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Abstract

This paper proposes a new panel unit root test based on the generalized method of
moments approach for panels with a small number of time periods and a large number
of cross-section units, N. In the model that we consider the deterministic trend function
is essentially unrestricted and the errors are cross-sectionally correlated in a very general
fashion. In spite of these allowances, the GMM-statistic is shown to be asymptotically
unbiased, v/N-consistent and asymptotically normal for all values of the autoregressive
(AR) coefficient, p, including unity, making it an ideal candidate for unit root inference.
Results from both simulated and real data are provided to suggest that the asymptotic

properties are borne out well in small samples.
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1 Introduction

There is a voluminous literature on panel unit root tests. The main motivation for using such
procedures is that by considering not one but N time series of length T the power of panel-
based tests can increase considerably relative to that achievable using univariate tests. The
largest branch of literature by far is that focusing on panels where both N and T are large

(see Breitung and Pesaran, 2008, for an overview). A typical study assumes that N, T — oo
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such that N/T — co. The main reason for this is the presence of cross-section heterogeneity,
such as fixed effects, whose estimation requires T — oco. This induces an estimation error
in T, which can only be controlled if N/T — 0, for otherwise the accumulated effect as
N — co will be unbounded (see Westerlund and Breitung, 2013, Section 5, for a detailed
discussion). This requirement may put strain on the data. Indeed, as a large body of Monte
Carlo evidence shows (see, for example, De Wachter et al., 2007; Hlouskova and Wagner,
2006), while the large-N requirement is usually not a problem, the large-T requirement, and
in particular the requirement that T must be larger than N, pose a real restriction, to the point
that researchers might well find themselves discarding data in order to have N sufficiently
small relative to T. Moreover, in many panels, such as those frequently encountered in
applied micro, T (N) is simply too small (large) for such discarding practices to make sense,
although the unit root hypothesis is still of considerable interest (see Bond et al., 2005).

The above issue has motivated researchers to look for inferential procedures that are suit-
able in fixed-T panels. Harris and Tzavalis (1999) proposed a panel unit root test based on
the bias-corrected ordinary least squares (OLS) estimator of the autoregressive (AR) coeffi-
cient, p. Many other tests have since then been proposed (see De Blander and Dhaene, 2012,
and the references provided therein).! The evidence reported so far (see, for example, Harris
and Tzavalis, 1999; Hadri and Larsson, 2005; Hlouskova and Wagner, 2006) suggests that in
terms of small-sample performance, not requiring T to be large can be a great advantage.
In fact, fixed-T tests often outperform large-T tests and do so for a wide range of values of
T. However, while much progress has been made, there are still plenty of important issues
remaining unresolved in the fixed-T literature. First, except for Harris and Tzavalis (2004)
and Han and Phillips (2010), who consider the case with a linear trend, the fixed-T literature
has not yet ventured outside the fixed effects environment. This is noteworthy because if
one admits to the possibility that time series might be trending (in a potentially non-linear
fashion), then the probability of the panel of multiple time series exhibiting at least some
trending behavior will tend to one as N — oo, in which case fixed effects-only tests will be
rendered invalid. Second, as far as we are aware, there is presently no test that is able to
accommodate cross-section dependence, that is, existing fixed-T tests are “first-generation”
tests (Baltagi, 2008, Chapter 12). This is again noteworthy because in practice such depen-
dence is likely to be the rule rather than the exception, even in highly disaggregated data,

ISee Breitung and Pesaran (2008) for a survey of the panel unit root and cointegration literatures.



because of herd behavior, fashions or fads.

The current paper addresses both issues. We develop a “second-generation” approach
to unit roots in fixed-T panels characterized by both cross-section dependence and generally
trending behavior. This is accomplished by assuming that the data admits to a common fac-
tor structure in which the factors are treated as unknown parameters to be estimated along
with the other parameters of the model. This parametric treatment means that the factors are
virtually unrestricted, apart from some mild regulatory conditions. It also provides a means
to control for (unobserved) deterministic trend terms, which in our model appear naturally
as additional factors. In the terminology of Bai (2009), the model that we consider constitutes
an “interactive effects” model. Interestingly, since factors are estimated, the usual problem
in empirical work of deciding on which deterministic terms to include does not arise. Hence,
the approach is not only general, but is in this sense also remarkably simple.

The estimation is carried out by modifying the generalized method of moments (GMM)
approach of Robertson and Sarafidis (2013). The new estimator is shown to have a num-
ber of desirable properties. First, it is free from the otherwise common incidental parameter
bias. This is true not only in the conventional fixed effects case, but also in the more gen-
eral interactive effects model considered here. The reason for this is that we only require
consistent estimation of the covariance matrix of the factor loadings, and not of the loadings
themselves, thereby eliminating the incidental parameter problem. Second, the estimator
supports asymptotically normal inference for all values of p, including unity, and the well-
known weak instruments problem when p is in the vicinity of unity does not emerge (see,
for example, Bun and Windmeijer, 2010). Hence, unlike most existing approaches, the limit-
ing distribution of the GMM estimator considered here is continuous and has the same rate
of consistency as p passes through unity (see Phillips and Han, 2010, for a similar result).
Third, the estimator and the associated t-statistic for a unit root have excellent small-sample
properties.

The remainder of the paper is organized as follows. Section 2 presents the model and
assumptions, which are used in Section 3 to derive the GMM estimator and its asymptotic
distribution. The small-sample accuracy of the asymptotic results are evaluated using both

simulated and real data in Sections 4 and 5, respectively. Section 6 concludes.



2 Model and assumptions

Consider the panel data variable y;;, observed for t = 0,1, ..., T time seriesand i = 1,..., N
cross-sectional units. The data generating process (DGP) of this variable is assumed to be

given by

Vie = PYie—1+ Ui, (1)
ui; = Aifiteig, (2)

where p € R, f; is an  x 1 vector of common factors with A; being the associated vector of
factor loadings, and ¢;; is an idiosyncratic error term. The following assumptions are made,
where F; is the sigma-field generated by {¢;,}! _;, 11 = (1,..,1)"isa T x 1 vector, and tr A
and ||A|| = /tr (A’A) denote the trace and Frobenius (Euclidean) norm of the matrix A,

respectively.

Assumption ERR. ¢;, is independent across i with E(g; (| F;_1) = 0, YN, E(e% /N —=02>0
and E(e},) < oo.

Assumption LAM. A; is a random coefficient vector such that YN, E(A;A})/N — E,, an

r X r positive definite matrix, E(||A|[®) < oo, and E(A;gj;) = 0,41 foralli, jand t.
Assumption F.
(i) F = (fy, ..., f7)" isanon-random T x r matrix with full column rank;

(ii) Suppose that p = 1. If 17 is included in F, then r > 1; otherwise, r > 0.

Assumption INL vy, = A/fg + €9, where ||fo|| < oo and ¢, is independent across i with

E(eip) =0, YN, E(elz.,o)/N — 03 >0, E(E?IO) < 00,and E(A;gj) = 0,x1 forall i and j.
Assumption MOM. T(T +1)/2 > 1+r[T+ (1 —7r) /2].

Assumption EPS allows for cross-section and time series heteroskedasticity but implies
no serial correlation in ¢; ;, the latter of which is a very common restriction in the fixed-T liter-
ature (see, for example, Bun and Sarafidis, 2013). One way to allow for more general forms of
serial correlation is to consider more lags of y; ;, such that the AR(1) in (1) becomes an AR(p)

model (with p > 1). Another possibility is to put the serial correlation in ¢;; and to change
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the choice of instruments. This is discussed in detail in Remark 3, and then again in Section
5, where we show how to implement our approach in the presence of moving average (MA)
errors. The random loading assumption can be relaxed in a relatively straightforward way,
provided that ||A;]|® < co and limy e Y.; A;A}/N is positive definite. Assumption F (i) is
standard in panel data models with T fixed (see Sarafidis and Wansbeek, 2012). We note that
the F could also be treated as stochastic by modifying the proofs accordingly. This would not
change anything else that is of substance in the paper. As we explain in Remark 2, Assump-
tion F (ii) is needed for identification of p in the unit root case. Assumption INI implies that
the equation for y; can be thought of as the reduced form equation for y;; at period time
t = 0. Thus, fp and ¢, are not necessarily identical to the values that would arise had y; o
been assumed to follow (1). Assumption MOM is important because the number of factors
needs to be small enough relative to the number of moment conditions, such that there are
enough degrees of freedom to estimate the model.

