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Abstract

This paper proposes a new panel unit root test based on the generalized method of

moments approach for panels with a small number of time periods and a large number

of cross-section units, N. In the model that we consider the deterministic trend function

is essentially unrestricted and the errors are cross-sectionally correlated in a very general

fashion. In spite of these allowances, the GMM-statistic is shown to be asymptotically

unbiased,
√

N-consistent and asymptotically normal for all values of the autoregressive

(AR) coefficient, ρ, including unity, making it an ideal candidate for unit root inference.

Results from both simulated and real data are provided to suggest that the asymptotic

properties are borne out well in small samples.
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1 Introduction

There is a voluminous literature on panel unit root tests. The main motivation for using such

procedures is that by considering not one but N time series of length T the power of panel-

based tests can increase considerably relative to that achievable using univariate tests. The

largest branch of literature by far is that focusing on panels where both N and T are large

(see Breitung and Pesaran, 2008, for an overview). A typical study assumes that N, T → ∞
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such that N/T → ∞. The main reason for this is the presence of cross-section heterogeneity,

such as fixed effects, whose estimation requires T → ∞. This induces an estimation error

in T, which can only be controlled if N/T → 0, for otherwise the accumulated effect as

N → ∞ will be unbounded (see Westerlund and Breitung, 2013, Section 5, for a detailed

discussion). This requirement may put strain on the data. Indeed, as a large body of Monte

Carlo evidence shows (see, for example, De Wachter et al., 2007; Hlouskova and Wagner,

2006), while the large-N requirement is usually not a problem, the large-T requirement, and

in particular the requirement that T must be larger than N, pose a real restriction, to the point

that researchers might well find themselves discarding data in order to have N sufficiently

small relative to T. Moreover, in many panels, such as those frequently encountered in

applied micro, T (N) is simply too small (large) for such discarding practices to make sense,

although the unit root hypothesis is still of considerable interest (see Bond et al., 2005).

The above issue has motivated researchers to look for inferential procedures that are suit-

able in fixed-T panels. Harris and Tzavalis (1999) proposed a panel unit root test based on

the bias-corrected ordinary least squares (OLS) estimator of the autoregressive (AR) coeffi-

cient, ρ. Many other tests have since then been proposed (see De Blander and Dhaene, 2012,

and the references provided therein).1 The evidence reported so far (see, for example, Harris

and Tzavalis, 1999; Hadri and Larsson, 2005; Hlouskova and Wagner, 2006) suggests that in

terms of small-sample performance, not requiring T to be large can be a great advantage.

In fact, fixed-T tests often outperform large-T tests and do so for a wide range of values of

T. However, while much progress has been made, there are still plenty of important issues

remaining unresolved in the fixed-T literature. First, except for Harris and Tzavalis (2004)

and Han and Phillips (2010), who consider the case with a linear trend, the fixed-T literature

has not yet ventured outside the fixed effects environment. This is noteworthy because if

one admits to the possibility that time series might be trending (in a potentially non-linear

fashion), then the probability of the panel of multiple time series exhibiting at least some

trending behavior will tend to one as N → ∞, in which case fixed effects-only tests will be

rendered invalid. Second, as far as we are aware, there is presently no test that is able to

accommodate cross-section dependence, that is, existing fixed-T tests are “first-generation”

tests (Baltagi, 2008, Chapter 12). This is again noteworthy because in practice such depen-

dence is likely to be the rule rather than the exception, even in highly disaggregated data,

1See Breitung and Pesaran (2008) for a survey of the panel unit root and cointegration literatures.
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because of herd behavior, fashions or fads.

The current paper addresses both issues. We develop a “second-generation” approach

to unit roots in fixed-T panels characterized by both cross-section dependence and generally

trending behavior. This is accomplished by assuming that the data admits to a common fac-

tor structure in which the factors are treated as unknown parameters to be estimated along

with the other parameters of the model. This parametric treatment means that the factors are

virtually unrestricted, apart from some mild regulatory conditions. It also provides a means

to control for (unobserved) deterministic trend terms, which in our model appear naturally

as additional factors. In the terminology of Bai (2009), the model that we consider constitutes

an “interactive effects” model. Interestingly, since factors are estimated, the usual problem

in empirical work of deciding on which deterministic terms to include does not arise. Hence,

the approach is not only general, but is in this sense also remarkably simple.

The estimation is carried out by modifying the generalized method of moments (GMM)

approach of Robertson and Sarafidis (2013). The new estimator is shown to have a num-

ber of desirable properties. First, it is free from the otherwise common incidental parameter

bias. This is true not only in the conventional fixed effects case, but also in the more gen-

eral interactive effects model considered here. The reason for this is that we only require

consistent estimation of the covariance matrix of the factor loadings, and not of the loadings

themselves, thereby eliminating the incidental parameter problem. Second, the estimator

supports asymptotically normal inference for all values of ρ, including unity, and the well-

known weak instruments problem when ρ is in the vicinity of unity does not emerge (see,

for example, Bun and Windmeijer, 2010). Hence, unlike most existing approaches, the limit-

ing distribution of the GMM estimator considered here is continuous and has the same rate

of consistency as ρ passes through unity (see Phillips and Han, 2010, for a similar result).

Third, the estimator and the associated t-statistic for a unit root have excellent small-sample

properties.

The remainder of the paper is organized as follows. Section 2 presents the model and

assumptions, which are used in Section 3 to derive the GMM estimator and its asymptotic

distribution. The small-sample accuracy of the asymptotic results are evaluated using both

simulated and real data in Sections 4 and 5, respectively. Section 6 concludes.
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2 Model and assumptions

Consider the panel data variable yi,t, observed for t = 0, 1, ..., T time series and i = 1, ..., N

cross-sectional units. The data generating process (DGP) of this variable is assumed to be

given by

yi,t = ρyi,t−1 + ui,t, (1)

ui,t = λ′
ift + ε i,t, (2)

where ρ ∈ R, ft is an r × 1 vector of common factors with λi being the associated vector of

factor loadings, and ε i,t is an idiosyncratic error term. The following assumptions are made,

where Ft is the sigma-field generated by {ε i,n}t
n=1, 1T = (1, ..., 1)′ is a T × 1 vector, and tr A

and ||A|| =
√

tr (A′A) denote the trace and Frobenius (Euclidean) norm of the matrix A,

respectively.

Assumption ERR. ε i,t is independent across i with E(ε i,t|Ft−1) = 0, ∑N
i=1 E(ε2

i,t)/N → σ2
ε > 0

and E(ε4
i,t) < ∞.

Assumption LAM. λi is a random coefficient vector such that ∑N
i=1 E(λiλ

′
i)/N → Σλ, an

r × r positive definite matrix, E(||λi||8) < ∞, and E(λiε j,t) = 0r×1 for all i, j and t.

Assumption F.

(i) F = (f1, ..., fT)
′ is a non-random T × r matrix with full column rank;

(ii) Suppose that ρ = 1. If 1T is included in F, then r > 1; otherwise, r > 0.

