.983 7.625 2.106 11.250 2.277 16.048

BL∗FLM 1.599 4.095 1.978 7.639 2.103 11.251 2.267 16.060
CLT 1.571 3.974 1.894 7.505 2.093 11.182 2.242 15.986

CL∗CV 1.436 3.361 1.900 7.214 2.089 11.129 2.239 15.929
CL∗FLM 1.461 3.568 1.977 7.476 2.093 11.191 2.252 16.010
LWΣ̂ 1.621 3.576 2.643 7.559 2.543 11.829 3.308 17.824

T = 100

MTR 1.029 2.303 1.284 4.559 1.618 7.256 1.749 10.835
MTF 1.220 2.858 1.522 6.160 1.938 9.894 2.046 14.659

S-MTR 1.141 2.531 1.409 4.964 1.701 7.632 1.814 11.215
S-MTF 1.290 2.960 1.575 6.197 1.952 9.812 2.053 14.530
BL∗CV 1.214 2.705 1.574 5.843 1.911 9.915 2.145 15.584

BL∗FLM 1.193 2.718 1.543 6.145 1.919 10.161 2.148 15.649
CLT 1.249 2.961 1.553 6.401 1.970 10.214 2.086 15.020

CL∗CV 1.034 2.334 1.295 4.587 1.628 7.423 1.860 11.911
CL∗FLM 1.035 2.344 1.331 4.836 1.756 8.282 2.040 14.228
LWΣ̂ 1.405 3.071 2.402 7.012 2.429 11.291 3.205 17.301

Inverse of sparse covariance matrix Σ−1

T = 60

S-MTR 1.963 3.373 2.652 6.891 3.259 10.148 3.691 14.938
S-MTF 2.581 3.923 3.157 8.028 3.723 11.584 4.078 16.669
BL∗FLM 1.4E+04 19.315 58.881 9.377 3.9E+03 15.321 14.009 17.017
CL∗FLM 2.1E+04 33.982 2.4E+04 23.651 44.094 12.593 16.774 17.064
LWR̂ 1.969 3.539 4.809 8.773 6.958 13.956 8.767 20.919
LWΣ̂ 2.971 3.874 3.715 8.438 4.932 12.850 5.832 18.870

T = 100

S-MTR 1.294 2.647 1.889 5.436 2.435 8.034 2.854 11.933
S-MTF 1.760 3.082 2.636 6.868 3.273 10.351 3.763 15.436
BL∗FLM 5.0E+03 23.048 4.2E+03 24.145 2.7E+04 30.297 43.825 17.318
CL∗FLM 3.0E+05 65.501 1.9E+05 1.0E+02 2.2E+07 3.6E+02 2.2E+03 31.662
LWR̂ 1.333 2.982 2.805 7.349 4.381 12.101 5.719 18.967
LWΣ̂ 2.338 3.374 3.406 7.993 4.735 12.515 5.744 18.663

Srinkage parameters
on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂

T = 60

S-MTR 0.383 0.617 0.402 0.598 0.387 0.613 0.378 0.622
S-MTF 0.329 0.671 0.327 0.673 0.303 0.697 0.312 0.688
LWR̂ 0.341 0.659 0.436 0.564 0.461 0.539 0.474 0.526
LWΣ̂ 0.591 0.517 0.871 0.257 1.011 0.162 1.086 0.105

T = 100

S-MTR 0.362 0.638 0.418 0.582 0.416 0.584 0.408 0.592
S-MTF 0.349 0.651 0.381 0.619 0.355 0.645 0.331 0.669
LWR̂ 0.288 0.712 0.412 0.588 0.450 0.550 0.470 0.530
LWΣ̂ 0.449 0.635 0.770 0.348 0.946 0.221 1.055 0.137

∗ For N = 400 and T = 60, 100 replications are set to 100. For all other N,T combinations replications are set to 500.

MTR=Multiple testing by row; MTF=Multiple testing on full R̂ matrix. Both use Holm method at 5% significance level.

S-MTR=Shrinkage on MT by row; S-MTF=Shrinkage on MT on full R̂ matrix.

BL=Bickel and Levina universal thresholding; CL= Cai and Liu adaptive thresholding.

CV uses cross-validation parameter; FLM uses Fan, Liao and Michela grid adjustment; T uses theoretical parameter.

LW=Ledoit and Wolf shrinkage: Σ̂ on sample covariance matrix; R̂ on sample correlation matrix.
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Table 4: Comparison of regularisation estimators applied to sparse covariance matrix Σ̂

Experiment C1 - normally distributed errors
Averages over 500 replications

N = 30 N = 100 N = 200 N = 400
Spectral Frobenius Spectral Frobenius Spectral Frobenius Spectral Frobenius

Sparse covariance matrix Σ

T = 60

MTR 2.194 4.061 3.299 8.479 3.866 12.568 4.299 18.400
MTF 2.394 4.336 3.949 9.650 4.725 14.710 5.333 22.164

S-MTR 3.377 4.837 5.995 11.621 6.638 17.474 7.043 25.812
S-MTF 4.148 5.497 6.599 12.645 7.211 18.983 7.609 28.103
BL∗CV 7.040 8.795 8.755 17.234 8.961 24.701 9.031 35.161

BL∗FLM 7.091 8.804 8.755 17.233 8.961 24.701 9.031 35.172
CLT 2.661 4.641 5.138 11.183 6.477 17.786 7.468 27.640

CL∗CV 2.381 4.394 3.574 9.404 4.316 14.278 5.024 21.375
CL∗FLM 7.059 8.769 8.747 17.207 8.958 24.671 9.030 35.131
LWΣ̂ 3.532 7.675 5.853 18.451 6.707 28.593 7.182 42.720

T = 100

MTR 1.686 3.110 2.518 6.435 2.876 9.483 3.221 13.884
MTF 1.730 3.199 2.836 7.082 3.307 10.716 3.774 16.110

S-MTR 2.431 3.610 5.079 9.597 5.734 14.752 6.221 22.258
S-MTF 3.050 4.118 5.768 10.753 6.378 16.357 6.821 24.500
BL∗CV 5.118 7.511 8.747 16.895 8.946 24.243 9.014 34.528

BL∗FLM 7.082 8.609 8.747 16.898 8.946 24.241 9.014 34.534
CLT 1.781 3.279 3.084 7.534 3.786 11.748 4.585 18.160

CL∗CV 1.738 3.230 2.634 6.816 3.002 10.180 3.395 15.206
CL∗FLM 7.038 8.563 8.721 16.852 8.937 24.215 9.011 34.504
LWΣ̂ 2.989 6.497 5.246 16.722 6.267 26.843 6.935 41.115

Srinkage parameters
on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂

T = 60

S-MTR 0.381 0.619 0.562 0.438 0.603 0.397 0.633 0.367
S-MTF 0.469 0.531 0.595 0.405 0.628 0.372 0.655 0.345
LWΣ̂ 1.015 0.586 1.633 0.335 1.925 0.217 2.124 0.136

T = 100

S-MTR 0.263 0.737 0.481 0.519 0.532 0.468 0.572 0.428
S-MTF 0.347 0.653 0.543 0.457 0.585 0.415 0.618 0.382
LWΣ̂ 0.744 0.700 1.373 0.445 1.741 0.297 2.024 0.183

1 Note that the population covariance matrix Σ does not have an inverse hence results relating to matrix inverses have no meaning.
∗ For N = 400 and T = 60, 100 replications are set to 100. For all other N,T combinations replications are set to 500.

MTR=Multiple testing by row; MTF=Multiple testing on full R̂ matrix. Both use Holm method at 5% significance level.

S-MTR=Shrinkage on MT by row; S-MTF=Shrinkage on MT on full R̂ matrix.

BL=Bickel and Levina universal thresholding; CL= Cai and Liu adaptive thresholding.

CV uses cross-validation parameter; FLM uses Fan, Liao and Michela grid adjustment; T uses theoretical parameter.