A major difference when compared to the existing large-T second-generation panel unit
root literature (see, for example, Bai and Ng, 2004; 2010; Moon and Perron, 2004) is that here
f; is treated as a fixed parameter vector to be estimated along with the other parameters of
the model. Whether f; has zero mean is therefore not an issue. It can also have arbitrary “dy-
namics”. In terms of the terminology of Bai (2009), (1) and (2) constitute a fixed interactive
effects model, which is more general than the models considered previously in the literature.
Suppose, for example, that f; = (1,7;)" and A; = (1;,1)’, such that A}f; = ; + 7. This means
that the DGP reduces to

Yit = PYir—1 +1i + Tt + €.

This is the benchmark first-generation specification with incidental intercepts and time-
specific fixed effects to account for cross-section dependence (see, for example, Im et al.,,
2003; Levin et al., 2002). Models with incidental trends and second-generation models with
common factors can also be accommodated. For example, if f; = (1,t,g;)’, where g; is an

(r —2) x 1 vector of common factors, and A; = (1;, B;, §;)’, then
Yit = OYip—1 -+ 1 + Bit + 8igr + €.

This specification is similar to those considered by, for example, Moon and Perron (2004),
Pesaran (2007), and Phillips and Sul (2003) in the large-T case, and we will consider it again

in our Monte Carlo study in Section 4. Note that while incidental trends can be allowed,
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this is by no means a restriction; the interactive effects model considered here can accom-
modate virtually any trend function that is linear in parameters, including polynomial trend
functions, trigonometric functions and models of discrete and smooth structural shifts. The
model considered for f; is therefore very general indeed.

Moreover, while not necessary, the elements of f; may be unknown. As we illustrate in
Section 5, this means that the researcher is spared from the problem of having to decide on
which deterministic components to include. For example, if structural shifts are present,
then there is no need for any a priori knowledge regarding their locations, which are ob-
tained as part of the estimation process. Hence, not only is the model very general, but the

way that f; is accommodated is also very convenient from an empirical point of view.

Remark 1. In this paper we assume that f; enters via u;;. This is not necessary. As Bai
and Ng (2010) discuss, when f; is random a more general DGP is obtained by placing the
common component directly under v; ;, such that y;; = Ajf; + u;;, and then allow f; and u;;
to have different dynamics. However, since in this paper f; is fixed, the dynamics are driven
by the idiosyncratic component only, and from this point of view it does not matter whether

f; enters via u;; or y; ;.

3 Main results
3.1 Moment conditions

Define the T x T matrix

M=l LM
where M; = E(yVy}), y? = (vio,-yiT—1) and y; = (yi1,...yir)" are both T x 1. We begin by

deriving an expression for M in terms of the parameters of the DGP. This will then be used

as a basis for formulating our moment conditions. Let us begin by defining the T x T lag

matrix _ _
o 0o 0 ... 0
1 0 O 0
L=|0 1 0 . ], 3)
0
0 0 1 0|




and the T x 1 vector e; = (0, ...,0,1,0, ...,0)/, where the one is at position ¢. The model for y;

can now be written in vector form as
yi = pe1yio + pLy; +FA; + ¢, (4)

or

yi = ple1yio + TFA; + T, (5)

where & = (g;1,...,€i7) is T x 1,

1 0 0
1

r=@r—pL)'=| °F ,
Lo 0
pT—l o 1

and recall that F = (fy, ..., f7)" is T x r. Note that I is a function of p. In order to emphasize
this, whenever appropriate we write I = I'(p). By using Assumption INI to substitute for

Yio in (5), and then stacking y; o and y;, we obtain

Yio | _ 1 Oyxr f, A+ 1 0Opxr €i0
yi ple; T F ! ple; T g |

For later use we also define F* = (fo,F')’, a (T + 1) x r matrix. Note that, since pI'e; =

1 Oix7
pl"el r

is of the same form as I, but of dimension (T + 1) x (T + 1) instead of T x T. Hence, letting

s? = (&0, €eir-1) and F* = (f, ..., fr_1)’, the following expression for y? is obtained:

(0,0% ..., p7)’, the matrix

y? = TFOA; + T, (6)
Note also that in this notation, ejy;o + Ly; = y?, suggesting that (4) may be written as
yi = py" +FA; + & (7)
Let us now consider M. Substitution of (7) yields
M; = E(yly)) = Ely; (0] + FA; + &)'] = oM 1 + E(y/A)F + E(yle]),

where M; _1 = E[y?(y?)']. By using, in turn, (6) to substitute for y?, and then the fact that £’

and A; are uncorrelated, E(yYA;) may be written as
E(y;Ai) = E[(TFoA; + Te)A]] = TF°E(A;A}) = TFoX). (8)
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Moreover, since E(y;s¢;;) = 0foralls <t—1landt=1,..,T, we have

0 0 . 0
E(yle)) = E(yi’.l i ,0 .
E(yr—1€i1) ... E(yr—1g&ir—1) O

This matrix contain T(T + 1) /2 zeroes. These are our moment conditions. A natural way of

writing these conditions is as follows:
vech (M') — pvech (M) — vech [FEA(F')'T'] = Or(141) /2.1, ©)

where M_; is defined similarly to M, and vech is the half-vec operator that when applied to
a matrix A eliminates all supradiagonal elements of A from vec A.

Unfortunately, the formulation in (9) is not very convenient to work with. Let us there-
fore denote by S; (t = 1,..., T) the M; x T selection matrix of zeroes and ones that picks out
the t entries of y? which are valid at period ¢, that is, S; is such that E[(Sty?)ei,t] = 04x1.
Under Assumption EPS, we have S; = (I;, OtX(T,t)), a t x T matrix. Hence, at time ¢ the
vector of valid instruments is given by (y;g,...,yi;_1)’. Define the T(T + 1)/2 x T? matrix

S = diag(Sy, ..., St). The matrix of instruments can now be written as
z;=S(Ir®y}), (10)

which is T(T +1)/2 x T. Note that FA; = (It ® A})vec (F'). By using this result, pre-

multiplication of (7) by Z, and then taking expectations, we obtain
E(Zjy;) = pE(Zjy}) + E[Zi(Ir ® A})]vec (F').

Combining (8) with (10), and using the fact that vec (F') = (It ® F’)e, the moment condition

in (9) can be written alternatively as
m — pm’ — S(Ir ® TF°E,\F')e = Or(141) /251 (11)
where m = E(Z'y;) = vech (M’) and m® = E(Zy?) = vech (M’ ).

Remark 2. The moment condition in (11) hold for all values of p, provided that it is finite.
This is in contrast to many of the existing GMM estimators of dynamic panel data models

(such as those considered by, for example, Anderson and Hsiao, 1981; Arellano and Bond,



1991), which are known to suffer from a weak instrument problem when p ~ 1 (see Blundell
and Bond, 1998). To appreciate this, suppose that T = 3, p € [0,1], r = 1 and that f; = f; is
known. In this case, f = (f1, f2, f3), £ = (fo, f1, f»)’ and

Mo M1 My Moo M1 Mo
M = Moz M2 MWy |, M_, = mopp mi1 M1 |,
Moz MmMi3 M3 nop3 My M2

suggesting that (11) can be written as

[ mop1 ] [ Mmoo 1 Z?:O P]f]fl
Moo Mo 2?:0 P{ fif2
m || 2 2{1):0 p'fif2 (12)
mo3 mo2 Yi—00'fif3
my3 LGY) Z}:o Pj f]f 3
| mo3 | M | | Yio0lfifs |

Making use of the fact thaty;; = A; Z§:1 ol fioj+ 2;:1 pleiy j» we can show that with t > s

s t S .
o = Eisyin) = R L 1o oo 0 L,

j=1n =1
where 07 is the scalar version of £, and the second term on the right-hand side is equal to
et 5 (1 — p26+t)) /(1 — p?) for p < 1 and (s + 1) for p = 1. It follows that, regardless of the
value of p, there is enough variation across the rows in (12) to identify the unknown parame-
ters, p and 03. In the fixed effects case, however, f; = 1 and therefore Y1 Y1 O e ifen
reduces to (1 — p')(1 — p°)/(1 — p)? for p < 1and (s + 1)(t + 1) for p = 1. Thus, in this case
p and o7 are identified only for p < 1, because when p = 1 all rows in (12) become linear
combinations of the first row, and so there is effectively a single informative moment condi-
tion based on which it is not possible to identify two parameters. In practice, fixed effects
only are rather restrictive and, as acknowledged in the panel unit roots literature, unlikely to
be able to capture all unobserved heterogeneity in the data (see, for example, Baltagi, 2008,

Chapter 12).