Assumption INI. yi,0 = λ′
if0 + ε i,0, where ||f0|| < ∞ and ε i,0 is independent across i with

E(ε i,0) = 0, ∑N
i=1 E(ε2

i,0)/N → σ2
0 > 0, E(ε4

i,0) < ∞, and E(λiε j,0) = 0r×1 for all i and j.

Assumption MOM. T(T + 1)/2 > 1 + r [T + (1 − r) /2].

Assumption EPS allows for cross-section and time series heteroskedasticity but implies

no serial correlation in ε i,t, the latter of which is a very common restriction in the fixed-T liter-

ature (see, for example, Bun and Sarafidis, 2013). One way to allow for more general forms of

serial correlation is to consider more lags of yi,t, such that the AR(1) in (1) becomes an AR(p)

model (with p ≥ 1). Another possibility is to put the serial correlation in ε i,t and to change
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the choice of instruments. This is discussed in detail in Remark 3, and then again in Section

5, where we show how to implement our approach in the presence of moving average (MA)

errors. The random loading assumption can be relaxed in a relatively straightforward way,

provided that ||λi||8 < ∞ and limN→∞ ∑N
i=1 λiλ

′
i/N is positive definite. Assumption F (i) is

standard in panel data models with T fixed (see Sarafidis and Wansbeek, 2012). We note that

the F could also be treated as stochastic by modifying the proofs accordingly. This would not

change anything else that is of substance in the paper. As we explain in Remark 2, Assump-

tion F (ii) is needed for identification of ρ in the unit root case. Assumption INI implies that

the equation for yi,0 can be thought of as the reduced form equation for yi,t at period time

t = 0. Thus, f0 and ε i,0 are not necessarily identical to the values that would arise had yi,0

been assumed to follow (1). Assumption MOM is important because the number of factors

needs to be small enough relative to the number of moment conditions, such that there are

enough degrees of freedom to estimate the model.

A major difference when compared to the existing large-T second-generation panel unit

root literature (see, for example, Bai and Ng, 2004; 2010; Moon and Perron, 2004) is that here

ft is treated as a fixed parameter vector to be estimated along with the other parameters of

the model. Whether ft has zero mean is therefore not an issue. It can also have arbitrary “dy-

namics”. In terms of the terminology of Bai (2009), (1) and (2) constitute a fixed interactive

effects model, which is more general than the models considered previously in the literature.

Suppose, for example, that ft = (1, τt)′ and λi = (ηi, 1)′, such that λ′
ift = ηi + τt. This means

that the DGP reduces to

yi,t = ρyi,t−1 + ηi + τt + ε i,t.

This is the benchmark first-generation specification with incidental intercepts and time-

specific fixed effects to account for cross-section dependence (see, for example, Im et al.,

2003; Levin et al., 2002). Models with incidental trends and second-generation models with

common factors can also be accommodated. For example, if ft = (1, t, g′
t)
′, where gt is an

(r − 2)× 1 vector of common factors, and λi = (ηi, βi, δ′
i)
′, then

yi,t = ρyi,t−1 + ηi + βit + δ′
igt + ε i,t.

This specification is similar to those considered by, for example, Moon and Perron (2004),

Pesaran (2007), and Phillips and Sul (2003) in the large-T case, and we will consider it again

in our Monte Carlo study in Section 4. Note that while incidental trends can be allowed,
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this is by no means a restriction; the interactive effects model considered here can accom-

modate virtually any trend function that is linear in parameters, including polynomial trend

functions, trigonometric functions and models of discrete and smooth structural shifts. The

model considered for ft is therefore very general indeed.

Moreover, while not necessary, the elements of ft may be unknown. As we illustrate in

Section 5, this means that the researcher is spared from the problem of having to decide on

which deterministic components to include. For example, if structural shifts are present,

then there is no need for any a priori knowledge regarding their locations, which are ob-

tained as part of the estimation process. Hence, not only is the model very general, but the

way that ft is accommodated is also very convenient from an empirical point of view.

Remark 1. In this paper we assume that ft enters via ui,t. This is not necessary. As Bai

and Ng (2010) discuss, when ft is random a more general DGP is obtained by placing the

common component directly under yi,t, such that yi,t = λ′
ift + ui,t, and then allow ft and ui,t

to have different dynamics. However, since in this paper ft is fixed, the dynamics are driven

by the idiosyncratic component only, and from this point of view it does not matter whether

ft enters via ui,t or yi,t.

3 Main results

3.1 Moment conditions

Define the T × T matrix

M = lim
N→∞

1
N

N

∑
i=1

Mi,

where Mi = E(y0
i y′

i), y0
i = (yi,0, ...yi,T−1)

′ and yi = (yi,1, ...yi,T)
′ are both T × 1. We begin by

deriving an expression for M in terms of the parameters of the DGP. This will then be used

as a basis for formulating our moment conditions. Let us begin by defining the T × T lag

matrix

L =



0 0 0 . . . 0
1 0 0 . . . 0

0 1 0
. . .

...
...

. . . . . . . . . 0
0 . . . 0 1 0


, (3)
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and the T × 1 vector et = (0, ..., 0, 1, 0, ..., 0)′, where the one is at position t. The model for yi,t

can now be written in vector form as

yi = ρe1yi,0 + ρLyi + Fλi + εi, (4)

or

yi = ρΓe1yi,0 + ΓFλi + Γεi, (5)

where εi = (ε i,1, ..., ε i,T)
′ is T × 1,

Γ = (IT − ρL)−1 =


1 0 . . . 0

ρ 1
. . .

...
...

. . . . . . 0
ρT−1 . . . ρ 1

 ,

and recall that F = (f1, ..., fT)
′ is T × r. Note that Γ is a function of ρ. In order to emphasize

this, whenever appropriate we write Γ = Γ(ρ). By using Assumption INI to substitute for

yi,0 in (5), and then stacking yi,0 and yi, we obtain[
yi,0

yi

]
=

[
1 01×T

ρΓe1 Γ

] [
f′0
F

]
λi +

[
1 01×T

ρΓe1 Γ

] [
ε i,0

εi

]
.

For later use we also define F+ = (f0, F′)′, a (T + 1) × r matrix. Note that, since ρΓe1 =

(ρ, ρ2, ..., ρT)′, the matrix [
1 01×T

ρΓe1 Γ

]
is of the same form as Γ, but of dimension (T + 1)× (T + 1) instead of T × T. Hence, letting

ε0
i = (ε i,0, ..., ε i,T−1)

′ and F0 = (f0, ..., fT−1)
′, the following expression for y0

i is obtained:

y0
i = ΓF0λi + Γε0

i . (6)

Note also that in this notation, e1yi,0 + Lyi = y0
i , suggesting that (4) may be written as

yi = ρy0
i + Fλi + εi. (7)

Let us now consider M. Substitution of (7) yields

Mi = E(y0
i y′

i) = E[y0
i (ρy0

i + Fλi + εi)
′] = ρMi,−1 + E(y0

i λ′
i)F

′ + E(y0
i ε′i),

where Mi,−1 = E[y0
i (y

0
i )

′]. By using, in turn, (6) to substitute for y0
i , and then the fact that ε0

i

and λi are uncorrelated, E(y0
i λ′

i) may be written as

E(y0
i λ′

i) = E[(ΓF0λi + Γε0
i )λ

′
i] = ΓF0E(λiλ

′
i) = ΓF0Σλ. (8)
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Moreover, since E(yi,sε i,t) = 0 for all s ≤ t − 1 and t = 1, ..., T, we have

E(y0
i ε′i) =


0 0 . . . 0

E(yi,1ε i,1) 0
. . .