LW=Ledoit and Wolf shrinkage: Σ̂ on sample covariance matrix.
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Table 5: Comparison of regularisation estimators applied to sparse covariance matrix Σ̂
Experiment D - normally distributed errors

Averages over 500 replications
N = 30 N = 100 N = 200 N = 400

Spectral Frobenius Spectral Frobenius Spectral Frobenius Spectral Frobenius

Sparse covariance matrix Σ

T = 60

MTR 0.656 1.197 1.061 2.185 0.998 2.980 1.400 4.343
MTF 0.728 1.245 1.513 2.512 1.487 3.195 2.416 4.818

S-MTR 0.782 1.309 1.538 2.471 1.302 3.041 1.961 4.435
S-MTF 0.889 1.391 2.026 2.877 1.946 3.399 3.050 5.041
BL∗CV 1.436 1.931 2.635 3.512 2.735 3.985 3.722 5.566

BL∗FLM 1.512 2.016 3.336 4.072 2.744 3.987 3.730 5.557
CLT 0.847 1.389 2.055 3.054 1.976 3.550 3.088 5.218

CL∗CV 0.925 1.478 1.854 2.939 2.328 3.761 3.362 5.372
CL∗FLM 1.314 1.854 3.356 4.085 2.738 3.977 3.733 5.547
LWΣ̂ 1.188 2.304 3.166 4.703 2.522 6.172 3.623 9.534

T = 100

MTR 0.488 0.902 0.763 1.653 0.730 2.310 0.920 3.331
MTF 0.468 0.852 0.798 1.589 0.743 2.154 1.120 3.224

S-MTR 0.647 1.056 1.415 2.094 1.083 2.422 1.364 3.408
S-MTF 0.646 1.040 1.457 2.105 1.193 2.423 1.877 3.612
BL∗CV 0.879 1.308 1.237 2.120 2.544 3.508 3.526 4.909

BL∗FLM 1.133 1.573 3.328 3.915 2.727 3.617 3.696 4.989
CLT 0.485 0.875 0.948 1.738 0.923 2.309 1.595 3.589

CL∗CV 0.496 0.917 0.812 1.718 1.141 2.533 2.445 4.258
CL∗FLM 1.052 1.499 3.333 3.922 2.720 3.613 3.731 5.001
LWΣ̂ 1.032 2.052 2.935 4.463 2.450 6.007 3.575 9.318

Inverse of sparse covariance matrix Σ−1

T = 60

S-MTR 4.756 2.905 15.425 6.136 13.367 6.044 14.038 7.853
S-MTF 5.282 3.031 17.857 6.501 16.941 6.540 18.114 8.513
BL∗FLM 7.1E+02 7.034 46.674 8.388 26.348 7.707 24.963 9.503
CL∗FLM 9.3E+04 21.119 29.780 8.096 34.349 7.834 45.816 9.851
LWR̂ 5.187 4.452 15.736 12.584 15.080 19.470 18.160 30.113
LWΣ̂ 12.420 4.558 31.907 8.771 31.988 9.478 31.854 12.568

T = 100

S-MTR 4.532 2.684 15.398 5.866 12.793 5.364 11.034 6.434
S-MTF 4.526 2.665 15.673 5.882 13.853 5.444 14.398 6.900
BL∗FLM 1.7E+04 19.022 2.7E+02 8.880 48.354 7.690 26.695 8.897
CL∗FLM 4.5E+02 6.177 8.1E+02 9.214 1.9E+02 8.419 40.085 9.033
LWR̂ 4.850 3.720 16.168 10.239 14.347 16.032 13.104 26.403
LWΣ̂ 10.861 4.240 30.981 8.611 31.783 9.400 31.841 12.526

Srinkage parameters
on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂

T = 60

S-MTR 0.381 0.619 0.405 0.595 0.399 0.601 0.454 0.546
S-MTF 0.424 0.576 0.496 0.504 0.540 0.460 0.614 0.386
LWR̂ 0.423 0.577 0.467 0.533 0.483 0.517 0.485 0.515
LWΣ̂ 0.579 0.375 0.735 0.180 0.842 0.091 0.871 0.067

T = 100

S-MTR 0.352 0.648 0.394 0.606 0.364 0.636 0.334 0.666
S-MTF 0.353 0.647 0.402 0.598 0.401 0.599 0.459 0.541
LWR̂ 0.392 0.608 0.460 0.540 0.485 0.515 0.489 0.511
LWΣ̂ 0.473 0.492 0.682 0.244 0.826 0.115 0.868 0.077

∗ For N = 400 and T = 60, 100 replications are set to 100. For all other N,T combinations replications are set to 500.

MTR=Multiple testing by row; MTF=Multiple testing on full R̂ matrix. Both use Holm method at 5% significance level.

S-MTR=Shrinkage on MT by row; S-MTF=Shrinkage on MT on full R̂ matrix.

BL=Bickel and Levina universal thresholding; CL= Cai and Liu adaptive thresholding.

CV uses cross-validation parameter; FLM uses Fan, Liao and Michela grid adjustment; T uses theoretical parameter.

LW=Ledoit and Wolf shrinkage: Σ̂ on sample covariance matrix; R̂ on sample correlation matrix.
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Table 6: Comparison of Σ support recovery between MT and thresholding estimators
Normally distributed errors
Averages over 500 replications

N = 30 N = 100 N = 200 N = 400
TPR FPR TPR FPR TPR FPR TPR FPR

Experiment C
T = 60

MTR 0.729 0.002 0.591 0.000 0.553 0.000 0.522 0.000
MTF 0.623 0.000 0.456 0.000 0.402 0.000 0.357 0.000
BL∗CV 0.013 0.002 0.000 0.000 0.000 0.000 0.000 0.000
CLT 0.584 0.000 0.370 0.000 0.286 0.000 0.215 0.000

CL∗CV 0.710 0.005 0.576 0.002 0.528 0.001 0.478 0.000
T = 100

MTR 0.813 0.002 0.700 0.000 0.669 0.000 0.641 0.000
MTF 0.739 0.000 0.597 0.000 0.553 0.000 0.515 0.000
BL∗CV 0.324 0.048 0.000 0.000 0.000 0.000 0.000 0.000
CLT 0.729 0.000 0.566 0.000 0.506 0.000 0.453 0.000

CL∗CV 0.781 0.002 0.686 0.001 0.655 0.001 0.623 0.000

Experiment D
T = 60

MTR 0.975 0.001 0.972 0.000 0.941 0.000 0.895 0.000
MTF 0.869 0.000 0.833 0.000 0.649 0.000 0.469 0.000
BL∗CV 0.187 0.001 0.325 0.000 0.009 0.000 0.006 0.000
CLT 0.753 0.000 0.607 0.000 0.375 0.000 0.214 0.000

CL∗CV 0.723 0.003 0.666 0.001 0.225 0.000 0.135 0.000
T = 100

MTR 1.000 0.001 0.999 0.000 0.997 0.000 0.994 0.000
MTF 0.993 0.000 0.986 0.000 0.969 0.000 0.915 0.000
BL∗CV 0.686 0.002 0.852 0.001 0.101 0.000 0.051 0.000
CLT 0.981 0.000 0.950 0.000 0.886 0.000 0.749 0.000

CL∗CV 0.994 0.002 0.986 0.001 0.790 0.000 0.469 0.000
∗ For N = 400 and T = 60, 100 replications are set to 100. For all other N,T

combinations replications are set to 500.

MTR=Multiple testing by row, MTF=Multiple testing on full R̂ matrix.

Both MT estimators use Holm method at 5% significance level.

BLCV =Bickel and Levina universal thresholding using cross-validation parameter.

CLT= Cai and Liu adaptive thresholding using theoretical parameter.