Remark 3. The moment conditions in (11) can be modified to allow for error serial corre-
lation, or an AR(p) for y;;. The case with MA errors is particularly easy. Suppose that ¢;;
follows a MA(q) process. This case can be accommodated by setting Z! = S(Ir ® y7), where
y! = (¥i0, - ViT-1-¢)" and the t-th diagonal element of S is given by S; = (I, 0, (7—1_)),

whose dimension is t x (T — ¢). In Section 5 we show how to implement our approach when
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g € {1,2}. Consider next the case when ¢;; is serially uncorrelated but that y;; follows an
AR(2) process;

Yit = P1Yit—1 + P2Yi—2 + Ui,
where we assume for notational simplicity that y; o and y; _; are observed. This can be writ-

ten in vector form as
yi = pile1yio + p2T (e1y;—1 + e2yip) + T'FA; + Te,

where T = (It — p1L — poL?)"! and L? = LL. Alternatively, since e y; + Ly; = y?, with
yi_l = e1yi_1 + exyio + L?y;,

yi = p1y; +p2y; | +FAi +&;.

In this case, the matrix of instruments, Z/, is still given by (10) but with y! replaced by
Yi—1,Yi0, - Yi7-1) and S8 = (11,00 41)x(r—p)), @ (t +1) x (T + 1) matrix. Thus, pre-

multiplying the expression above by Z/, taking expectations, and then rearranging yields
m —pym’ — pom ™" — S(Iy @ TF 'L F)e = 0(741(741)/2)x1s (13)
wherem™! = E(Zly: ') and F! = (f_q,fo, ..., fr_1)".

3.2 Inference when FT' is known

Define 6 = [p, (vechX,)’]’ = (6y,65)" and denote by 6y and py the true values of 6 and p,
respectively. The GMM estimator of this parameter vector, whose dimension is (1 4 r(r +
1)/2) x 1, is given by

0 = arg min Q(0),

where Cy is a compact subset of R'*7("+1)/2 and

Q(6) = g(6)'s(0),
g(8) = W2k — pm® — S(It @ TF°L,\F)e],

withth = YN, Zly;/N, 1® = YN, Z!/y9/N,and W = (W'/2)WV2isa T(T +1)/2 x T(T +
1)/2 positive definite weight matrix. 8 is the joint GMM estimator of 6; and 8,. However,

since we are primarily interested in 6; = p, in this section we will consider a concentrated
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objective function, as is commonly done in the maximum likelihood literature. The GMM

estimator of 0, given p is derived in (A6) and is given by
62 = 62(p) = [R(p)'R(p)]'R(p) W' "?(th — pr"),

where R(p) = WY2(e’ ® S)(It ® Ky ® It)[vecIr ® (It ® T(p))(F ® F)D,], Ky is the
T? x T? commutation matrix such that KypvecA = vec A’, where A is m X p, and D, is
the 7% x r(r 4+ 1)/2 duplication matrix such that vecB = D, vech B, where B is r x r. The
concentrated objective function, henceforth denoted as Q¢ (p), is obtained by replacing 6, in
g(0) with 0,, that is,

Qclp) = 8c(p)'sclp),

where gc(p) = g(p,02(p)). The estimator of p is given by
p = argmin Qc(p). (14)
p<Co
where C, is a compact subset of RR.
Assumption IDE.
(1) Po € Cp;
(ii) g(p) is continuous in p and E[g(p)] = 0(14+(r+1)/2)x1 implies p = po;

(iii) Zg. = Wmn_00 NE[gc(00)8c(00)'] and ; = limy_,0 dgc(p0)/dp are finite with X

positive definite.

Theorem 1 provides the asymptotic distribution of p.
Theorem 1. Under Assumptions EPS, LAM, F, INI, MOM and IDE, as N — oo
A d
VN(p — po) = N(0,02),

where % signifies convergence in distribution and oy = ¥ Ze.v1/ (v)11)? Analytical expressions

for Eq. and vy are given in Appendix.

Remark 4. According to Theorem 1 there is no asymptotic bias, despite the generality of the
DGP considered; (p — po) is centered at zero even when scaled by v/N. The reason for this

is that the GMM approach considered here only requires an estimator of 8, = vech X, ; there
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is no need to estimate A4, ..., Ay themselves. This means that the number of parameters that
needs to be estimated is substantially reduced, from Nr to r(r 4 1)/2, thereby eliminating

the incidental parameter problem (see Bai, 2013, for a similar approach).

Remark 5. Theorem 1 holds for all values of pg, and in this sense it presents a unified asymp-
totic result for the GMM estimator. This is in contrast to the existing literature, in which the
asymptotic distribution of estimators depends critically on whether |pg] < 1, po = 1 or
indeed pp > 1. In fact, the only exceptions known to us are the GMM estimators of Han
and Phillips (2010), and Kruiniger (2007, 2009, 2013), which have limit distributions that are

continuous for pg € (—1, 1], but not for pg > 1.

An analytical expression for 1, is given in the Appendix. Define 63 =4} )f.gcﬁxl / (%141)%
where £, = Ngc(p)gc(p)’ and 4, = 9gc(p)/9p. The GMM t-statistic for testing Hy : pg =
eV is given by

and is the same regardless of the value of p°. The local power of ¢(0) is easily worked out
using Theorem 1. Indeed, suppose that

0

Po=p \/N’

where ¢ € R, such that p is local to p°, the hypothesized value under the null. In this case,

(15)

since (TPZ = (sz +0,(1), we can show that

A _ _ A0
t(o0) = YN@=p0) VN0 =#") 4 g 14 €
Op Op Op

as N — oo. Summarizing this, we have the following corollary to Theorem 1.

Corollary 1. Under (15) and the conditions of Theorem 1, as N — oo

He®) % N(0,1) + —.

%p
Remark 6. Corollary 1 nests the asymptotic results under both the null and the local alter-
native hypotheses. On the one hand, if ¢ = 0, then Hj is true and therefore #(o°) 4N (0,1).
If, on the other hand, ¢ # 0, such that the local alternative is true, then the asymptotic dis-

tribution of ¢(0°) has no longer mean at zero, and therefore the test is unbiased, as well as
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consistent under the local alternative when |c/0,| — oo. The extent of power is driven by
two parameters, ¢ and O'g; the smaller the uncertainty regarding pp and the larger the de-
viation from the hypothesized value of p°, the larger the power, as expected (see Madsen,
2010, for a similar finding for some existing tests). What is unexpected, however, is the fact
that the appropriate rate of shrinking of the local alternative is the same regardless of the
specification of the deterministic trend part of f; (see Han and Phillips, 2010, Section 5.2, for

a similar discussion).

Remark 7. The asymptotic distribution of most (if not all) unit root statistics depends on the
deterministic specification of the fitted test regression, which need not be equal to the true
one. In time series, this implies that different deterministic specifications have their own
critical values, whereas in panels, it implies that different specifications have their own mean
and variance correction factors (see Westerlund and Breitung, 2013, Section 3). Corollary 1
shows how the GMM-based t-statistic has the unique and practically very useful property
that it is asymptotically invariant to F, and hence to any trend function that it may contain.
The standard fixed effects assumption is therefore not needed and the otherwise so common
mean and variance correction factors reflecting the chosen deterministic specification can be

completely avoided.
In (A7) in Appendix we show that
gc(p) = P(p)W'/2(h — prir”),

where P(p) = Ir(r11),2 — R(0)[R(0)R(p)'] 'R(p)’. This formulation of gc(p) suggests a
simple estimation approach that can be used also when F is unknown. In particular, while
nonlinear in p, with W and F™ known, R(p) does not depend on any other parameters that
are unknown. Hence, assuming for a moment that also p is known, then so is R = R(p),
in which case Qc(p) is just the (weighted) sum of squared residuals, and therefore the
GMM estimator  is just the (weighted) OLS slope estimator in a regression of PW!/2h

onto PW1/2@?;
. A(P) B (Iﬁo)’(wl/z)'P/Pwl/zﬁl
P=p - (Iﬁo)’(Wl/z)’P’Pwl/zﬁlO’

where P = P(pp). Although P is not observed when estimating py, and vice versa, we can

replace the unobserved quantities by initial estimates and iterate until convergence. Suppose
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we are interested in testing Hy : pg = 0". A natural initialization for p in this case is given by

p = p°. The GMM estimator of 6, can then be obtained as 8,(p).