...
...

. . . . . . 0
E(yT−1ε i,1) . . . E(yT−1ε i,T−1) 0

 .

This matrix contain T(T + 1)/2 zeroes. These are our moment conditions. A natural way of

writing these conditions is as follows:

vech (M′)− ρvech (M′
−1)− vech [FΣλ(F0)′Γ′] = 0T(T+1)/2×1, (9)

where M−1 is defined similarly to M, and vech is the half-vec operator that when applied to

a matrix A eliminates all supradiagonal elements of A from vec A.

Unfortunately, the formulation in (9) is not very convenient to work with. Let us there-

fore denote by St (t = 1, ..., T) the Mt × T selection matrix of zeroes and ones that picks out

the t entries of y0
i which are valid at period t, that is, St is such that E[(Sty0

i )ε i,t] = 0t×1.

Under Assumption EPS, we have St = (It, 0t×(T−t)), a t × T matrix. Hence, at time t the

vector of valid instruments is given by (yi,0, ..., yi,t−1)
′. Define the T(T + 1)/2 × T2 matrix

S = diag(S1, ..., ST). The matrix of instruments can now be written as

Z′
i = S(IT ⊗ y0

i ), (10)

which is T(T + 1)/2 × T. Note that Fλi = (IT ⊗ λ′
i)vec (F′). By using this result, pre-

multiplication of (7) by Z′
i, and then taking expectations, we obtain

E(Z′
iyi) = ρE(Z′

iy
0
i ) + E[Z′

i(IT ⊗ λ′
i)]vec (F′).

Combining (8) with (10), and using the fact that vec (F′) = (IT ⊗ F′)e, the moment condition

in (9) can be written alternatively as

m − ρm0 − S(IT ⊗ ΓF0ΣλF′)e = 0T(T+1)/2×1, (11)

where m = E(Z′
iyi) = vech (M′) and m0 = E(Z′

iy
0
i ) = vech (M′

−1).

Remark 2. The moment condition in (11) hold for all values of ρ, provided that it is finite.

This is in contrast to many of the existing GMM estimators of dynamic panel data models

(such as those considered by, for example, Anderson and Hsiao, 1981; Arellano and Bond,
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1991), which are known to suffer from a weak instrument problem when ρ ≈ 1 (see Blundell

and Bond, 1998). To appreciate this, suppose that T = 3, ρ ∈ [0, 1], r = 1 and that ft = ft is

known. In this case, f = ( f1, f2, f3)′, f0 = ( f0, f1, f2)′ and

M =

 m01 m11 m21

m02 m12 m22

m03 m13 m23

 , M−1 =

 m00 m10 m20

m01 m11 m21

m03 m12 m22

 ,

suggesting that (11) can be written as

m01

m02

m12

m03

m13

m23


− ρ



m00

m01

m11

m02

m12

m22


− σ2

λ



∑0
j=0 ρj f j f1

∑0
j=0 ρj f j f2

∑1
j=0 ρj f j f2

∑0
j=0 ρj f j f3

∑1
j=0 ρj f j f3

∑2
j=0 ρj f j f3


. (12)

Making use of the fact that yi,t = λi ∑t
j=1 ρj ft−j + ∑t

j=1 ρjε i,t−j, we can show that with t ≥ s

mst = E(yi,syi,t) = σ2
λ

s

∑
j=1

t

∑
n=1

ρj+n fs−j ft−n + σ2
ε

s

∑
j=1

ρt+s−2(j−1),

where σ2
λ is the scalar version of Σλ and the second term on the right-hand side is equal to

ρt−s(1 − ρ2(s+1))/(1 − ρ2) for ρ < 1 and (s + 1) for ρ = 1. It follows that, regardless of the

value of ρ, there is enough variation across the rows in (12) to identify the unknown parame-

ters, ρ and σ2
λ. In the fixed effects case, however, ft = 1 and therefore ∑s

j=1 ∑t
n=1 ρj+n fs−j ft−n

reduces to (1 − ρt)(1 − ρs)/(1 − ρ)2 for ρ < 1 and (s + 1)(t + 1) for ρ = 1. Thus, in this case

ρ and σ2
λ are identified only for ρ < 1, because when ρ = 1 all rows in (12) become linear

combinations of the first row, and so there is effectively a single informative moment condi-

tion based on which it is not possible to identify two parameters. In practice, fixed effects

only are rather restrictive and, as acknowledged in the panel unit roots literature, unlikely to

be able to capture all unobserved heterogeneity in the data (see, for example, Baltagi, 2008,

Chapter 12).

Remark 3. The moment conditions in (11) can be modified to allow for error serial corre-

lation, or an AR(p) for yi,t. The case with MA errors is particularly easy. Suppose that ε i,t

follows a MA(q) process. This case can be accommodated by setting Z′
i = S(IT ⊗ yq

i ), where

yq
i = (yi,0, ..., yi,T−1−q)

′ and the t-th diagonal element of S is given by St = (It, 0t×(T−t−q)),

whose dimension is t× (T − q). In Section 5 we show how to implement our approach when
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q ∈ {1, 2}. Consider next the case when ε i,t is serially uncorrelated but that yi,t follows an

AR(2) process;

yi,t = ρ1yi,t−1 + ρ2yi,t−2 + ui,t,

where we assume for notational simplicity that yi,0 and yi,−1 are observed. This can be writ-

ten in vector form as

yi = ρ1Γe1yi,0 + ρ2Γ(e1yi,−1 + e2yi,0) + ΓFλi + Γεi,

where Γ = (IT − ρ1L − ρ2L2)−1 and L2 = LL. Alternatively, since e1yi,0 + Lyi = y0
i , with

y−1
i = e1yi,−1 + e2yi,0 + L2yi,

yi = ρ1y0
i + ρ2y−1

i + Fλi + εi.

In this case, the matrix of instruments, Z′
i, is still given by (10) but with y0

i replaced by

(yi,−1, yi,0, ..., yi,T−1)
′ and St = (It+1, 0(t+1)×(T−t)), a (t + 1) × (T + 1) matrix. Thus, pre-

multiplying the expression above by Z′
i, taking expectations, and then rearranging yields

m − ρ1m0 − ρ2m−1 − S(IT ⊗ ΓF−1ΣλF′)e = 0(T+T(T+1)/2)×1, (13)

where m−1 = E(Z′
iy

−1
i ) and F−1 = (f−1, f0, ..., fT−1)

′.