CLCV = Cai and Liu adaptive thresholding using cross-validation parameter.
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Table 7: Size and power of J(Σ̂û) test in the case of models with three factors
normal errors non-normal errors

Size Power Size Power Size Power Size Power Size Power Size Power
(T,N) 50 100 500 50 100 500

PY 60 0.054 0.660 0.063 0.786 0.058 0.984 0.056 0.669 0.063 0.811 0.064 0.991
100 0.065 0.894 0.056 0.970 0.054 1.000 0.066 0.881 0.068 0.974 0.056 1.000

S-MTR 60 0.156 0.816 0.203 0.941 0.536 1.000 0.155 0.828 0.217 0.945 0.559 1.000
100 0.107 0.940 0.128 0.991 0.255 1.000 0.112 0.928 0.141 0.991 0.299 1.000

S-MTF 60 0.154 0.813 0.200 0.939 0.526 1.000 0.156 0.824 0.218 0.945 0.544 1.000
100 0.106 0.941 0.127 0.992 0.235 1.000 0.113 0.927 0.140 0.989 0.285 1.000

FLMCV 60 0.192 0.834 0.252 0.954 0.551 1.000 0.184 0.813 0.226 0.951 0.563 1.000
100 0.116 0.951 0.149 0.993 0.287 1.000 0.135 0.945 0.153 0.993 0.307 1.000

LWΣ̂ 60 0.166 0.695 0.223 0.827 0.577 0.994 0.158 0.683 0.241 0.821 0.566 0.997
100 0.119 0.865 0.168 0.956 0.297 1.000 0.121 0.864 0.161 0.952 0.321 0.999

PY= Pesaran and Yamagata, FLM=Fan, Liao and Mincheva, LW=Ledoit and Wolf.

S-MTR and S-MTF stand for Shrinkage on Multiple Testing by row and on the full sample correlation matrix.

S-MTR and S-MTF are evaluated at 5% significance level.

FLM approach uses cross validation to evaluate the thresholding parameter. LW method is applied to the sample covariance matrix.

Errors are weakly cross-sectionally dependent. Sparseness of Σu is defined as in Table 3 of PY(2012) with δb = 1/4.

Size: αi = 0 for all i = 1, ..., p. Power: αi ∼IIDN(0,1) for i = 1, 2, ..., pα, pα = [p0.8], otherwise αi = 0. Replications are set to 2000.
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Table 8: Deviation of estimated Global Optimal Portfolio from true portfolio
Averages over 500 replications

T = 60, k = 1(
σ2
GOP − σ̂2

GV O

)
Weights Norms Shrinkage Parameters

Bias (x100) RMSE (x100) RMSE (x100) Spectral Frobenius on I on R̂/Σ̂

N = 50 S-MTR5%
3.307 4.369 3.988 1.442 4.072 0.384 0.616

S-MTF5%
3.027 4.215 4.306 1.637 4.767 0.292 0.708

S-MTR10%
3.327 4.375 3.903 1.377 3.895 0.401 0.599

S-MTF10%
3.123 4.256 4.253 1.610 4.653 0.308 0.692

FLMCV 3.966 5.736 5.308 5.242 8.544 - -
LWΣ̂ 1.811 3.548 4.364 1.774 4.851 0.720 0.422

N = 100 S-MTR5%
1.737 1.922 2.002 1.652 6.649 0.379 0.621

S-MTF5%
1.627 1.833 2.156 1.803 7.642 0.293 0.707

S-MTR10%
1.737 1.923 1.964 1.607 6.395 0.400 0.600

S-MTF10%
1.663 1.864 2.139 1.789 7.535 0.298 0.702

FLMCV 1.725 2.070 2.425 4.764 10.799 - -
LWΣ̂ 0.777 1.191 2.184 2.015 8.019 0.811 0.304

N = 200 S-MTR5%
0.771 0.886 1.232 1.704 9.404 0.365 0.635

S-MTF5%
0.584 0.749 1.323 1.893 10.641 0.282 0.718

S-MTR10%
0.801 0.913 1.208 1.671 9.089 0.388 0.612

S-MTF10%
0.602 0.763 1.318 1.873 10.566 0.284 0.716

FLMCV 0.626 0.864 1.391 3.143 11.946 - -
LWΣ̂ 0.199 0.575 1.403 2.267 11.893 1.005 0.218

N = 400 S-MTR5%
0.357 0.387 0.607 1.884 14.898 0.354 0.646

S-MTF5%
0.281 0.322 0.641 1.980 16.365 0.316 0.684

S-MTR10%
0.374 0.401 0.597 1.852 14.483 0.378 0.622

S-MTF10%
0.285 0.325 0.640 1.976 16.322 0.300 0.700

FLMCV 0.292 0.342 0.660 2.981 17.382 - -
LWΣ̂ 0.100 0.204 0.685 2.348 18.485 0.994 0.153

T = 100, k = 1

N = 50 S-MTR5%
1.068 2.611 3.054 1.184 3.158 0.393 0.607

S-MTF5%
1.171 2.747 3.411 1.433 3.882 0.363 0.637

S-MTR10%
1.070 2.579 3.011 1.127 3.056 0.398 0.602

S-MTF10%
1.183 2.771 3.325 1.387 3.713 0.372 0.628

FLMCV 5.775 7.150 6.465 11.684 14.623 - -
LWΣ̂ 0.071 2.592 3.746 1.664 4.466 0.608 0.526

N = 100 S-MTR5%
0.712 0.989 1.531 1.397 5.200 0.410 0.590

S-MTF5%
0.812 1.096 1.800 1.661 6.613 0.364 0.636

S-MTR10%
0.691 0.976 1.493 1.349 5.029 0.418 0.582

S-MTF10%
0.803 1.085 1.755 1.624 6.376 0.375 0.625

FLMCV 2.210 2.785 3.202 17.267 23.390 - -
LWΣ̂ -0.010 0.812 1.959 1.954 7.671 0.737 0.384

N = 200 S-MTR5%
0.196 0.403 0.940 1.472 7.385 0.407 0.593

S-MTF5%
0.060 0.381 1.132 1.719 9.601 0.345 0.655

S-MTR10%
0.207 0.409 0.917 1.421 7.108 0.417 0.583

S-MTF10%
0.085 0.388 1.109 1.691 9.323 0.356 0.644

FLMCV 0.506 1.332 1.671 14.199 23.706 - -
LWΣ̂ -0.467 0.649 1.281 2.248 11.709 0.968 0.269

N = 400 S-MTR5%
0.109 0.162 0.464 1.673 11.803 0.395 0.605

S-MTF5%
0.024 0.133 0.563 1.907 15.406 0.314 0.686

S-MTR10%
0.111 0.162 0.450 1.617 11.331 0.408 0.592

S-MTF10%
0.037 0.134 0.555 1.891 15.086 0.325 0.675

FLMCV 0.068 0.380 0.710 9.440 24.824 - -
LWΣ̂ -0.261 0.299 0.635 2.365 18.550 1.004 0.170

FLM=Fan, Liao and Mincheva and LW=Ledoit and Wolf.

S-MTR and S-MTF stand for shrinkage on multiple testing by row and on the full sample correlation matrix.

S-MTR and S-MTF are evaluated at 5% and 10% significance levels.

FLM approach uses cross validation to evaluate the thresholding parameter. LW method is applied to the sample covariance matrix.
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Appendix A Mathematical Proofs

A.1 Lemmas and proofs for MT estimator
We begin by stating a few technical lemmas that are essential for the proofs of the main results.

Lemma 1 Suppose that x ∼ N(ρ, σ2), then

E [xI(a ≤ x ≤ b)] = ρ

[
Φ

(
b− ρ
σ

)
− Φ

(a− ρ
σ

)]
+ σ

[
φ
(a− ρ

σ

)
− φ(

b− ρ
σ

)

]
, (A.1)

and

E
[
x2I(a ≤ x ≤ b)

]
=
(
σ2 + ρ2) [Φ( b− ρ

σ

)
− Φ

(a− ρ
σ

)]
+ σ (a+ ρ)φ(

a− ρ
σ

)− σ (b+ ρ)φ(
b− ρ
σ

). (A.2)

Proof. Note that

E [xI(a ≤ x ≤ b)] =

∫ b

a

x(2πσ2)−1/2e−(1/2)(x−ρ)2/σ2

dx.