3.3 Inference when F is unknown

For F' is unknown we define 8 = [p, (vechE,)’, (vecF")']" = (6y,05,05), which is (1 +
r(r+1)/2+ (T +1)r) x 1. The estimation of this parameter vector can also proceed in
an iterative fashion, as before. The only difference is that since now F' is unknown, even
if p was known, R and hence also P would still be unknown. In order to emphasize this
dependence on F* we write P(p, FT) for P. The estimator F* of F* may be obtained as

follows:

1. Initialize p.

2. Thelast T rows of F* can be obtained as the eigenvectors corresponding to the r largest
eigenvalues of the T x T matrix YN ; (y; — py?) (yi — py?)'/N. The first row of F* can
be obtained as the first observation of each of the eigenvectors corresponding to the r

largest eigenvalues of Y)Y, y%)/N. Write F*(p) for F*.
3. The estimator of p is given by g(P), where P = P(p) = P(p, F*(p)).
4. Update F*(p), P(p) and p(P). Repeat until convergence.
Remark 8. So far we have assumed that the number of factors, r, is known. However, the

asymptotic results also hold when r is replaced by a consistent estimator, 7 say. Write p(P, )

for p. To see that p(P, 7) has the same asymptotic distribution as p(P) = p(P, r), consider

Because P(? = r) — 1 and P(? # r) — 0, the second term on the right-hand side converges
to zero, and P(v/N[p(P,#) — po] < 6) = 1+ 0(1). Moreover, conditional on ? = r, p(P,#) =
p(P,r). Thus,

IP(VNIB(P,#) — po] < 6) — P(VNIB(B,7) — po] < )] = 0.
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Ahn et al. (2013) consider the problem of consistent estimation of r in the context of a static
panel data regression with factors, and make several suggestions toward this end. It is con-
jectured that these estimators are consistent also in the present setup. In Section 4 we exam-
ine the performance of our GMM approach when combined with BIC1 information criterion

of Ahn et al. (2013).

4 Monte Carlo simulations
4.1 Design

The DGP is given by a restricted version of (1) and (2). Two specifications of ¢; ; are consid-
ered. In the first, ¢;; ~ N(0,1), whereas in the second, ¢, ; is generated as an MA(1) process;
€y = Uiy + ¢v;;_1, where v;; ~ N(0,1/(1 — ¢?)) and ¢ = 0.7. The common component is

specified with A; = [1;, Bi(1 — po), §})" and f; = (1,t,g})’, such that

Vit = PoYit—1 + 1i + Bi(1 — po)t + 8igr + €iy.

Here g; ~ N(0y,x1,1,) is an rg x 1 vector of unobserved common factors with loading §; ~
N(Oroxl,aﬁlro), where ryp € {1,2} and Ug € {0.5,2.5}. When 0'(% = 0.5 the proportion of the
variance of u; that is due to variations in &;g; is 33%, whereas when 07 = 2.5 this proportion
is 72%. The intercept and trend slope, 7; and B;, are both drawn from N (0, 1). Hence, in this
DGP, while under the unit root null (o9 = 1), y;; follows a random walk with drift, under
the alternative that pg € {0.95,0.99}, y; is trend stationary.2 Finally, y;0 = #; 4+ u;o, where
ujp ~ N(0,1). Weset T = 8and N € {100,400, 1600}. All experiments are based on 2000

replications.

4.2 Results

Two versions of our estimator are simulated, both based on (14). The first, denoted GMM]1,
is the one-step estimator that makes use of W = Iy (1), while the second, GMM2, makes
use of the optimal weighting matrix, that is, W = Z,.. In both cases, the number of un-
known factors, 1, is estimated using the BIC1 criterion of Ahn et al. (2013), which is of the
form BIC1 = | — penalty, where | denotes the value of the Hansen-Sargan statistic for overi-

dentifying restrictions and the exact form of the penalty is given in Ahn et al. (2013). The

2We also considered the case when A/f; = 77;(1 — pg) + J}gs; however, since the results were very similar, we
only report the results for the specification with the trend included.

15



maximum number of factors considered is set to 7, = 9 + 1. The following results are
reported: (i) mean, standard deviation (SD) and root mean squared error (RMSE) for GMM1
and GMM2; (ii) size (nominal size is 5% ) and power of (1) for the unit root f-statistic;
(iif) the 5% size of the J-statistic for overidentifying restrictions, which is only relevant for
GMM2; (iv) the correct selection frequency for BIC1 (based on GMM?2).

Table 1 contains the results for the case when ¢;; ~ N (0,1). In this case, since there is
no error serial correlation, the full set of T(T +1)/2 = 36 moment conditions is used. It is
seen that the performance of the estimators and their f-statistics is more than satisfactory.
In particular, the bias is small and it get closer to zero as N increases. As expected, unless
N = 100, GMM2 is more efficient than GMM1. We also see that the size of the [-statistic is
close to the nominal 5% level. This is reflected in the results for BIC1, which is very accurate.
In fact, the correct selection frequency does not fall below 90% except one instance.

The size of the t(1)-statistic is close to the nominal level in all experiments considered.
The only exception is when N = 100, in which case the GMM2-based statistic is oversized;
however, the distortions vanishes rapidly as N increases. The highest power is obtained by
using the GMM2-based t(1)-statistic, which is to be expected given that GMM2 is relatively
more efficient. Naturally, the power of both statistics increases as pg deviates from unity and
as N increases.

Larger values of 07 are generally associated with increased performance; GMM1 and
GMM2 tend to become more accurate, and the size accuracy and power of ¢(1) improves.
This is because a larger 02 will make the common component easier to discern. Larger values
of 7, on the other hand, tend to push the results in the other direction, that is, performance
is decreasing in the number of unknown factors. This latter effect is in accordance with our
expectations, as the number of parameters increases while the information contained in the

data (number of moment conditions) stays the same.

5 Application

5.1 Gibrat’s law

In this section we make use of our methodology in order to examine the empirical validity of
the well known “law of proportionate effect”, or simply “Gibrat’s law” (Gibrat, 1931) using

data from the US banking industry. Gibrat’s law postulates that the growth rate of firms is
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independent of their initial size. The model is the same as in (1), where y; ; is now the size of

firm 7 at time ¢ in logs. It is instructive to rewrite this model as

Ayip = (PO - 1)yi,t71 + ujp.

For pp < 1 larger firms tend to grow at a lower rate compared to smaller firms, while for
po > 1 the process is explosive and growth rate is proportional to firm size. For pg = 1
Gibrat’s law holds true because firms” growth rate is independent of their initial size. An
advantage of our methodology is that it remains valid throughout the range of possible
values of py, including po > 1. Testing Gibrat’s law is therefore tantamount to testing for a
unit root in y; ;.

Gibrat’s law has proved very popular because it provides an explanation for what has
been identified as an empirical regularity where the distribution of firms’ size is often highly
skewed across several industries. In particular, many sectors are characterized by a log-
normal distribution with a larger number of small to medium scale firms and relatively few
large firms (see Steindl, 1965). Simon and Bonini (1958) argue that under (approximate)
constant returns to scale it is natural to expect that the probability for a given firm to in-
crease/decrease in size in proportion to its existing size is the same, on average, for all firms
in the industry that lie above a critical minimum size value.

On the other hand, some of the more recent empirical evidence appears to suggest that
while Gibrat’s law tends to be confirmed in small subsamples of well-established, mature,
large firms, this is not always the case for larger samples that include small and young firms,
since the latter often have higher growth rate than their larger counterparts (see Sutton,
1997; Caves, 1998). Given that the relation between firm size and growth rate remains an

open issue, it is useful to investigate this using data from the US banking industry.

5.2 Data description and methodology

The data set consists of a panel of N = 5593 depository financial institutions, each one
observed over a period of T = 9 years. These data have been collected from the electronic
database maintained by the Federal Deposit Insurance Corporation (FDIC).> Two measures
of bank size are considered; (i) fixed assets (FA), and (ii) number of employees (EMP). Both
variables are transformed by taking logs and FA is deflated using the GDP deflator. In order

3See http:/ /www.fdic.gov.
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to account for common time effects, we further demean the variables with respect to their
cross-section averages. Hence, in this application y;; represents the demeaned log size of a

firm.