3.2 Inference when F+ is known

Define θ = [ρ, (vech Σλ)
′]′ = (θ1, θ′2)

′ and denote by θ0 and ρ0 the true values of θ and ρ,

respectively. The GMM estimator of this parameter vector, whose dimension is (1 + r(r +

1)/2)× 1, is given by

θ̂ = arg min
θ∈Cθ

Q(θ),

where Cθ is a compact subset of R1+r(r+1)/2 and

Q(θ) = g(θ)′g(θ),

g(θ) = W1/2[m̂ − ρm̂0 − S(IT ⊗ ΓF0ΣλF′)e],

with m̂ = ∑N
i=1 Z′

iyi/N, m̂0 = ∑N
i=1 Z′

iy
0
i /N, and W = (W1/2)′W1/2 is a T(T + 1)/2 × T(T +

1)/2 positive definite weight matrix. θ̂ is the joint GMM estimator of θ1 and θ2. However,

since we are primarily interested in θ1 = ρ, in this section we will consider a concentrated
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objective function, as is commonly done in the maximum likelihood literature. The GMM

estimator of θ2 given ρ is derived in (A6) and is given by

θ̂2 = θ̂2(ρ) = [R(ρ)′R(ρ)]−1R(ρ)′W1/2(m̂ − ρm̂0),

where R(ρ) = W1/2(e′ ⊗ S)(IT ⊗ KT2 ⊗ IT)[vec IT ⊗ (IT ⊗ Γ(ρ))(F ⊗ F0)Dr], KT2 is the

T2 × T2 commutation matrix such that Kmpvec A = vec A′, where A is m × p, and Dr is

the r2 × r(r + 1)/2 duplication matrix such that vec B = Dr vech B, where B is r × r. The

concentrated objective function, henceforth denoted as QC(ρ), is obtained by replacing θ2 in

g(θ) with θ̂2, that is,

QC(ρ) = gC(ρ)
′gC(ρ),

where gC(ρ) = g(ρ, θ̂2(ρ)). The estimator of ρ is given by

ρ̂ = arg min
ρ∈Cρ

QC(ρ). (14)

where Cρ is a compact subset of R.

Assumption IDE.

(i) ρ0 ∈ Cρ;

(ii) g(ρ) is continuous in ρ and E[g(ρ)] = 0(1+r(r+1)/2)×1 implies ρ = ρ0;

(iii) ΣgC = limN→∞ NE[gC(ρ0)gC(ρ0)′] and γ1 = limN→∞ ∂gC(ρ0)/∂ρ are finite with ΣgC

positive definite.

Theorem 1 provides the asymptotic distribution of ρ̂.

Theorem 1. Under Assumptions EPS, LAM, F, INI, MOM and IDE, as N → ∞

√
N(ρ̂ − ρ0)

d→ N(0, σ2
ρ ),

where d→ signifies convergence in distribution and σ2
ρ = γ′

1ΣgC γ1/(γ′
1γ1)

2. Analytical expressions

for ΣgC and γ1 are given in Appendix.

Remark 4. According to Theorem 1 there is no asymptotic bias, despite the generality of the

DGP considered; (ρ̂ − ρ0) is centered at zero even when scaled by
√

N. The reason for this

is that the GMM approach considered here only requires an estimator of θ2 = vech Σλ; there
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is no need to estimate λ1, ..., λN themselves. This means that the number of parameters that

needs to be estimated is substantially reduced, from Nr to r(r + 1)/2, thereby eliminating

the incidental parameter problem (see Bai, 2013, for a similar approach).

Remark 5. Theorem 1 holds for all values of ρ0, and in this sense it presents a unified asymp-

totic result for the GMM estimator. This is in contrast to the existing literature, in which the

asymptotic distribution of estimators depends critically on whether |ρ0| < 1, ρ0 = 1 or

indeed ρ0 > 1. In fact, the only exceptions known to us are the GMM estimators of Han

and Phillips (2010), and Kruiniger (2007, 2009, 2013), which have limit distributions that are

continuous for ρ0 ∈ (−1, 1], but not for ρ0 > 1.

An analytical expression for γ1 is given in the Appendix. Define σ̂2
ρ = γ̂′

1Σ̂gC γ̂1/(γ̂′
1γ̂1)

2,

where Σ̂gC = NgC(ρ̂)gC(ρ̂)
′ and γ̂1 = ∂gC(ρ̂)/∂ρ. The GMM t-statistic for testing H0 : ρ0 =

ρ0 is given by

t(ρ0) =

√
N(ρ̂ − ρ0)

σ̂ρ
,

and is the same regardless of the value of ρ0. The local power of t(ρ0) is easily worked out

using Theorem 1. Indeed, suppose that

ρ0 = ρ0 +
c√
N

, (15)

where c ∈ R, such that ρ0 is local to ρ0, the hypothesized value under the null. In this case,

since σ̂2
ρ = σ2

ρ + op(1), we can show that

t(ρ0) =

√
N(ρ̂ − ρ0)

σ̂ρ
+

√
N(ρ0 − ρ0)

σ̂ρ

d→ N(0, 1) +
c

σρ

as N → ∞. Summarizing this, we have the following corollary to Theorem 1.

Corollary 1. Under (15) and the conditions of Theorem 1, as N → ∞

t(ρ0)
d→ N(0, 1) +

c
σρ

.

Remark 6. Corollary 1 nests the asymptotic results under both the null and the local alter-

native hypotheses. On the one hand, if c = 0, then H0 is true and therefore t(ρ0)
d→ N(0, 1).

If, on the other hand, c ̸= 0, such that the local alternative is true, then the asymptotic dis-

tribution of t(ρ0) has no longer mean at zero, and therefore the test is unbiased, as well as

12



consistent under the local alternative when |c/σρ| → ∞. The extent of power is driven by

two parameters, c and σ2
ρ ; the smaller the uncertainty regarding ρ0 and the larger the de-

viation from the hypothesized value of ρ0, the larger the power, as expected (see Madsen,

2010, for a similar finding for some existing tests). What is unexpected, however, is the fact

that the appropriate rate of shrinking of the local alternative is the same regardless of the

specification of the deterministic trend part of ft (see Han and Phillips, 2010, Section 5.2, for

a similar discussion).

Remark 7. The asymptotic distribution of most (if not all) unit root statistics depends on the

deterministic specification of the fitted test regression, which need not be equal to the true

one. In time series, this implies that different deterministic specifications have their own

critical values, whereas in panels, it implies that different specifications have their own mean

and variance correction factors (see Westerlund and Breitung, 2013, Section 3). Corollary 1

shows how the GMM-based t-statistic has the unique and practically very useful property

that it is asymptotically invariant to F, and hence to any trend function that it may contain.

The standard fixed effects assumption is therefore not needed and the otherwise so common

mean and variance correction factors reflecting the chosen deterministic specification can be

completely avoided.