Let z = (x− ρ)/σ, then

E [xI(a ≤ x ≤ b)] =

∫ (b−ρ)/σ

(a−ρ)/σ
(σz + ρ)φ(z)dz,

where φ(z) = (2π)−1/2 exp(−0.5z2). But∫ (b−ρ)/σ

(a−ρ)/σ
(σz + ρ)φ(z)dz = σ [−φ(z)]

(b−ρ)/σ
(a−ρ)/σ + ρ

∫ (b−ρ)/σ

(a−ρ)/σ
φ(z)dz,

and hence

E [xI(a ≤ x ≤ b)] = ρ

[
Φ

(
b− ρ
σ

)
− Φ

(a− ρ
σ

)]
+ σ

[
φ
(a− ρ

σ

)
− φ(

b− ρ
σ

)

]
,

which establishes (A.1). To prove (A.2) note that using the transformation z = (x− ρ)/σ we have

E
[
x2I(a ≤ x ≤ b)

]
=

∫ (b−ρ)/σ

(a−ρ)/σ

(
σ2z2 + ρ2 + 2ρσz

)
φ(z)dz.

But ∫ (b−ρ)/σ

(a−ρ)/σ
z2φ(z)dz = [−zφ(z)]

(b−ρ)/σ
(a−ρ)/σ + Φ

(
b− ρ
σ

)
− Φ

(a− ρ
σ

)
= Φ

(
b− ρ
σ

)
− Φ

(a− ρ
σ

)
−
(
b− ρ
σ

)
φ(
b− ρ
σ

) +
(a− ρ

σ

)
φ(
a− ρ
σ

),

and ∫ (b−ρ)/σ

(a−ρ)/σ
zφ(z)dz = φ(

a− ρ
σ

)− φ(
b− ρ
σ

).

Therefore

E
[
x2I(a ≤ x ≤ b)

]
=
(
σ2 + ρ2) [Φ( b− ρ

σ

)
− Φ

(a− ρ
σ

)]
+ σ (a+ ρ)φ(

a− ρ
σ

)− σ (b+ ρ)φ(
b− ρ
σ

).

which establishes (A.2).

Lemma 2 Let bN = Φ−1
(

1− p
2f(N)

)
,where p/ [2f(N)] is suffi ciently small such that 1− p

2f(N)
> 0, then

bN ≤
√

2 [ln f(N)− ln(p)]. (A.3)

Proof. First note that
Φ−1 (z) =

√
2 erf−1(2z − 1), z ∈ (0, 1),

where Φ(x) is cumulative distribution function of a standard normal variate, and erf(x) is the error function defined
by

erf(x) =
2√
π

∫ x
0
e−u

2

du. (A.4)

34



Consider now the inverse complementary error function erfc−1(x) given by

erf c−1(1− x) = erf−1(x).

Using results in Chiani, Dardari and Simon (2003, p.842) we have

erf c−1(x) ≤
√
− ln(x).

Applying the above results to bN we have

bN = Φ−1

(
1− p

2f(N)

)
=
√

2 erf−1

[
2

(
1− p

2f(N)

)
− 1

]
=
√

2 erf−1

(
1− p

f(N)

)
=
√

2 erf c−1

(
p

f(N)

)

≤
√

2

√
− ln

(
p

f(N)

)
=
√

2 [ln f(N)− ln(p)].

Lemma 3 Consider the cumulative distribution function of a standard normal variate, defined by

Φ(x) = (2π)−1/2∫ x
−∞e

−u2

2 du.

Then for x > 0

Φ(−x) = 1− Φ(x) ≤ 1

2
exp(−x

2

4
). (A.5)

Proof. Using results in Chiani, Dardari and Simon (2003, p.840).we have

erf c(x) =
2√
π

∫∞
x
e−u

2

du ≤ exp(−x
2

2
), (A.6)

where erf c(x) is the complement of the erf(x) function defined by (A.4). But

1− Φ(x) = (2π)−1/2∫∞
x
e−

u2

2 du =
1

2
erf c

(
x√
2

)
,

and using (A.6) we have

1− Φ(x) =
1

2
erf c

(
x√
2

)
≤ 1

2
exp

[
−1

2

(
x√
2

)2
]

=
1

2
exp

(
−x

2

4

)
.

Lemma 4 (i) Under assumption 1,

E[I

(∣∣ρ̂ij∣∣ ≤ bN√
T

)
] = P (Uij ≤ zij ≤ Lij) = Φ(Uij)− Φ(Lij),

where zij = (ρ̂ij − µij)/ωij , bN is defined as in Lemma 2, and

Uij =

{
O(

bN−
√
Tρij

1−ρ2
ij

), if ρij 6= 0

bN , otherwise
, and Lij =

{
= O(

−bN−
√
Tρij

1−ρ2
ij

), if ρij 6= 0

−bN , otherwise
. (A.7)

(ii) Under assumptions 1 and 2,

∑∑
i 6=j,ρij 6=0

E[I

(∣∣ρ̂ij∣∣ ≤ bN√
T
|ρij 6= 0

)
] ≤ 2mNNΦ(

bN −
√
Tρmin

1− ρ2
min

).

Proof. (i).Under (11) of assumption 1

zij =
ρ̂ij − µij
ωij

∼ N(0, 1).
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The required result follows trivially,

E[I

(∣∣ρ̂ij∣∣ ≤ bN√
T

)
] = E[I

(
bN −

√
Tρij

1− ρ2
ij

≤
ρ̂ij − µij
ωij

≤
−bN −

√
Tρij

1− ρ2
ij

)
]

= P (Uij ≤ zij ≤ Lij) = Φ(Uij)− Φ(Lij).

(ii). From part (i) it follows that

∑∑
i6=j,ρij 6=0

E[I

(∣∣ρ̂ij∣∣ ≤ bN√
T
|ρij 6= 0

)
] =

∑∑
i 6=j,ρij 6=0

{
Φ

(
bN −

√
Tρij

1− ρ2
ij

)
− Φ

(
−bN −

√
Tρij

1− ρ2
ij

)}
.

Distinguishing between cases where ρij are strictly positive and negative the last expression in the above can be written
as ∑∑

i 6=j,ρij>0

{
Φ

(
bN −

√
Tρij

1− ρ2
ij

)
− Φ

(
−bN −

√
Tρij

1− ρ2
ij

)}
+

∑∑
i 6=j,ρij<0

{
Φ

(
bN −

√
Tρij

1− ρ2
ij

)
− Φ

(
−bN −

√
Tρij

1− ρ2
ij

)}

=
∑∑

i 6=j,ρij>0

{
Φ

(
bN −

√
Tρij

1− ρ2
ij

)
− Φ

(
−bN −

√
Tρij

1− ρ2
ij

)}
+

∑∑
i 6=j,ρij<0

{
Φ

(
bN +

√
Tρij

1− ρ2
ij

)
− Φ

(
−bN +

√
Tρij

1− ρ2
ij

)}

= 2
∑∑

i6=j,|ρij |>0

{
Φ

(
bN −

√
T
∣∣ρij∣∣

1− ρ2
ij

)
− Φ

(
−bN −

√
T
∣∣ρij∣∣

1− ρ2
ij

)}
.

Hence, ∑∑
i 6=j,ρij 6=0

ρ2
ijE

[
I
(
Lij ≤ zij ≤ Uij

∣∣ρij 6= 0
)]

≤ 2mNN

[
Φ

(
bN −

√
Tρmin

1− ρ2
min

)
− Φ

(
−bN −

√
Tρmax

1− ρ2
max

)]
≤ 2mNNΦ

(
bN −

√
Tρmin

1− ρ2
min

)
.