Figure 1: Estimated factors for FA.
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The factors are initiated by taking /T times the eigenvectors corresponding to the largest
eigenvalues of the T x T matrix Y ; y;y’/N. To get a feeling for what the extracted factors
look like, Figure 1 plots the values of the factors associated with the three largest eigenvalues
for FA. The first factor is almost a straight line, suggesting that this factor is in fact captur-
ing unit-specific fixed effects. The remaining two factors resemble a cubic line with a large
smoothing parameter and a quadratic line. This demonstrates the importance of allowing
for nonlinear effects, casting doubt on existing results based on fixed effects-only unit root
tests. The factors for EMP are almost identical and are therefore not plotted. In fact, the cor-
relation between the second (third) factor of the two variables is 0.99 (0.98). Hence, at least
the common part of FA and EMP seems to be measuring the same thing.

In order to gauge against possible serial correlation in the errors, we implement our
GMM approach assuming MA errors of order q € {1,2}. If the model is misspecified, this is

likely to show up in the Hansen-Sargan test statistic. We fit a maximum of r,,,, = 3 factors
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and use the BIC1 criterion of Ahn et al. (2013) to pick the most appropriate number, given
that it passes the Hansen—Sargan test at the 5% level.

5.3 Results

Table 3 reports results obtained based on the two-step GMM estimator, GMM2. The results
are very similar for EMP and FA. In particular, the point estimate of pg is below unity, but the
unit root null is not rejected even at the liberal 10% level, suggesting that Gibrat’s law is sup-
ported by the data. The null hypothesis of instrument validity /correct model specification
is also not rejected. For EMP the best fitting model according to BIC1 has two factors and
allows for MA(1) errors, while for FA the preferred model includes one factor and MA(2)
errTors.

Our results are consistent with previous findings in the banking literature, which sug-
gest the presence of constant returns to scale (see, for example, Robertson et al., 2013). As
discussed by Simon and Bonini (1958) constant returns to scale corroborates Gibrat’s law
because in this case the probability of a given change in firm size (in proportion to current

size) is likely to be the same for all firms in the industry.

6 Conclusion

This paper develops a GMM-based approach that enable unit root testing in panels where N
is large and T is finite. The assumption that T finite makes our test suitable for both micro
and small-T macro panels. The DGP considered is very general and accommodate an unre-
stricted trend function and cross-section dependence in the form of common factors. These
allowances make the new approach one of the most general around. Indeed, as far as we are
aware, this is the only fixed-T unit root test approach that can be applied in the presence of
cross-section dependence and/or a potentially non-linear trend function. The approach is
also very simple to implement. In particular, since deterministic terms are treated as addi-
tional common factors, which are estimated, there is no need to model the deterministic part.
Our results show that the new GMM-based unit root test statistic is asymptotically invariant
to both the true and fitted deterministic trend function. Hence, unlike existing tests, with
the new test there is no need for any mean and/or variance correction factors that reflect the
fitted deterministic specification. The limiting distribution of the GMM t-statistic is normal

and this holds true regardless of the value of the AR coefficient, pg. Hence, again unlike most
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existing tests, with this test there is no discontinuity in the asymptotic distribution at unity.

The asymptotic properties are verified in small samples using both simulated and raw data.
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Appendix: Proofs

This Appendix makes heavy use of the results of Abadir and Magnus (2005). Here now we
state some of the most frequently used results. Throughout A, B, C and D are going to de-
note generic matrices of dimension m x p, n x q,k x rand [ x s, respectively. We also denote
by K,y the mp x mp commutation matrix of zeroes and ones such K;;,vec A = vecA’. If A
is m x m (square), then we denote by D,, the m? x m(m + 1)/2 duplication matrix of zeroes
and ones such that D,,vech A = vec A. The following results are going to be used frequently

in the sequel:
e vec (ABC) = (C' ® A)vecB;
e vec(A®B) = (I, ® Ky ® 1) (vec A ® vec B);
e (A®B)(C®D) = (AC®BD), if AC and BD are defined;
e Kun(A®B) = (B®A)Ky).

We also define the matrix derivative operator Dy, which is such that if the matrix func-
tion R(x) is m x p and x is n X ¢, then D, R(x) = dvecR(x)/d(vecx)" is mp x nq. Hence,
denoting by d the matrix differential, then we have d vecR(x) = A(x)dvecx, or D, R(x) =
dvecR(x)/dvecx. Also, if R(x) is a m x m and symmetric, then we define D, R(x) =
ovec R(x)/d(vechx)’. D} R(x) means DI R(x) = 99vecR(x)/[d(vecx)’]. Some important

rules for differentials:
e d[R(x)G(x)] = [dR(x)]G(x) + R(x)d G(x);

e d[R(x) ® G(x)] = [dR(x)] ® G(x) + R(x) ® d G(x).

Proof of Theorem 1.

Note that vec (FL)\F') = (F ® F’)vec L), where vec L, = D,vechX, = D,0,. It follows that
vec [[(p)F'Z\F'I7] = [Ir @ [ (p)]vec (FPE\F') = [Ir @ T'(p)](F ® F°)D,0,, where T = T(p)
has been written as a function of p. Making use of this result, it is clear that
S(Ir@T(0)F°LyFle = (¢ ®S)vec[Ir @ T(0)F'L,\F]
= (¢ ®8)(Ir ® Kp2 @ I)[vec It ® vec (T(0)F°L,F)]

= (®8)(Ir®@Kp ®1Ir)[veclr @ (Ir @ T(p))(F ® F°)D,0,].

25



Moreover, since vec It has just one column,
[vecIr® (It ®@T(p))(F® FO)Drez] = [vecIr® (Ir®T(p))(F® FO)DV] (1®6,)
= [vecIr ® (It ® T'(p))(F ® F°)D,]6,.

Hence,

W28(1r @ T(p)F°L,\F e = R(p)6,,
where R(p) = W2C1U(p), C; = (¢/ ® S)(It @ K2 @ I7) is T(T +1)/2 x T* and U(p) =
[vecIr @ (It @ T(p))(F ® FO)D,] is T* x r(r 4+ 1) /2. g(0) can therefore be rewritten as

g(8) = WY2%(th — o’ — S[I; ® TF'L, F'e)

=5

W2(th — p®) — W/2S[I7 @ TF'L, F']e
W2(th — o) — R(p)82, (A1)
suggesting that
dvecg(6) =dg(0) = —R(p)d 6, (A2)

where the differential is taken with respect to 6, (treating p as fixed). The corresponding
derivative is given by

Do, 8(8) = —R(p), (A3)

which in turn implies
Do, Q(6) = 2g(6)'De, g(6) = —28(6)'R(p). (A4)
The relevant first-order condition is therefore given by
(W2 (th — pa®) — R(0)02)'R(0) = 01412, (A5)
or
R(p)'W'/?(th — pn®) = R(p)'R(p)b.
The r(r +1)/2 x r(r + 1) /2 matrix R(p)'R(p) is nonsingular. Hence, defining 27(p) =
W/2(1 — p?), we have
02 = [R(0)'R(p)] "R (p)'21(p)- (A6)
The concentrated version of g(0) is

gc(p) = 8o, 02(p)) = W/2(sh — p®) — R(p)8(p) (A7)

N

= 2r(p) — R(p)62(p) = P(p)2r(p).
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where P(p) = Irr11)2 — R(0)[R(p)'R(p)]"'R(p)". Note that g(8) = W'/?(1h — pr”) —
R(p)62 = 21(p) — R(p)62. Hence, since P(p)R(p) = O7(r11)/2x7(+1)/2 We have
gc(p) = P(p)2r(p) = P(p)[2r(p) — R(p)62] = P(p)g(0).

Consider v N g(0), which we can write as

VNg(0) = VNW'2[(th — pra’) — S(Ir @ TF’E,\F')e] = \F Zgz

where g;(0) = W'/2[Z!(y; — py?) — S(Ir ® TF°Z,F')e]. By using the fact that y; = py? + u;,
where u; = (u;1,...,u;7) = FA; + & with &; = (&1, ..., €;7)’, 8i(0) can be written as
gi(0) = W'Y[Zi(y; —py}) — S(Ir @ TF'E,\F)e]
= WY2[Zu; — S(Ir @ TF'L,F)e],

or
S] (y?u; — FFOZ/\F,)el

gi(0) = wi/z :
St(ydu) — TF'Z,\F )er
From y? = TFA; + Te?, we obtain

youi —TFL,F = (TFOA; +T€Y)(FA; + &) — TF'L,F/

= TFO(MA] —Z))F + TFAe) + TeVAIF + Tedel.