In (A7) in Appendix we show that

gC(ρ) = P(ρ)W1/2(m̂ − ρm̂0),

where P(ρ) = IT(T+1)/2 − R(ρ)[R(ρ)R(ρ)′]−1R(ρ)′. This formulation of gC(ρ) suggests a

simple estimation approach that can be used also when F is unknown. In particular, while

nonlinear in ρ, with W and F+ known, R(ρ) does not depend on any other parameters that

are unknown. Hence, assuming for a moment that also ρ is known, then so is R = R(ρ),

in which case QC(ρ) is just the (weighted) sum of squared residuals, and therefore the

GMM estimator ρ̂ is just the (weighted) OLS slope estimator in a regression of PW1/2m̂

onto PW1/2m̂0:

ρ̂ = ρ̂(P) =
(m̂0)′(W1/2)′P′PW1/2m̂
(m̂0)′(W1/2)′P′PW1/2m̂0 ,

where P = P(ρ0). Although P is not observed when estimating ρ0, and vice versa, we can

replace the unobserved quantities by initial estimates and iterate until convergence. Suppose
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we are interested in testing H0 : ρ0 = ρ0. A natural initialization for ρ in this case is given by

ρ = ρ0. The GMM estimator of θ2 can then be obtained as θ̂2(ρ̂).

3.3 Inference when F+ is unknown

For F+ is unknown we define θ = [ρ, (vech Σλ)
′, (vec F+)′]′ = (θ1, θ′2, θ′3)

′, which is (1 +

r(r + 1)/2 + (T + 1)r) × 1. The estimation of this parameter vector can also proceed in

an iterative fashion, as before. The only difference is that since now F+ is unknown, even

if ρ was known, R and hence also P would still be unknown. In order to emphasize this

dependence on F+ we write P(ρ, F+) for P. The estimator F̂+ of F+ may be obtained as

follows:

1. Initialize ρ.

2. The last T rows of F̂+ can be obtained as the eigenvectors corresponding to the r largest

eigenvalues of the T × T matrix ∑N
i=1(yi − ρy0

i )(yi − ρy0
i )

′/N. The first row of F̂+ can

be obtained as the first observation of each of the eigenvectors corresponding to the r

largest eigenvalues of ∑N
i=1 y2

i,0/N. Write F̂+(ρ) for F̂+.

3. The estimator of ρ is given by ρ̂(P̂), where P̂ = P̂(ρ) = P(ρ, F̂+(ρ)).

4. Update F̂+(ρ̂), P̂(ρ̂) and ρ̂(P̂). Repeat until convergence.

Remark 8. So far we have assumed that the number of factors, r, is known. However, the

asymptotic results also hold when r is replaced by a consistent estimator, r̂ say. Write ρ̂(P, r)

for ρ̂. To see that ρ̂(P, r̂) has the same asymptotic distribution as ρ̂(P) = ρ̂(P, r), consider

P(
√

N[ρ̂(P, r̂)− ρ0] ≤ δ) = P(
√

N[ρ̂(P, r̂)− ρ0] ≤ δ|r̂ = r)P(r̂ = r)

+ P(
√

N[ρ̂(P, r̂)− ρ0] ≤ δ|r̂ ̸= r)P(r̂ ̸= r).

Because P(r̂ = r) → 1 and P(r̂ ̸= r) → 0, the second term on the right-hand side converges

to zero, and P(
√

N[ρ̂(P, r̂)− ρ0] ≤ δ) = 1 + o(1). Moreover, conditional on r̂ = r, ρ̂(P, r̂) =

ρ̂(P, r). Thus,

|P(
√

N[ρ̂(P, r̂)− ρ0] ≤ δ)− P(
√

N[ρ̂(P, r)− ρ0] ≤ δ)| → 0.

14



Ahn et al. (2013) consider the problem of consistent estimation of r in the context of a static

panel data regression with factors, and make several suggestions toward this end. It is con-

jectured that these estimators are consistent also in the present setup. In Section 4 we exam-

ine the performance of our GMM approach when combined with BIC1 information criterion

of Ahn et al. (2013).

4 Monte Carlo simulations

4.1 Design

The DGP is given by a restricted version of (1) and (2). Two specifications of ε i,t are consid-

ered. In the first, ε i,t ∼ N(0, 1), whereas in the second, ε i,t is generated as an MA(1) process;

ε i,t = vi,t + ϕvi,t−1, where vi,t ∼ N(0, 1/(1 − ϕ2)) and ϕ = 0.7. The common component is

specified with λi = [ηi, βi(1 − ρ0), δ′
i]
′ and ft = (1, t, g′

t)
′, such that

yi,t = ρ0yi,t−1 + ηi + βi(1 − ρ0)t + δ′
igt + ε i,t.

Here gt ∼ N(0r0×1, Ir0) is an r0 × 1 vector of unobserved common factors with loading δi ∼

N(0r0×1, σ2
δ Ir0), where r0 ∈ {1, 2} and σ2

δ ∈ {0.5, 2.5}. When σ2
δ = 0.5 the proportion of the

variance of ui,t that is due to variations in δ′
igt is 33%, whereas when σ2

δ = 2.5 this proportion

is 72%. The intercept and trend slope, ηi and βi, are both drawn from N(0, 1). Hence, in this

DGP, while under the unit root null (ρ0 = 1), yi,t follows a random walk with drift, under

the alternative that ρ0 ∈ {0.95, 0.99}, yi,t is trend stationary.2 Finally, yi,0 = ηi + ui,0, where

ui,0 ∼ N(0, 1). We set T = 8 and N ∈ {100, 400, 1600}. All experiments are based on 2000

replications.

4.2 Results

Two versions of our estimator are simulated, both based on (14). The first, denoted GMM1,

is the one-step estimator that makes use of W = IT(T+1)/2, while the second, GMM2, makes

use of the optimal weighting matrix, that is, W = Σ̂gC . In both cases, the number of un-

known factors, r0, is estimated using the BIC1 criterion of Ahn et al. (2013), which is of the

form BIC1 = J −penalty, where J denotes the value of the Hansen–Sargan statistic for overi-

dentifying restrictions and the exact form of the penalty is given in Ahn et al. (2013). The

2We also considered the case when λ′
ift = ηi(1 − ρ0) + δ′

igt; however, since the results were very similar, we
only report the results for the specification with the trend included.
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maximum number of factors considered is set to rmax = r0 + 1. The following results are

reported: (i) mean, standard deviation (SD) and root mean squared error (RMSE) for GMM1

and GMM2; (ii) size (nominal size is 5% ) and power of t(1) for the unit root t-statistic;

(iii) the 5% size of the J-statistic for overidentifying restrictions, which is only relevant for

GMM2; (iv) the correct selection frequency for BIC1 (based on GMM2).

Table 1 contains the results for the case when ε i,t ∼ N(0, 1). In this case, since there is

no error serial correlation, the full set of T(T + 1)/2 = 36 moment conditions is used. It is

seen that the performance of the estimators and their t-statistics is more than satisfactory.

In particular, the bias is small and it get closer to zero as N increases. As expected, unless

N = 100, GMM2 is more efficient than GMM1. We also see that the size of the J-statistic is

close to the nominal 5% level. This is reflected in the results for BIC1, which is very accurate.

In fact, the correct selection frequency does not fall below 90% except one instance.

The size of the t(1)-statistic is close to the nominal level in all experiments considered.