A.2 Proofs of theorems for MT estimator

Proof of Theorem 1. Consider ∥∥∥R̃−R∥∥∥2

F
=
∑∑
i6=j

(ρ̃ij − ρij)
2,

and note that

ρ̃ij − ρij =
(
ρ̂ij − ρij

)
I

(∣∣ρ̂ij∣∣ > bN√
T

)
− ρij

[
1− I

(∣∣ρ̂ij∣∣ > bN√
T

)]
.

Hence (
ρ̃ij − ρij

)2
=

(
ρ̂ij − ρij

)2
I

(∣∣ρ̂ij∣∣ > bN√
T

)
+ ρ2

ij

[
1− I

(∣∣ρ̂ij∣∣ > bN√
T

)]2

−2ρij
(
ρ̂ij − ρij

)
I

(∣∣ρ̂ij∣∣ > bN√
T

)[
1− I

(∣∣ρ̂ij∣∣ > bN√
T

)]
.

However,

I

(∣∣ρ̂ij∣∣ > bN√
T

)[
1− I

(∣∣ρ̂ij∣∣ > bN√
T

)]
= 0,

and [
1− I

(∣∣ρ̂ij∣∣ > bN√
T

)]2

= 1− I
(∣∣ρ̂ij∣∣ > bN√

T

)
.

Therefore, we have∑∑
i6=j

(
ρ̃ij − ρij

)2
=

∑∑
i6=j

(
ρ̂ij − ρij

)2
I

(∣∣ρ̂ij∣∣ > bN√
T

)
+
∑∑
i6=j

ρ2
ij

[
1− I

(∣∣ρ̂ij∣∣ > bN√
T

)]
=

∑∑
i6=j

(
ρ̂ij − ρij

)2
I

(∣∣ρ̂ij∣∣ > bN√
T

)
+
∑∑
i6=j

ρ2
ijI

(∣∣ρ̂ij∣∣ ≤ bN√
T

)
. (A.8)
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To simplify the derivations we write all the indicator functions in terms of zij = (ρ̂ij − µij)/ωij , with µij and ωij
defined in (12) and (13) of assumption 1, respectively. Hence, from part (i) of Lemma 4 it follows that

I

(∣∣ρ̂ij∣∣ > bN√
T

)
= 1− I (Lij ≤ zij ≤ Uij) ,

where Uij and Lij are given in (A.7) of the same lemma.
Consider now a typical element in the first term of (A.8) and note that it can be rewritten as(
ρ̂ij − ρij

)2
I

(∣∣ρ̂ij∣∣ > bN√
T

)
=

(
ρ̂ij − µij + µij − ρij

)2
[1− I (Lij ≤ zij ≤ Uij)]

=
[
ω2
ijz

2
ij + 2ωij

(
µij − ρij

)
zij +

(
µij − ρij

)2]× [1− I (Lij ≤ zij ≤ Uij)] .

From (12) and (13) of assumption 1, we note that(
µij − ρij

)2
= 0, if ρij = 0,(

µij − ρij
)2

=
ρ2
ij(1− ρ2

ij)
2

4T 2
+O

(
T−3) = O(T−2), if ρij 6= 0.

and

ωij
(
µij − ρij

)
= 0 if ρij = 0

ωij
(
µij − ρij

)
=

(1− ρ2
ij)√

T

[
1 +O(T−1)

]1/2 [−ρij(1− ρ2
ij)

2T
+
G(ρij)

T 2

]
= O

(
T−3/2

)
, if ρij 6= 0.

Collecting the various terms, we can now write

E
∥∥∥R̃−R∥∥∥2

F
=

∑∑
i 6=j

E
{[
ω2
ijz

2
ij +

(
µij − ρij

)2
+ 2ωij

(
µij − ρij

)
zij
]
× [1− I (Lij ≤ zij ≤ Uij)]

}
+
∑∑
i 6=j

ρ2
ijE [I (Lij ≤ zij ≤ Uij)] .

We now decompose each of the above sums into those with ρij = 0 and those where ρij 6= 0, and write

E
∥∥∥R̃−R∥∥∥2

F
=

∑∑
i6=j, ρij 6=0

E

{ [
ω2
ijz

2
ij +

(
µij − ρij

)2
+ 2ωij

(
µij − ρij

)
zij
]

×
[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij 6= 0
)] }

+
∑∑

i 6=j,ρij 6=0

ρ2
ijE

[
I
(
Lij ≤ zij ≤ Uij

∣∣ρij 6= 0
)]

+
∑∑

i 6=j, ρij=0

E
{
ω2
ijz

2
ij ×

[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij = 0
)]}

. (A.9)

Consider the three terms in the above expression starting with the second term. We distinguish between cases
where ρij are strictly positive and negative as in part (ii) of Lemma 4 from which it follows that∑∑

i6=j,ρij 6=0

ρ2
ijE

[
I
(
Lij ≤ zij ≤ Uij

∣∣ρij 6= 0
)]

≤ 2ρ2
maxmNNΦ

(
bN −

√
Tρmin

1− ρ2
min

)

= 2ρ2
maxmNNΦ

−√Tρmin

(
1− bN√

Tρmin

)
1− ρ2

min

 .
Using (A.3) of Lemma 2 and under our assumptions, bN√

Tρmin
= o(1), and

NΦ

−√Tρmin

(
1− bN√

Tρmin

)
1− ρ2

min

 = O

[
NΦ

(
−
√
Tρmin

1− ρ2
min

)]
.

But by (A.5) of Lemma 3

NΦ

(
−
√
Tρmin

1− ρ2
min

)
≤ 1

2
N exp

[
−1

4

Tρ2
min

(1− ρ2
min)2

]
= o(1).

Note that this result does not require N/T → 0, and holds even if N/T tends to a fixed constant.
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Consider now the third term of (A.9)∑∑
i 6=j, ρij=0

E
{
ω2
ijz

2
ij ×

[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij = 0
)]}

=

[
1

T
+O(T−2)

] ∑∑
i6=j, ρij=0

E
{
z2
ij ×

[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij = 0
)]}

.

E
{
z2
ij

[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij = 0
)]}

= 1− {[Φ (Uij)− Φ (Lij)] + Lijφ(Lij)− Uijφ(Uij)}
= Φ (−Uij) + Φ (Lij) + Uijφ(Uij)− Lijφ(Lij).

But since under ρij = 0, Uij = bN and Lij = −bN , we then have

E
{
z2
ij

[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij = 0
)]}

= Φ (−bN ) + Φ (−bN ) + bNφ(bN ) + bNφ(bN )

= 2Φ (−bN ) + 2bNφ(bN ),

and ∑∑
i 6=j, ρij=0

E
{
ω2
ijz

2
ij

[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij = 0
)]}

≈ N(N −mN − 1)

T
[2Φ (−bN ) + 2bNφ(bN )] .

However,

Φ (−bN ) = 1− Φ(bN ) = 1− Φ

[
Φ−1

(
1− p

2f(N)

)]
=

p

2f(N)
,

and hence ∑∑
i 6=j, ρij=0

E
{
ω2
ijz

2
ij

[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij = 0
)]}

≈ N(N −mN − 1)

T

[
p

2f(N)
+ 2(2π)−1/2bN exp

(
−1

2
b2N

)]
.