It is easy to see that premultiplying the above four terms by S;, post-multiplying by e; and
taking expectations yields zero for all t. Furthermore, these terms are independent across i
with bounded fourth-order moments. Hence, by a central limit theorem, we have

1 N d
VNg(o) = N Y 8i(60) = N(Or(7+1)/2x1, Eg)
iz

as N — oo, where L, = limy_,0 Y1\.q E[8i(60)8i(60)']/N and 4 signifies convergence in
distribution. E[g;(0)g;(0)’] may be expanded in the following fashion:
E[g:(6)8:(6)’]
= WLY2E[(Z!u; — S(IT @ TE°Z, F')e) (Ziu; — S(It ® TF'L,F')e) | (WY/2Y
= WY2E(ZluulZ)(WY2) — WY/2S(I7 @ TFUE F')eE(u/Z;) (W2
_ Wl/ZE(Z uz) /(IT ® rFOZAF/>S/(W1/2)/
+ WY28(1r @ TE'L,\F )ee’ (It @ TE'L, F) S/ (W1/2)
(Z;

TwulZ) (W2) — W28(I7 @ TF'E,\F )ee’ (It @ TE'L, F')'S (W1/2),
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Here

E(ZuuiZ;)
= E[Z{(FA;i+ &) (FA; + ¢)'Z;]
= E(ZFMAFZ) + E(ZieAiF'Z;) + E(ZFAielZ;) + E(ZleielZ;)
= E(ZFMAF'Z;) + E[ZIE(ei|Ai, Z)AF'Z)] + E[ZFAE (| Ay, Z)'Z] + E[ZIE(ei€7|Z;) Z)]
= E(ZIFMAF'Z) + 07E(ZIZ),

where the third equality holds because ¢; is uncorrelated with A; and Z;. The fourth equality
follows from the fact that E(g;e}) = 021r. As for E(Z!Z;), we have

E(ZiZ;) = E[S(Ir ©y})(Ir © y?)S'] = S(Ir @ £,p)§’,
where E,0 = E[y?(y})']. Similarly, by using the fact that &} is uncorrelated with A; we have
E(ZFMAFZ) = E[S(Ir@y])FAAF (Ir @ (v]))S']
= SE[(Ir ® y})FAAF (Ir @ (v7)')]S’
= SE[(FAAF @y])(Ir @ (y)))]S'
= SE[FAAF @y](v7)']s'
= SE[FAAF @ (TFOA; 4+ TeY) (TFOA; +T&))]S’
= S[E(FAAF @ TFAAL (F)'TY) 4+ E(FAAF @ Ted(e2)T')]S
and therefore
E % E(ZFAAFZ) = S (1 i E(FMAF @ TFOAA(FO)'T) + FEAF @ TL r’) s’
N i=1 l o Z N i=1 o o g ’
= SIS,

with an implicit definition of I 0. It is straightforward to see that under our assumptions,
Ly, exists and is positive definite.

Thus, putting everything together,
I, = WY/2SEp, oS' (W!/2) — W'/2S(1r @ TFE, F')ee’ (It @ TE'L, F')'S' (W2,
The above results suggest that if we let Zo. = P(00)E¢P(00)’, then

V/Ngc(p0) = P(00)8(00) % N(Or(141)/2x1, Egc)-
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This result will be used as a basis for deriving the asymptotic distribution of p. In order to
appreciate how, consider Qc(p) = gc(p)'gc(p). By Taylor expansion about p = py, we have
0 — 0o q
Qc(p) = Qelpo) + Y- D Qeln) L%,
=1 '

suggesting that

[VN(p - po)?

N[Qc(p) — Qclpo)] = VND,Qc(po)VN(p — po) + D3 Qc(po) 5

o <D2 Qc(po)[VN(p — Po)]3>
p \/N :

Later on we show that Dz Qc(po) = O,(1). The last term is therefore O,(1/vN) = 0,(1). p

is the minimizer of N[Qc(p) — Qc(po)]. Thus, treating this as a function of v/N(p — pp), we

obtain the following first order condition:
VND, Qc(po) + D Qe (o) VN(p — po) +0,(1) =0,
or

VNG = o) =~ Y8 10,0,

Thus, in order to work out the asymptotic distribution of v/N(p — po), we need D, Qc(po)
and D‘% Qc(po), which, by the product rule, can be written as

Dy Qc(p) = 28c(p)Dygelp),
D; Qc(p) = 28c(p)'D;gclp) + 2D, gc(p)' Dy gclp),
D) Qc(p) = 4gc(p)'D; gc(p) + 6D, gc(p) D; ge(p).

Consider D, gc(p). By the product rule,

dgc(p) = Ipr11)2dP(p)2r(p) +P(p)d 27(p)
= [2r(0p) @ Ip(r41)2]d vecP(p) + P(p)d 27(p),

giving the following derivative:
Dy gc(p) = [21(0)" @ Tr(r41)/2]Dp P(p) + P(0)Dp 27(p).
D, 27(p) is particularly easy and is given by
D, 21(0) = Dy (W2 (1 — prin®)) = — W1/,
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D, P(p) requires more work. We begin by noting that

—d (R(p)[R(p)'R(p)] "R (p)")

p))[R(p)’ ( )] R(p)' = R(p)(d [R(p) R(p)] )R (p)’
]

dP(p) =

e
~—
~
~~
e
~
-
-y Ja )

suggesting

dvecP(p)

1

= —[R(p)[R(p)'R( p)ldvecR(p) — [P(p) ® R(0)[R(p)'R(p)] ']d vecR(p)’
p)'R(p p)ldvecR(p)

0)[R(p)'R(0)] " 1Kr1y(141)(r+1)/ad vec R(p)

p)'R(p)] " @ P(p)]d vecR(p)

— Kpr1p/4[R(0)[R(p)'R(0)] " © P(p)]d vecR(p)

= —(Irxrsa2/a + Keiriaz/a) [R(0)[R(0)'R(p)] ™ @ P(p)]d vec R (p).

0)'R(p

= —[R( 7 P
= —[R(p)] [
)
(

~

|
=

P(po) ®

~

( )
( )
( )'R(
( )

= —[R(p)[R

Here

dvecR(p) = vec [W2C1d U(p)] = Lir41)2 ® W/2C,]d vec U(p),

and therefore

Dy R(p) = [Lyr-1/2 ® W/2C1]D, U(p).
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Consider D, U(p). A direct calculation reveals that

dvecU(p)
= vec[veclr ® (Ir ®dT(p))(F® F°)D,]
= (Kpzy(41)/2 ® Ip2)[vecIr @ vec ((Ir @ dT(p)) (F @ F°)D;)]
= (Kpy(r11)2 @ Ip2) [vecIr @ (D (F @ F°)' @ Ip2)vec (Ir @ d T(p))]
= (Kpzy(41)/2 ® Ip2)[vecIr @ DH(F O F°) @ In2) (I ® Kp2 ® Ir) (vec It @ d vec T (p))].

Clearly,
0 0 0
D, T (p) = vec 1 0 ,
: 0
pT—Z 1 0

which we can use, together with the fact that vec I is vector, to show that

DoU(p) = (Kpppq1)2 ®Ip)
x [vecIt @ DLUF®F) @1I2)(Ir ® K2 ® It) (vec It ® D, T(p))]

where
Co = (Kp2p(r41)/2 @ I2)[vec It @ DL(F @ F') @ Iz ) (Ir @ Kp2 @ Ir) (vec It @ I2)].
This can be substituted back into the expression for D, R(p), giving
Dy R(p) = [Tyr41)/2 @ W?C1D, U(p) = [Lyy41)2 © W2C1]CoD, I (p),

which in turn implies

DoP(o) = —(Iparr1p/a + Kro(riya) [R(0) [R(0) R(p)] ' @ P(0)]D, R(p)
= —(Ir(r11)2/a + Kporp1)2/4) [R() [R(p)'R(p)] " @ P(p)]
X [Lpg1)2 © WG CoDp T (). (A8)
We had

D, gc(p) = [21(p) @ Ir(r11)/2]Dp P(0) + P(0)D, 27(p).
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Since D, P(p), P(p) and W'/2 are just constant matrices, in order to work out the limit of
D, gc(p) we only need to consider 27(p0) and D, 27(p). The limits of these terms are simple

consequences of the law of large numbers. Indeed, letting z1(0) = W'/2(m — pm”), we have

2r(p) = zr(p) +0,(1), (A9)
D,2r(p) = —-WY?m’+0,(1) =D, zr(p) +0,(1), (A10)

from which we obtain

Dy gc(p) = 11(p) +0,(1),

where 1 (p) = [21(p)" @ Ir(r11)/2]Dp P(p) + P(0) D, 21 ().
Next, consider D3 gc(p). In view of the result for D, gc(p), which is already in vector

form, it is clear that

dDpgc(p)