The only exception is when N = 100, in which case the GMM2-based statistic is oversized;

however, the distortions vanishes rapidly as N increases. The highest power is obtained by

using the GMM2-based t(1)-statistic, which is to be expected given that GMM2 is relatively

more efficient. Naturally, the power of both statistics increases as ρ0 deviates from unity and

as N increases.

Larger values of σ2
δ are generally associated with increased performance; GMM1 and

GMM2 tend to become more accurate, and the size accuracy and power of t(1) improves.

This is because a larger σ2
δ will make the common component easier to discern. Larger values

of r, on the other hand, tend to push the results in the other direction, that is, performance

is decreasing in the number of unknown factors. This latter effect is in accordance with our

expectations, as the number of parameters increases while the information contained in the

data (number of moment conditions) stays the same.

5 Application

5.1 Gibrat’s law

In this section we make use of our methodology in order to examine the empirical validity of

the well known “law of proportionate effect”, or simply “Gibrat’s law” (Gibrat, 1931) using

data from the US banking industry. Gibrat’s law postulates that the growth rate of firms is
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independent of their initial size. The model is the same as in (1), where yi,t is now the size of

firm i at time t in logs. It is instructive to rewrite this model as

∆yi,t = (ρ0 − 1)yi,t−1 + ui,t.

For ρ0 < 1 larger firms tend to grow at a lower rate compared to smaller firms, while for

ρ0 > 1 the process is explosive and growth rate is proportional to firm size. For ρ0 = 1

Gibrat’s law holds true because firms’ growth rate is independent of their initial size. An

advantage of our methodology is that it remains valid throughout the range of possible

values of ρ0, including ρ0 > 1. Testing Gibrat’s law is therefore tantamount to testing for a

unit root in yi,t.

Gibrat’s law has proved very popular because it provides an explanation for what has

been identified as an empirical regularity where the distribution of firms’ size is often highly

skewed across several industries. In particular, many sectors are characterized by a log-

normal distribution with a larger number of small to medium scale firms and relatively few

large firms (see Steindl, 1965). Simon and Bonini (1958) argue that under (approximate)

constant returns to scale it is natural to expect that the probability for a given firm to in-

crease/decrease in size in proportion to its existing size is the same, on average, for all firms

in the industry that lie above a critical minimum size value.

On the other hand, some of the more recent empirical evidence appears to suggest that

while Gibrat’s law tends to be confirmed in small subsamples of well-established, mature,

large firms, this is not always the case for larger samples that include small and young firms,

since the latter often have higher growth rate than their larger counterparts (see Sutton,

1997; Caves, 1998). Given that the relation between firm size and growth rate remains an

open issue, it is useful to investigate this using data from the US banking industry.

5.2 Data description and methodology

The data set consists of a panel of N = 5593 depository financial institutions, each one

observed over a period of T = 9 years. These data have been collected from the electronic

database maintained by the Federal Deposit Insurance Corporation (FDIC).3 Two measures

of bank size are considered; (i) fixed assets (FA), and (ii) number of employees (EMP). Both

variables are transformed by taking logs and FA is deflated using the GDP deflator. In order

3See http://www.fdic.gov.
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to account for common time effects, we further demean the variables with respect to their

cross-section averages. Hence, in this application yi,t represents the demeaned log size of a

firm.

Figure 1: Estimated factors for FA.
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The factors are initiated by taking
√

T times the eigenvectors corresponding to the largest

eigenvalues of the T × T matrix ∑N
i=1 yiy′

i/N. To get a feeling for what the extracted factors

look like, Figure 1 plots the values of the factors associated with the three largest eigenvalues

for FA. The first factor is almost a straight line, suggesting that this factor is in fact captur-

ing unit-specific fixed effects. The remaining two factors resemble a cubic line with a large

smoothing parameter and a quadratic line. This demonstrates the importance of allowing

for nonlinear effects, casting doubt on existing results based on fixed effects-only unit root

tests. The factors for EMP are almost identical and are therefore not plotted. In fact, the cor-

relation between the second (third) factor of the two variables is 0.99 (0.98). Hence, at least

the common part of FA and EMP seems to be measuring the same thing.

In order to gauge against possible serial correlation in the errors, we implement our

GMM approach assuming MA errors of order q ∈ {1, 2}. If the model is misspecified, this is

likely to show up in the Hansen–Sargan test statistic. We fit a maximum of rmax = 3 factors
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and use the BIC1 criterion of Ahn et al. (2013) to pick the most appropriate number, given

that it passes the Hansen–Sargan test at the 5% level.

5.3 Results

Table 3 reports results obtained based on the two-step GMM estimator, GMM2. The results

are very similar for EMP and FA. In particular, the point estimate of ρ0 is below unity, but the

unit root null is not rejected even at the liberal 10% level, suggesting that Gibrat’s law is sup-

ported by the data. The null hypothesis of instrument validity/correct model specification

is also not rejected. For EMP the best fitting model according to BIC1 has two factors and

allows for MA(1) errors, while for FA the preferred model includes one factor and MA(2)

errors.

Our results are consistent with previous findings in the banking literature, which sug-

gest the presence of constant returns to scale (see, for example, Robertson et al., 2013). As

discussed by Simon and Bonini (1958) constant returns to scale corroborates Gibrat’s law

because in this case the probability of a given change in firm size (in proportion to current

size) is likely to be the same for all firms in the industry.

6 Conclusion

This paper develops a GMM-based approach that enable unit root testing in panels where N

is large and T is finite. The assumption that T finite makes our test suitable for both micro

and small-T macro panels. The DGP considered is very general and accommodate an unre-

stricted trend function and cross-section dependence in the form of common factors. These

allowances make the new approach one of the most general around. Indeed, as far as we are

aware, this is the only fixed-T unit root test approach that can be applied in the presence of

cross-section dependence and/or a potentially non-linear trend function. The approach is

also very simple to implement. In particular, since deterministic terms are treated as addi-

tional common factors, which are estimated, there is no need to model the deterministic part.

Our results show that the new GMM-based unit root test statistic is asymptotically invariant

to both the true and fitted deterministic trend function. Hence, unlike existing tests, with

the new test there is no need for any mean and/or variance correction factors that reflect the

fitted deterministic specification. The limiting distribution of the GMM t-statistic is normal

and this holds true regardless of the value of the AR coefficient, ρ0. Hence, again unlike most

19



existing tests, with this test there is no discontinuity in the asymptotic distribution at unity.

The asymptotic properties are verified in small samples using both simulated and raw data.
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Appendix: Proofs

This Appendix makes heavy use of the results of Abadir and Magnus (2005). Here now we

state some of the most frequently used results. Throughout A, B, C and D are going to de-

note generic matrices of dimension m × p, n × q, k × r and l × s, respectively. We also denote

by Kmp the mp × mp commutation matrix of zeroes and ones such Kmpvec A = vec A′. If A

is m × m (square), then we denote by Dm the m2 × m(m + 1)/2 duplication matrix of zeroes

and ones such that Dmvech A = vec A. The following results are going to be used frequently

in the sequel:

• vec (ABC) = (C′ ⊗ A)vec B;

• vec (A ⊗ B) = (Ip ⊗ Kqm ⊗ In)(vec A ⊗ vec B);

• (A ⊗ B)(C ⊗ D) = (AC ⊗ BD), if AC and BD are defined;

• Kmn(A ⊗ B) = (B ⊗ A)Kqp.