The first term in the above expression is o(1) if f(N) = O(N2) for N and T large. But we need the additional
restriction of N/T → 0, if f(N) = O(N). To ensure that the second term tends to zero, we need N/T → 0, as well
as NbN exp

(−1
2
b2N
)
being bounded in N. Finally, consider the first term of (A.9), and note that

E
{
zij
[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij 6= 0
)]}

= 0− φ(Lij) + φ(Uij)

E
[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij 6= 0
)]

= 1− [Φ (Uij)− Φ (Lij)]

= Φ (−Uij) + Φ (Lij) ,

and

E
{
z2
ij ×

[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij 6= 0
)]}

= 1− {[Φ (Uij)− Φ (Lij)] + Lijφ(Lij)− Uijφ(Uij)}
= Φ (−Uij) + Φ (Lij) + Uijφ(Uij)− Lijφ(Lij).∑∑

i6=j, ρij 6=0

E
{[
ω2
ijz

2
ij +

(
µij − ρij

)2
+ 2ωij

(
µij − ρij

)
zij
]
×
[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij 6= 0
)]}

=
∑∑

i6=j, ρij 6=0

{
ω2
ij [Φ (−Uij) + Φ (Lij) + Uijφ(Uij)− Lijφ(Lij)] +(

µij − ρij
)2

[Φ (−Uij) + Φ (Lij)] + 2ωij
(
µij − ρij

)
[−φ(Lij) + φ(Uij)]

}
.

Hence, using the expressions for Uij and Lij under ρij 6= 0,

∑∑
i6=j, ρij 6=0



ω2
ij


Φ

(√
Tρij−bN
1−ρ2

ij

)
+ Φ

(
−bN−

√
Tρij

1−ρ2
ij

)
+

(
bN−

√
Tρij

1−ρ2
ij

)
φ

(√
Tρij−bN
1−ρ2

ij

)
+

(
bN+

√
Tρij

1−ρ2
ij

)
φ
(
bN +

√
Tρij

)
+

(
µij − ρij

)2 [
Φ

(√
Tρij−bN
1−ρ2

ij

)
+ Φ

(
−bN−

√
Tρij

1−ρ2
ij

)]
+2ωij

(
µij − ρij

) [
φ

(
bN−

√
Tρij

1−ρ2
ij

)
− φ

(
bN+

√
Tρij

1−ρ2
ij

)]


=

∑∑
i 6=j, ρij 6=0

[
ω2
ij +

(
µij − ρij

)2] [
Φ

(√
Tρij − bN
1− ρ2

ij

)
+ Φ

(
−bN −

√
Tρij

1− ρ2
ij

)]

+
∑∑

i6=j, ρij 6=0

ω2
ij


(
bN−

√
Tρij

1−ρ2
ij

)
φ

(√
Tρij−bN
1−ρ2

ij

)
+

(
bN+

√
Tρij

1−ρ2
ij

)
φ

(
bN+

√
Tρij

1−ρ2
ij

)


+2
∑∑

i 6=j, ρij 6=0

ωij
(
µij − ρij

) [
φ

(
bN −

√
Tρij

1− ρ2
ij

)
− φ

(
bN +

√
Tρij

1− ρ2
ij

)]
.
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Since ω2
ij = O(T−1), and

(
µij − ρij

)
= O(T−1), and also Φ

(√
Tρij−bN
1−ρ2

ij

)
+ Φ

(
−
√
Tρij−bN
1−ρ2

ij

)
< 2, then

∑∑
i 6=j, ρij 6=0

[
ω2
ij +

(
µij − ρij

)2] [
Φ

(√
Tρij − bN
1− ρ2

ij

)
+ Φ

(
−
√
Tρij − bN
1− ρ2

ij

)]
< 2

∑∑
i 6=j, ρij 6=0

[
ω2
ij +

(
µij − ρij

)2]
,

and

2
∑∑

i6=j, ρij 6=0

[
ω2
ij +

(
µij − ρij

)2]
= O

(
mNN

T

)
.

Also, (
bN −

√
Tρij

1− ρ2
ij

)
φ

(√
Tρij − bN
1− ρ2

ij

)
= (2π)−1/2

(
bN −

√
Tρij

1− ρ2
ij

)
exp

([
−1

2

(
bN −

√
Tρij

1− ρ2
ij

)2])
,

and

∑∑
i 6=j, ρij 6=0

ω2
ij

[(
bN −

√
Tρij

1− ρ2
ij

)
φ

(√
Tρij − bN
1− ρ2

ij

)]

= (2π)−1/2 ∑∑
i 6=j, ρij 6=0

ω2
ij

(
bN −

√
Tρij

1− ρ2
ij

)
exp

([
−1

2

(√
Tρij − bN
1− ρ2

ij

)2])

= (2π)−1/2 ∑∑
i 6=j, ρij 6=0

ω2
ij

(
bN −

√
Tρij

1− ρ2
ij

)
exp

(
−Tρ2

ij

2

(
b2N
Tρ2

ij

+ 1− 2
bN

ρij
√
T

))
.

But by (A.3) of Lemma 2, b
2
N
T

= o(1), and T exp
(
−Tρ2

min
2

)
→ 0 as T →∞, and

(2π)−1/2 ∑∑
i 6=j, ρij 6=0

ω2
ij

(
bN −

√
Tρij

1− ρ2
ij

)
exp

[
−Tρ2

ij

2

(
b2N
Tρ2

ij

+ 1− 2
bN

ρij
√
T

)]

= O

[
mNN

T

√
T exp

(
−Tρ2

min

2

)]
= o(1).

Overall, the order of the final term is given by∑∑
i 6=j, ρij 6=0

E
{[
ω2
ijz

2
ij +

(
µij − ρij

)2
+ 2ωij

(
µij − ρij

)
zij
]
×
[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij 6= 0
)]}

= O

(
mNN

T

)
.

Putting the results for all the three terms together we now have

E
∥∥∥R̃−R∥∥∥2

F
= O

(
mNN

T

)
, if NbN exp

(
−1

2
b2N

)
= O(1).

From (A.3) of Lemma 2 setting bN =
√

2 [ln f(N)− ln(p)] we have that

NbN exp

(
−1

2
b2N

)
=

Np
√

2 [ln f(N)− ln(p)]

f(N)

=

{
O(
√

lnN), if f(N) = O(N)

O(
√

lnN
N

), if f(N) = O(N2)
,

and thus NbN exp
(−1

2
b2N
)
will be bounded in N only if f(N) = O(N2).

Proof of Theorem 2. Consider first the FPR statistic given by (16) which can be written equivalently as

FPR =

∑∑
i6=j

I
(∣∣ρ̂ij∣∣ > bN√

T
|ρij = 0

)
N(N −mN − 1)

. (A.10)

Taking the expectation of (A.10) we have

E |FPR| =

∑∑
i6=j

E
[
I
(∣∣ρ̂ij∣∣ > bN√

T
|ρij = 0

)]
N(N −mN − 1)

.

39



Note that the elements of FPR are either 0 or 1 and |FPR| = FPR.
As earlier, to simplify the derivations we will write all the indicator functions in terms of zij = (ρ̂ij − µij)/ωij

with µij and ωij defined in (12) and (13) of Assumption 1, respectively. Using the property

I

(∣∣ρ̂ij∣∣ > bN√
T
|ρij = 0

)
= 1− I

(∣∣ρ̂ij∣∣ ≤ bN√
T
|ρij = 0

)
,

and taking expectations it follows from part (i) of Lemma 4 that

E

[
I

(∣∣ρ̂ij∣∣ > bN√
T
|ρij = 0

)]
= 1− P (Lij ≤ zij ≤ Uij |ρij = 0),

= 1− [Φ(bN )− Φ(−bN )]

= 2[1− Φ(bN )]

= 2

{
1− Φ

[
Φ−1

(
1− p/2

f(N)

)]}
=

p

f(N)
,

with Uij and Lij given in (A.7) of the same lemma. Hence, E |FPR| = p
f(N)

→ 0 as N →∞, so long as f(N)→∞.
But by the Markov inequality applied to |FPR| we have that

P (|FPR| > ε) ≤ E(|FPR|)
ε

=
p

εf(N)
,

for some positive ε > 0. Therefore lim
N,T→∞

P (|FPR| > ε) = 0, and so the required resultis established. This holds

irrespective of the order by which N and T →∞.
Consider next the TPR statistic given by (15) and set

X = 1− TPR =

∑∑
i6=j

[1− I(ρ̃ij 6= 0, and ρij 6= 0)]∑∑
i 6=j

I(ρij 6= 0)

=

∑∑
i 6=j

I(ρ̃ij = 0, and ρij 6= 0)∑∑
i 6=j

I(ρij 6= 0)
.