= d([21(p) ® Ir(r41)2]DpP(p) + P(0)Dy21(p))

= [d2r(p) @ Ir(r11)/2]DpP(p) + [21(p)" ® Ir(141)/2]d DoP(p)

+ dP(p)Dpzr(p) + P(p)d Do2r(p)

= [DpP(p) ® Ir(ri1)/2)(Ir(rs1)/2 @ Krri1) /2 @ In(ry1)2) [d vec 2r(p) @ vec Ity q) o]
[27(p) ® Ip(41)/2]d vec DpP(p)

[Dp21(p)" @ Ir(r41)/2]d vecP(p) + P(p)d vec Do21(p),

+ o+

where we have made use of

[d27(p)" ® Ir(r41),2]DpP(p)
= vec (Ir(ri1y2[d 27(0) @ Ip(r41)/2]DpP(p))
= [DpP(p) ® Ip(ri1y/2]vec[d2r(p) & Ir(r i1y 2]
= [DpP(p) ® Ir(rs1y 2] (Ir(r11) /2 © K(ri1) /2 @ Ip(r40)/2) [Vec d 21(p) @ vec Ip(rqy o]
)

= [DoP(0) ® Ir(ri1y2) (Ir(r41) /2 @ K11y /2 @ Ip(r40) 12) [d vec 27 (o) @ vec L) /2],

and

dP(p)D,2r1(p) = vec [Ir(r11),2d P(0)Do21(0)] = [Dp2r(p)’ ® Ip(741)/2]d vec P(p).

32



Hence,

gc(p)
= [DpP(p) ® Ip(rs1y/2)(Ir(r41) /2 @ Kr(r41) /2 @ I(141) /2) [Dp 27 (0) ® Ve Ip(ry1y /2]
+ [21(0) @ Ig21),2]D;5 P(0) 4 [Dp 21(p) @ Ir(r41)/2]Dp P(p)
+ P(p)D; 21(p), (A11)

where all terms but Dg P(p) and D% 27(p) are known from before. We start with Df, P(p),

whose differential is given by
dD,P(p) = —(Ir(r41)/4 + Krriay2/4)d ([R(p)[R(p) (0)1Dy R(p))
R(p P

= —(Ip(ry12/a + Keriay2/4) (A [R(e)[R(p) (0)])Do R(p)
= (Ipa(ry1)2/4 + Kpoeri2/4) [R(0) [R(0)'R(p)] " @ P(p)]d D, R(p).

R(p)] '@ P
‘R(p)] " ®@P

Consider d [R(p)[R(p)'R(p)]~! ® P(p)], which can be expanded in the following manner:

d[R(p)[R(p)'R(p)]'R(p)] ™" @ P(p)]
= d(R(p)[R(p)R(p)]™") ®P(p) + R(p)[R(p)'R(p)] "' @ d P(p),

We now put this in vector form. Note in particular how

vec ([dR(p)]'R(p) + R(p)'dR(p))
= vec (L11)2[dR(p)]'R(p)) + vec (R(p)'dR(0)L;(r11)/2)
= (R(p)' ®L(r41)/2)vecdR(p) + (L(r41)2 @ R(p)")d vecR(p)
= [(R(0) @ L11)2)Kerri1)(r41) 74 + Lrri1) 2 © R(p) [d vec R (p)
= (Kegiap/a +Legrnp/a) [Lir)2 © R(p)]d vec R(p),
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giving
vecd (R(0)[R(p)'R(p)] ")

[R(0)'R(p)] " @ Ir(r41),2)d vec R(p)

[R(p)'R(p)] " @ R(p)[R(p)'R(p)] ")vec ([dR(p)]'R(p) + R(p)'dR(p))

[R(0)'R(0)] ™" @ Lr(r41),2)d vec R(p)

[R(0)'R(0)] " @ R(0)[R(0) R(0)] ") (Kp2r41y2/4 + La(r1)2/4)

X [Liri1)/2 @ R(p) Jd vecR(p).

Therefore,

D, (R(0)[R(0)R(0)] ") = ([R(p)'R(p)]" @ Ir(r41)/2)Dp R(p)
— ([R(0)R(p)] ' @ R(p)[R(p)R(p)] ")
X (Kepgayesa + g Le1)2 © R(p)'IDp R(p).(A12)

It follows that since

vecd [R(p)[R(p)'R(p)] " @ P(p)]
= vec[d (R(p)[R(0)'R(p)]™") @ P(p)] + vec[R(p)[R(p)'R(p)] ' @ d P(p)]
= (Lrr41)/2 ® Kpo(rs1)2/4 © I(r41y2)

% [dvec(R(p)[R(p)'R(p)]™") @ vecP(p) + vec (R(p)[R(p)'R(p)] ™) ® dvecP(p)],

we can show that

Dy [R(p)[R(0)'R(p)] " © P(p)]
= (Lrr41)2 © Kporg1y2/4 © Ip(r41)/2)

% [Dy (R(p)[R(p)'R(p)] ") @ vecP(p) + vec (R(p)[R(p)R(p)] ") ® Dy P(p)]. (A13)

Because

dDoP(p) = —(Ipari1y2/4 + Kro(riny2/4) (d [R(0) [R(0) R(p)] ' @ P(p)])D, R(p)
= (Ip2(ra1y2/4 + Kpopriny2/4) [R(p) [R(p)'R(p)] ' @ P(p)]d D, R(p)
= —[DpR(p)' ® (Ip2(r41y2/4 + Krz(rs1y2/4)d vec [R(0) [R(0)'R(p)] ™ © P(p)]

— (Irre1y2/a + Krorpa2/4) [R(0)[R(0) R(p)] ™' @ P(p)]d vec D, R(p),
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this implies

Dy P(p) = —[DpR(p)' ® (Irz(rs1)2/a + Kro(ri1)2/4)1Dp [R(0)[R(0) R(p)] ' @ P(p)]
—  (Ipa(rs1y2/a + Krzri12/4) [R(0) [R(0) R (p)] ' @ P(p)]Dﬁ R(p). (A14)

The only term missing here is Dg R(p), which, in view of the expression for D, R(p), is given

by
DI R(p) = [Li11)2 © W/2C]CDI T (p),
where _ -
0 0 0 0
0 0 0 0
Df) I'(p) = vec 1 0 0
X 0
pl=3 1 0 0

By using this and the fact that
D) 2r(p) = —D; W20 = 0r(741) /21,
we can show that

D’ gc(p)
= [DpP(p) @ Ip(r1y /2] (Ir(r11) /2 © Ky(ra1) /2 @ Ir(r41)/2) [Dp 27(0) ® vec Ir(r41) /2]
+ [Z1(p) ® Ipr41)2)D5 P(p) + [Dp 27(0) @ Ir(r41)2]Dp P(p) + P(0)D3 27(p)
= [DpP(p) @ Ip(ry1) 2l (Ir(r41) /2 ® Kr(r41) /2 @ I(141)/2) [Dp 27(P) ® Vec Ir(r i1y /2]
+ [Z1(p) @ Tpran /2]D P(o) + [Dy 21(p) @ Ir(141)2]Dp P(p). (A15)
whose limit is given by
D; gc(p) = 12(p) +0,(1),

where

72(p)
= [DpP(p) @ Ipers1) /2] (Tr(r41) /2 @ Kr(r41) /2 @ Ity 2) [Dp 27(0) @ vec Irriqy /2]
+ [zr(p) @ Ir(r11),2]D; P(0) + [Dp z1(p)’ @ Ip(141)/2]Dp P(p).
The results for D, gc(p) and D gc(p) imply, together with the fact that VNgc(po) =
Op(1),
VND, Qc(po) = 2v/Nge(p0) Dy ge(po) 5 N(O, 471 Zgc11)
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as N — oo, where y; = 1 (po). By using this and

D; Qclpo) = 28c(p0)'D; gc(o) + 2D, ge(00)' Dy ge (o)
= 2D, gC(PO),Dp gc(po) +Op(1)
= 29171 +0p(1), (A16)

we obtain

R - \/WDP Qc(po) da 'V ’Yﬁzgc’h
VN(p — po) = _W +0p(1) = TN(OJ)/

as was to be shown. Note also that, letting v, = ¥,(p0),

D) Qc(po) = 48c(00)'D; gc(po) + 6D, gc(00)'D; ge(po) = 6D, g (00)'D; g (o) + 0p(1)

= 6’Y/1'Yz + Op(l)/

verifying that Dg Qc(po) is indeed O, (1). [
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Table 1: Monte Carlo results for the case when ¢;; ~ N(0,1).