We also define the matrix derivative operator Dx, which is such that if the matrix func-

tion R(x) is m × p and x is n × q, then Dx R(x) = ∂vec R(x)/∂(vec x)′ is mp × nq. Hence,

denoting by d the matrix differential, then we have d vec R(x) = A(x)d vec x, or Dx R(x) =

d vec R(x)/d vec x. Also, if R(x) is a m × m and symmetric, then we define Dx R(x) =

∂vec R(x)/∂(vech x)′. Dq
x R(x) means Dq

x R(x) = ∂qvec R(x)/[∂(vec x)′]. Some important

rules for differentials:

• d [R(x)G(x)] = [d R(x)]G(x) + R(x)d G(x);

• d [R(x)⊗ G(x)] = [d R(x)]⊗ G(x) + R(x)⊗ d G(x).

Proof of Theorem 1.

Note that vec (F0ΣλF′) = (F ⊗ F0)vec Σλ, where vec Σλ = Drvech Σλ = Drθ2. It follows that

vec [Γ(ρ)F0ΣλF′IT] = [IT ⊗ Γ(ρ)]vec (F0ΣλF′) = [IT ⊗ Γ(ρ)](F ⊗ F0)Drθ2, where Γ = Γ(ρ)

has been written as a function of ρ. Making use of this result, it is clear that

S(IT ⊗ Γ(ρ)F0ΣλF′)e = (e′ ⊗ S)vec [IT ⊗ Γ(ρ)F0ΣλF′]

= (e′ ⊗ S)(IT ⊗ KT2 ⊗ IT)[vec IT ⊗ vec (Γ(ρ)F0ΣλF′)]

= (e′ ⊗ S)(IT ⊗ KT2 ⊗ IT)[vec IT ⊗ (IT ⊗ Γ(ρ))(F ⊗ F0)Drθ2].
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Moreover, since vec IT has just one column,

[vec IT ⊗ (IT ⊗ Γ(ρ))(F ⊗ F0)Drθ2] = [vec IT ⊗ (IT ⊗ Γ(ρ))(F ⊗ F0)Dr](1 ⊗ θ2)

= [vec IT ⊗ (IT ⊗ Γ(ρ))(F ⊗ F0)Dr]θ2.

Hence,

W1/2S(IT ⊗ Γ(ρ)F0ΣλF′)e = R(ρ)θ2,

where R(ρ) = W1/2C1U(ρ), C1 = (e′ ⊗ S)(IT ⊗ KT2 ⊗ IT) is T(T + 1)/2 × T4 and U(ρ) =

[vec IT ⊗ (IT ⊗ Γ(ρ))(F ⊗ F0)Dr] is T4 × r(r + 1)/2. g(θ) can therefore be rewritten as

g(θ) = W1/2(m̂ − ρm̂0 − S[IT ⊗ ΓF0ΣλF′]e)

= W1/2(m̂ − ρm̂0)− W1/2S[IT ⊗ ΓF0ΣλF′]e

= W1/2(m̂ − ρm̂0)− R(ρ)θ2, (A1)

suggesting that

d vec g(θ) = d g(θ) = −R(ρ)d θ2, (A2)

where the differential is taken with respect to θ2 (treating ρ as fixed). The corresponding

derivative is given by

Dθ2 g(θ) = −R(ρ), (A3)

which in turn implies

Dθ2 Q(θ) = 2g(θ)′Dθ2 g(θ) = −2g(θ)′R(ρ). (A4)

The relevant first-order condition is therefore given by

[W1/2(m̂ − ρm̂0)− R(ρ)θ2]
′R(ρ) = 01×r(r+1)/2, (A5)

or

R(ρ)′W1/2(m̂ − ρm̂0) = R(ρ)′R(ρ)θ̂2.

The r(r + 1)/2 × r(r + 1)/2 matrix R(ρ)′R(ρ) is nonsingular. Hence, defining ẑT(ρ) =

W1/2(m̂ − ρm̂0), we have

θ̂2 = [R(ρ)′R(ρ)]−1R(ρ)′ẑT(ρ). (A6)

The concentrated version of g(θ) is

gC(ρ) = g(ρ, θ̂2(ρ)) = W1/2(m̂ − ρm̂0)− R(ρ)θ̂2(ρ) (A7)

= ẑT(ρ)− R(ρ)θ̂2(ρ) = P(ρ)ẑT(ρ).

26



where P(ρ) = IT(T+1)/2 − R(ρ)[R(ρ)′R(ρ)]−1R(ρ)′. Note that g(θ) = W1/2(m̂ − ρm̂0) −

R(ρ)θ2 = ẑT(ρ)− R(ρ)θ2. Hence, since P(ρ)R(ρ) = 0T(T+1)/2×r(r+1)/2, we have

gC(ρ) = P(ρ)ẑT(ρ) = P(ρ)[ẑT(ρ)− R(ρ)θ2] = P(ρ)g(θ).

Consider
√

Ng(θ), which we can write as

√
Ng(θ) =

√
NW1/2[(m̂ − ρm̂0)− S(IT ⊗ ΓF0ΣλF′)e] =

1√
N

N

∑
i=1

gi(θ).

where gi(θ) = W1/2[Z′
i(yi − ρy0

i )− S(IT ⊗ ΓF0ΣλF′)e]. By using the fact that yi = ρy0
i + ui,

where ui = (ui,1, ..., ui,T)
′ = Fλi + εi with εi = (ε i,1, ..., ε i,T)

′, gi(θ) can be written as

gi(θ) = W1/2[Z′
i(yi − ρy0

i )− S(IT ⊗ ΓF0ΣλF′)e]

= W1/2[Z′
iui − S(IT ⊗ ΓF0ΣλF′)e],

or

gi(θ) = W1/2

 S1(y0
i u′

i − ΓF0ΣλF′)e1
...

ST(y0
i u′

i − ΓF0ΣλF′)eT

 .

From y0
i = ΓF0λi + Γε0

i , we obtain

y0
i u′

i − ΓF0ΣλF′ = (ΓF0λi + Γε0
i )(Fλi + εi)

′ − ΓF0ΣλF′

= ΓF0(λiλ
′
i − Σλ)F′ + ΓF0λiε

′
i + Γε0

i λ′
iF

′ + Γε0
i ε′i.