As before |X| = X and P (|X| > ε) ≤ E|X|
ε
. But

E(X) = E |X| =

∑∑
i 6=j

P
(∣∣ρ̂ij∣∣ < bN√

T
|ρij 6= 0

)
∑∑
i6=j

I(ρij 6= 0)
,

and from part (i) of Lemma 4 we have that

P

(∣∣ρ̂ij∣∣ < bN√
T
|ρij 6= 0

)
= P (Lij ≤ zij ≤ Uij |ρij 6= 0)

= Φ

(
bN −

√
Tρij

1− ρ2
ij

)
− Φ

(
−bN −

√
Tρij

1− ρ2
ij

)
.

We can further distinguish between cases where ρij are strictly positive and negative as in part (ii) of Lemma 4 from
which it follows that

E |X| ≤ 2mNN

mNN
Φ

(
bN −

√
Tρmin

1− ρ2
min

)
.

Hence

P (|TPR− 1| > ε) ≤ 2Φ

(
bN −

√
Tρmin

1− ρ2
min

)
,

and the desired result is established if bN −
√
Tρmin → −∞ which is equivalent to ρmin >

bN√
T
, as N,T → ∞ in any

order.
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A.3 Proof of theorem and corollary for shrinkage estimator

Proof of Theorem 3 and Corollary 1. This proof has two parts. In the first part we obtain the optimal value
of the shrinkage parameter that minimizes the squared Frobenius norm of the error of estimating R by R̂LW . In the
second part we obtain the convergence rate of the shrinkage correlation matrix estimator under the optimal shrinkage
parameter.

Taking the expectation of
∥∥∥R̂LW −R

∥∥∥2

F
, with R̂LW = ξIN + (1− ξ)R̂, we have

N−1E
∥∥∥R̂LW −R

∥∥∥2

F
= N−1∑∑

i 6=j
E
(
ρ̂ij − ρij

)2
+ ξ2N−1∑∑

i 6=j
E
(
ρ̂2
ij

)
− 2ξN−1∑∑

i 6=j
E
[
ρ̂ij
(
ρ̂ij − ρij

)]
, (A.11)

and following Ledoit and Wolf (2003,2004) and Schäfer and Strimmer (2005) the optimal value of ξ that minimizes
(A.11) is given by

ξ∗ =

∑∑
i 6=j

E
[
ρ̂ij
(
ρ̂ij − ρij

)]
∑∑
i 6=j

E
(
ρ̂2
ij

) = 1−

∑∑
i6=j

E
(
ρ̂ijρij

)
∑∑
i 6=j

E
(
ρ̂2
ij

) . (A.12)

Using (12) of Assumption 1 we have that

bij = E(ρ̂ij)− ρij = −
ρij(1− ρ2

ij)

2T
+
G(ρij)

T 2
. (A.13)

Thus, in terms of bij and V ar(ρ̂ij), it follows that

1− ξ∗ =

∑∑
i6=j

E
(
ρ̂ijρij

)
∑∑
i6=j

E
(
ρ̂2
ij

) =

∑∑
i 6=j

ρij(bij + ρij)∑∑
i 6=j

V ar
(
ρ̂ij
)

+
∑∑
i6=j

(bij + ρij)
2
. (A.14)

Substituting for (13) of Assumption 1 and (A.13) in (A.14) yields

1− ξ∗ =

∑∑
i6=j

ρij(ρij −
ρij(1−ρ2

ij)

2T
+

G(ρij)

T2 )

∑∑
i 6=j

[
(1−ρ2

ij)2

T
+

K(ρij)

T2

]
+
∑∑
i 6=j

[
ρij −

ρij(1−ρ2
ij)

2T
+

G(ρij)

T2

]2 .

Hence, an estimator of ξ∗ can be obtained (ignoring terms of order T−2) as

1− ξ̂∗ =

∑∑
i6=j

ρ̂ij

[
ρ̂ij −

ρ̂ij(1−ρ̂2
ij)

2T

]
1
T

∑∑
i6=j

(1− ρ̂2
ij)

2 +
∑∑
i 6=j

[
ρ̂ij −

ρ̂ij(1−ρ̂2
ij)

2T

]2 .

Note that limT→∞(ξ̂
∗
) = 0 for any N . However, in small samples values of ξ̂

∗
can be obtained that fall outside the

range [0, 1]. To avoid such cases, if ξ̂
∗
< 0 then ξ̂

∗
is set to 0, and if ξ̂

∗
> 1 it is set to 1, or ξ̂

∗∗
= max(0,min(1, ξ̂

∗
)).

Using (A.12) in (A.11) we have that

N−1E
∥∥∥R̂LW −R

∥∥∥2

F
= N−1∑∑

i6=j
E
(
ρ̂ij − ρij

)2 −N−1

[∑∑
i6=j

E
[
ρ̂ij
(
ρ̂ij − ρij

)]]2

∑∑
i 6=j

E
(
ρ̂2
ij

)
< N−1∑∑

i6=j
E
(
ρ̂ij − ρij

)2
,

which postulates that the expected quadratic loss of the shrinkage sample covariance estimator is smaller than that
of the sample covariance matrix, suggesting an improvement using the former compared to the latter. Further we
have ∑∑

i 6=j
E
(
ρ̂ij − ρij

)2
=

∑∑
i 6=j

E
(
ρ̂2
ij

)
− 2
∑∑
i6=j

E
(
ρ̂ijρij

)
+
∑∑
i 6=j

ρ2
ij ,{∑∑

i 6=j
E
[
ρ̂ij
(
ρ̂ij − ρij

)]}2

=

[∑∑
i 6=j

E
(
ρ̂2
ij

)
−
∑∑
i6=j

E
(
ρ̂ijρij

)]2

=

[∑∑
i 6=j

E
(
ρ̂2
ij

)]2

+

[∑∑
i 6=j

E
(
ρ̂ijρij

)]2

− 2
∑∑
i6=j

E
(
ρ̂2
ij

)∑∑
i 6=j

E
(
ρ̂ijρij

)
,
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and

N−1E
∥∥∥R̂LW −R

∥∥∥2

F
= N−1

∑∑
i 6=j

E
(
ρ̂2
ij

) [∑∑
i 6=j

E
(
ρ̂2
ij

)
− 2
∑∑
i 6=j

E
(
ρ̂ijρij

)
+
∑∑
i 6=j

ρ2
ij

]

−
[∑∑

i 6=j
E
(
ρ̂2
ij

)]2

−
[∑∑

i 6=j
E
(
ρ̂ijρij

)]2

+ 2
∑∑
i6=j

E
(
ρ̂2
ij

)∑∑
i 6=j

E
(
ρ̂ijρij

)
∑∑
i 6=j

E
(
ρ̂2
ij

) .