GMM1 GMM2
o0 N "Mean SD RMSE #(1) Mean SD RMSE #1) ] BICI

03 =051 =1
1 100 .9977 .0219 .0220 .051 9989 .0230 0230 109  .056 939
1 400 9993 009 .009 .049 9998 .0092 .0092 063 .069 .968
1 1600 1.000 .0048 .0048 .048  1.000 .0042 .0042 056 .067 .996
99 100 9875 0229 0230 .117 9885 .0258 .0258 302 .057 .948
99 400 9908 0146 .0146 220 9907 .0133 .0133 329 .069 .941
99 1600 9909 .0071 .0071 432 9905 .0064 .0064 514 067 .982
95 100 .9471 .0248 .0250 795  .9487 .0263 .0264 .892 .055 .962
95 400 9491 0115 0116 .982  .9498 0109 .0109 994 068 .979
95 1600 .9500 .0057 .0057 .998 ~ .9500 .0052 .0052  1.000 .064 .996
07 =257r0=1
1 100 1010 .0203 .0226 .065 1.006 .0222 0223 102 .037 944
1 400 1.002 .0093 .0093 .059 1.001 .0089 .0089 .076 .041 973
1 1600 1.000 .0041 .0041 .061 1.000 .0037 .0037 .073 .044 1.00
99 100 9915 .0226 .0227 .146 9908 .0220 .0220 313 .035 974
99 400 9911 .0101 .0102 .345 9910 .0096 .0097 447 .042 .99
99 1600 9907 .0049 .0051 518 9906 .0039 .0040 .792 .051 .98
95 100 9531 .0204 .0206 .517 9528 .0238 0239 684 .031 974
95 400 9521 .0101 .0103 .876 9506 0095 .0095 .959 .052 .983
95 1600 9504 .0049 .0049 .997 9509 0044 0045 1.00 .055 1.00
07 =057r)=2
1 100 9929 .0263 .0272 .077 9926 0279 0289 128 .040 910
1 400 9969 .0105 .0110 .055 9977 0102 0105 .074 .055 .963
1 1600 .9996 .0058 .0058 .060 1.000 .0051 .0051 .058 .053 .984
99 100 9979 0268 .0279 .047 9949 0256 .0261 .081 .033 .927
99 400 9869 .0151 .0154 251 9891 0119 0119 293 .055 .963
99 1600 9895 .0081 .0081 .610 9901 .0076 .0076  .650 .053 .996
95 100 9685 .0333 .0397 .331 9655 0312 .0397 482 .035 .89
95 400 9581 0132 0155 .611 9556 .0124 0137 779 .040 .993
95 1600 9486 .0059 .0061 .969 9505 0052 .0052 .985 .054 .999
07 =2571)=2

1 100 9986 .0249 .0249 .071 9990 .0253 .0253 111 .039 948
1 400 9987 .0120 .0121 .065 9992 .0118 .0118 .067 .041 971
1 1600 .9998 .0051 .0051 .056 9997 .0045 0045 .065 .042 1.00

99 100 .9945 .0231 .0235 .081 9962  .0233 .0241 130 .047 .938
99 400 9935 .0242 .0245 .298 9918 .0116 .0117 213 .045 987

99 1600 .9905 .0069 .0069 .692 9903 .0064 .0064 749 .056 .998
95 100 9556 .0310 .0315 .312 9551 .0254 .0259 464 .032 946
95 400 9527 .0228 .0230 .631 9518 .0123 .0124 868 .048 .988

95 1600 9501 .0115 .0115 .865 9508 .0070 .0070 997 .054 .999

Notes: “GMM1” and “GMM?2” refer to the one- and two-step GMM estimators, “Mean”, “SD” and
“RMSE" refer to the mean standard deviation, and root mean squared error of the estimators, “t(1)”
and “]” refer to the rejection frequency of the unit root ¢-statistic and Hansen—Sargan statistics,

and “BIC1” refers to the correct selection frequency of the BIC1, respectively.
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Table 2: Monte Carlo results for the case when ¢; ; follows an MA(1) process.

GMM1 GMM2
po N Mean SD RMSE ¢(1) Mean SD RMSE (1) J  BIC1
02 =05r=1
1 100 9964 .0257 .0260 .041 9971 0251 .0253 .091 .051 .912
1 400 9991 .0136 .0136  .053 9991 0131 0131 .057 .071 .959
1 1600 1.005 .0068 .0084 .047 1.004 .0057 .0070 .051 .063 .981
99 100 9871 .0274 .0276  .101 9869 .0271 .0273 286 .051 .963
99 400 9910 .0173 .0173 .194 9887 .0162 .0163 311 .063 .952
99 1600 .9903 .0099 .0099 417 9897 0085 .0085 519 .066 .979
95 100 .9473 .0284 .0285 .76l 9469 .0291 .0293 912 .059 .958
95 400 9496 .0153 .0153  .967 9479 0140 0142 983 .061 .976
95 1600 .9510 .0084 .0085  .983 9505 .0080 .0080  1.000 .054 .994
07 =257r9=1
1 100 1.013 .0231 .0284 .060 1.011 .0240 .0241 .083 .032 .924
1 400 1.008 .0113 .0139 .054 1.006 .0097 .0097 .068 .039 .962
1 1600 1.003 .0062 .0069 .058 1.009 .0042 .0042 .061 .048 .994
99 100 .9924 .0260 .0261 .139 9937 .0243 .0246 284 .038 .967
99 400 9917 0145 0146 .340 9924 0129 0131 419 .041 985
99 1600 .9911 .0081 .0082 .501 9912 .0067 .0069 .804 .056 1.00
95 100 .9538 .0260 .0263 525 9542 0248 0252 .648 .037 961
95 400 9526 .0133 .0137 .86l 9523 0115 0117 975 .042 .968
95 1600 .9511 .0069 .0072 .984 9513 .0058 .0059 .996 .043 .989
02 =051 =2
1 100 9932 .0298 .0306 .071 9944 0304 .0309 .101 .047 .894
1 400 9956 .0141 .0148 .059 9958 0135 .0141 .068 .059 .957
1 1600 9991 .0077 .0078 .061 9987 .0064 .0064 .053 .054 .979
99 100 9864 .0317 .0319 .062 9851 .0314 .0318 .073 .033 .924
99 400 9872 .0204 .0206 .236 9876 .0194 0196 249 .037 .954
99 1600 .9887 0116 .0117 .601 9889 .0106 .0107 .641 .042 974
95 100 .9445 .0341 .0345 319 9441 0332 0337 467 .037 .906
95 400 9479 .0168 .0169 .631 9476 0159 0161 762 .041 .984
95 1600 .9486 .0109 .0110 .954 9491 0093 .0093 977 .046 .993
02 =2571)=2
1 100 1019 .0262 .0324 .069 1.023 .0270 .0355 .093 .033 .936
1 400 1.013 .0129 .0183 .061 1.016 .0114 .0197 .062 .037 .959
1 1600 1.006 .0069 .0091 .058 1.004 .0059 .0071 .055 .041 .994
99 100 .9927 .0284 .0285 .082 9944 0294 .0270 104 .037 942
99 400 9921 0178 .0179 274 9931 .0162 0165 .195 .042 975
99 1600 .9915 .0094 .0095 .668 9916 .0081 .0083 .716 .051 .997
95 100 9576 .0309 .0318 .305 9578 .0304 .0314 469 .037 .959
95 400 9541 .0144 .0150 .657 9547 0140 .0148 .832 .043 .91
95 1600 .9528 .0093 .0097 .926 9521 .0081 .0084 .983 .041 1.00

Notes: See table 1 for an explanation.
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Table 3: Empirical results.

Measure  p 0, t(1) p-value ] p-value BIC1 7 g
EMP 879 .091 -1.32 186 10.23 176 426 2 1
FA 843 105 -1.49 135 1191 .104 593 1 2

Notes: “p” and “0,” refer to the GMM2 estimator of pp and its estimated standard
error, “t(1)” refers to the unit root t-statistic, “J” refers to the Hansen-Sargan statistic,
“BIC1” refers to the minimizing value of the BIC1, “#” refers to the estimated number
of factors using the BIC1, and “q” refers to the order of the assumed MA errors.
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