Hence,

N−1E
∥∥∥R̂LW −R

∥∥∥2

F
= N−1

∑∑
i 6=j

ρ2
ij

∑∑
i 6=j

E
(
ρ̂2
ij

)
−
[∑∑

i6=j
E
(
ρ̂ijρij

)]2

∑∑
i6=j

E
(
ρ̂2
ij

)

= N−1

∑∑
i 6=j

ρ2
ij [
∑∑
i 6=j

V ar
(
ρ̂ij
)

+
∑∑
i 6=j

(bij + ρij)
2]−

[∑∑
i 6=j

ρij(bij + ρij)

]2

∑∑
i 6=j

E
(
ρ̂2
ij

)

= N−1

∑∑
i6=j

ρ2
ij

∑∑
i6=j

V ar
(
ρ̂ij
)

+

[∑∑
i 6=j

ρ2
ij

]2

+
∑∑
i 6=j

ρ2
ij

∑∑
i 6=j

b2ij + 2
∑∑
i 6=j

ρ2
ij

∑∑
i 6=j

bijρij

−
[∑∑

i 6=j
bijρij

]2

−
[∑∑

i 6=j
ρ2
ij

]2

− 2

[∑∑
i6=j

bijρij

][∑∑
i 6=j

ρ2
ij

]
∑∑
i6=j

E
(
ρ̂2
ij

)

= N−1

∑∑
i 6=j

ρ2
ij

∑∑
i 6=j

V ar
(
ρ̂ij
)

+
∑∑
i 6=j

ρ2
ij

∑∑
i 6=j

b2ij −
[∑∑

i 6=j
bijρij

]2

∑∑
i6=j

E
(
ρ̂2
ij

) .

For E
(
ρ̂2
ij

)
, using (12) and (13) of Assumption 1, we have that

E
(
ρ̂2
ij

)
= V ar(ρ̂ij) + [E

(
ρ̂ij
)
]2

= ρ2
ij +

ρ2
ij(1− ρ2

ij)
2

4T 2
+
ρ2
ij(1− ρ2

ij)

T
+

(1− ρ2
ij)

2

T
+O(

1

T 2
),

and since ∑∑
i 6=j

ρ2
ij = O(mNN),

∑∑
i6=j

E
(
ρ̂2
ij

)
= O(mNN) +O(

N(N − 1)

T
),

∑∑
i 6=j

b2ij = O(
mNN

T 2
),
∑∑
i6=j

bijρij = O(
mNN

T
),

it follows from the above results that

N−1E
∥∥∥R̂∗LW (ξ∗)−R

∥∥∥2

F
= O

(
N

T

)
,

which is in line with the result found by LW.

A.4 Derivation of the shrinkage parameter for shrinkage on MT (S-MT) esti-
mator

Recall the expression for the function f(λ) from Section 4

f(λ) = −tr
[
(A−B (λ))B (λ)

(
IN − R̃MT

)
B (λ)

]
,

with A=R−1
0 and B (λ) = R̃

−1

MT (λ). We need to solve f(λ) = 0, for λ∗ such that f(λ∗) = 0 for a given choice of R0.
Abstracting from the subscripts, note that

f(1) = tr
[(
R−1−IN

) (
IN − R̃

)]
,
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or

f(1) = −tr
[
R−1R̃+R−1−IN + R̃

]
= tr

(
R−1R̃

)
− tr

(
R−1

)
,

which is generally non-zero. Also, λ = 0 is ruled out, since R̃(0) = R̃ need not be non-singular.
Thus we need to assess whether f(λ) = 0 has a solution in the range λ0 < λ < 1, where λ0 is the minimum

value of λ such that R̃(λ0) is non-singular. First, we can compute λ0 by implementing naive shrinkage as an initial
estimate:

R̃(λ0) = λ0IN + (1− λ0)R̃.

The shrinkage parameter λ0 ∈ [0, 1] is given by

λ0 = max

0.01− λmin

(
R̃
)

1− λmin

(
R̃
) , 0

 .

Here, λmin (A) stands for the minimum eigenvalue of matrix A. If R̃ is already positive definite and λmin

(
R̃
)
> 0,

then λ0 is automatically set to zero. Conversely, if λmin

(
R̃
)
≤ 0, then λ0 is set to the smallest possible value that

ensures positivity of λmin

(
R̃(λ0)

)
.

Second, we implement the optimisation procedure. In our simulation study and empirical applications we employ
a grid search for λ∗ = {λ : λ0 ≤ λ ≤ 1} with increments of 0.005. The final λ∗ is given by

λ∗ = arg min
λ

[f(λ)]2 .

When λ0 = 0 we still implement shrinkage to find the optimal shrinkage parameter (which might not be λ∗ = 0).

Appendix B Cross validation for BL and CL
BL and CL cross validation with FLM extension: We perform a grid search for the choice of C over a specified

range: C = {c : Cmin ≤ c ≤ Cmax}. In BL procedure, we set Cmin =

∣∣∣∣min
ij

σ̂ij

∣∣∣∣√ T
logN

and Cmax =

∣∣∣∣max
ij
σ̂ij

∣∣∣∣√ T
logN

and impose increments of (Cmax−Cmin)
N

. In CL cross-validation, we set Cmin = 0 and Cmax = 4, and impose increments
of c/N . In each point of this range, c, we use xit, i = 1, ..., N, t = 1, ..., T and select the N × 1 column vectors
xt = (x1t, ..., xNt)

′ , t = 1, ..., T which we randomly reshuffl e over the t-dimension. This gives rise to a new set of

N × 1 column vectors x(s)
t =

(
x

(s)
1t , ..., x

(s)
Nt

)′
for the first shuffl e s = 1. We repeat this reshuffl ing S times in total

where we set S = 50. We consider this to be suffi ciently large (FLM suggested S = 20 while BL recommended

S = 100 - see also Fang, Wang and Feng (2013)). In each shuffl e s = 1, ..., S, we divide x(s) =
(
x

(s)
1 , ...,x

(s)
T

)
into two

subsamples of size N ×T1 and N ×T2, where T2 = T −T1. A theoretically ‘justified’split suggested in BL is given by

T1 = T
(

1− 1
log T

)
and T2 = T

log T
. In our simulation study we set T1 = 2T

3
and T2 = T

3
. Let Σ̂

(s)

1 =
(
σ̂

(s)
1,ij

)
, with

elements σ̂(s)
1,ij = T−1

1

∑T1
t=1 x

(s)
it x

(s)
jt , and Σ̂

(s)

2 =
(
σ̂

(s)
2,ij

)
with elements σ̂(s)

2,ij = T−1
2

∑T
t=T1+1 x

(s)
it x

(s)
jt , i, j = 1, ..., N,

denote the sample covariance matrices generated using T1 and T2 respectively, for each split s. We threshold Σ̂
(s)

1 as
in (24) or (26) where both θ̂ij and ωT are adjusted to

θ̂
(s)

1,ij =
1

T1

∑T1
t=1(x

(s)
it x

(s)
jt − σ̂

(s)
1,ij)

2,

and

ωT1 (c) = c

√
logN

T1
.

Then (26) becomes

Σ̃
(s)

1 (c) =
(
σ̂

(s)
1,ijI

[∣∣∣σ̂(s)
1,ij

∣∣∣ ≥ τ (s)
1,ij (c)

])
, (B.15)

for each c, where

τ
(s)
1,ij (c) =

√
θ̂

(s)

1,ijωT1 (c) > 0,

and θ̂
(s)

1,ij and ωT1 (c) are defined above.
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The following expression is computed for BL or CL,

Ĝ (c) =
1

S

S∑
s=1

∥∥∥Σ̃(s)

1 (c)− Σ̂
(s)

2

∥∥∥2

F
, (B.16)

for each c and
Ĉ = arg min

Cmin≤c≤Cmax

Ĝ (c) . (B.17)

If several values of c attain the minimum of (B.17), then Ĉ is chosen to be the smallest one. The final estimator of
the covariance matrix is then given by Σ̃Ĉ . The thresholding approach does not necessarily ensure that the resultant
estimate, Σ̃Ĉ , is positive definite. To ensure that the threshold estimator is positive definite FLM (2011, 2013)

propose setting a lower bound on the cross validation grid for the search of C such that λmin

(
Σ̃Ĉ

)
> 0. Therefore,

we modify (B.17) so that
Ĉ∗ = arg min

Cpd≤c≤Cmax

Ĝ (c) , (B.18)

where Cpd is the lowest c such that λmin

(
Σ̃Cpd

)
> 0. We do not conduct thresholding on the diagonal elements of

the covariance matrices which remain in tact.
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