It is easy to see that premultiplying the above four terms by St, post-multiplying by et and

taking expectations yields zero for all t. Furthermore, these terms are independent across i

with bounded fourth-order moments. Hence, by a central limit theorem, we have

√
Ng(θ0) =

1√
N

N

∑
i=1

gi(θ0)
d→ N(0T(T+1)/2×1, Σg)

as N → ∞, where Σg = limN→∞ ∑N
i=1 E[gi(θ0)gi(θ0)′]/N and d→ signifies convergence in

distribution. E[gi(θ)gi(θ)
′] may be expanded in the following fashion:

E[gi(θ)gi(θ)
′]

= W1/2E[(Z′
iui − S(IT ⊗ ΓF0ΣλF′)e)(Z′

iui − S(IT ⊗ ΓF0ΣλF′)e)′](W1/2)′

= W1/2E(Z′
iuiu′

iZi)(W1/2)′ − W1/2S(IT ⊗ ΓF0ΣλF′)eE(u′
iZi)(W1/2)′

− W1/2E(Z′
iui)e′(IT ⊗ ΓF0ΣλF′)S′(W1/2)′

+ W1/2S(IT ⊗ ΓF0ΣλF′)ee′(IT ⊗ ΓF0ΣλF′)S′(W1/2)′

= W1/2E(Z′
iuiu′

iZi)(W1/2)′ − W1/2S(IT ⊗ ΓF0ΣλF′)ee′(IT ⊗ ΓF0ΣλF′)′S′(W1/2)′.
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Here

E(Z′
iuiu′

iZi)

= E[Z′
i(Fλi + εi)(Fλi + εi)

′Zi]

= E(Z′
iFλiλ

′
iF

′Zi) + E(Z′
iεiλ

′
iF

′Zi) + E(Z′
iFλiε

′
iZi) + E(Z′

iεiε
′
iZi)

= E(Z′
iFλiλ

′
iF

′Zi) + E[Z′
iE(εi|λi, Zi)λ

′
iF

′Zi] + E[Z′
iFλiE(εi|λi, Zi)

′Zi] + E[Z′
iE(εiε

′
i|Zi)Zi]

= E(Z′
iFλiλ

′
iF

′Zi) + σ2
ε E(Z′

iZi),

where the third equality holds because εi is uncorrelated with λi and Zi. The fourth equality

follows from the fact that E(εiε
′
i) = σ2

ε IT. As for E(Z′
iZi), we have

E(Z′
iZi) = E[S(IT ⊗ y0

i )(IT ⊗ y′0
i )S

′] = S(IT ⊗ Σy0)S′,

where Σy0 = E[y0
i (y

0
i )

′]. Similarly, by using the fact that ε0
i is uncorrelated with λi we have

E(Z′
iFλiλ

′
iF

′Zi) = E[S(IT ⊗ y0
i )Fλiλ

′
iF

′(IT ⊗ (y0
i )

′)S′]

= SE[(IT ⊗ y0
i )Fλiλ

′
iF

′(IT ⊗ (y0
i )

′)]S′

= SE[(Fλiλ
′
iF

′ ⊗ y0
i )(IT ⊗ (y0

i )
′)]S′

= SE[Fλiλ
′
iF

′ ⊗ y0
i (y

0
i )

′]S′

= SE[Fλiλ
′
iF

′ ⊗ (ΓF0λi + Γε0
i )(ΓF0λi + Γε0

i )
′]S′

= S[E(Fλiλ
′
iF

′ ⊗ ΓF0λiλ
′
i
(
F0)′ Γ′) + E(Fλiλ

′
iF

′ ⊗ Γε0
i (ε

0
i )

′Γ′)]S′,

and therefore

1
N

N

∑
i=1

E(Z′
iFλiλ

′
iF

′Zi) = S

(
1
N

N

∑
i=1

E(Fλiλ
′
iF

′ ⊗ ΓF0λiλ
′
i(F

0)′Γ′) + FΣλF′ ⊗ ΓΣ0Γ′
)

S′

= SΣFλy0 S′,

with an implicit definition of ΣFλy0 . It is straightforward to see that under our assumptions,

ΣFλy0 exists and is positive definite.

Thus, putting everything together,

Σg = W1/2SΣFλy0 S′(W1/2)′ − W1/2S(IT ⊗ ΓF0ΣλF′)ee′(IT ⊗ ΓF0ΣλF′)′S′(W1/2)′.

The above results suggest that if we let ΣgC = P(ρ0)ΣgP(ρ0)′, then

√
NgC(ρ0) = P(ρ0)g(θ0)

d→ N(0T(T+1)/2×1, ΣgC).
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This result will be used as a basis for deriving the asymptotic distribution of ρ̂. In order to

appreciate how, consider QC(ρ) = gC(ρ)
′gC(ρ). By Taylor expansion about ρ = ρ0, we have

QC(ρ) = QC(ρ0) +
∞

∑
q=1

Dq
ρ QC(ρ0)

(ρ − ρ0)q

q!
,

suggesting that

N[QC(ρ)− QC(ρ0)] =
√

NDρ QC(ρ0)
√

N(ρ − ρ0) + D2
ρ QC(ρ0)

[
√

N(ρ − ρ0)]2

2

+ Op

(
D3

ρ QC(ρ0)[
√

N(ρ − ρ0)]3√
N

)
.

Later on we show that D3
ρ QC(ρ0) = Op(1). The last term is therefore Op(1/

√
N ) = op(1). ρ̂

is the minimizer of N[QC(ρ)− QC(ρ0)]. Thus, treating this as a function of
√

N(ρ − ρ0), we

obtain the following first order condition:

√
NDρ QC(ρ0) + D2

ρ QC(ρ0)
√

N(ρ̂ − ρ0) + op(1) = 0,

or
√

N(ρ̂ − ρ0) = −
√

NDρ QC(ρ0)

D2
ρ QC(ρ0)

+ op(1).

Thus, in order to work out the asymptotic distribution of
√

N(ρ̂ − ρ0), we need Dρ QC(ρ0)

and D2
ρ QC(ρ0), which, by the product rule, can be written as

Dρ QC(ρ) = 2gC(ρ)
′Dρ gC(ρ),

D2
ρ QC(ρ) = 2gC(ρ)

′D2
ρ gC(ρ) + 2Dρ gC(ρ)

′Dρ gC(ρ),

D3
ρ QC(ρ) = 4gC(ρ)

′D3
ρ gC(ρ) + 6Dρ gC(ρ)

′D2
ρ gC(ρ).

Consider Dρ gC(ρ). By the product rule,

d gC(ρ) = IT(T+1)/2d P(ρ)ẑT(ρ) + P(ρ)d ẑT(ρ)

= [ẑT(ρ)
′ ⊗ IT(T+1)/2]d vec P(ρ) + P(ρ)d ẑT(ρ),

giving the following derivative:

Dρ gC(ρ) = [ẑT(ρ)
′ ⊗ IT(T+1)/2]Dρ P(ρ) + P(ρ)Dρ ẑT(ρ).

Dρ ẑT(ρ) is particularly easy and is given by

Dρ ẑT(ρ) = Dρ (W1/2(m̂ − ρm̂0)) = −W1/2m̂0.
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Dρ P(ρ) requires more work. We begin by noting that

d P(ρ) = −d (R(ρ)[R(ρ)′R(ρ)]−1R(ρ)′)

= −(d R(ρ))[R(ρ)′R(ρ)]−1R(ρ)′ − R(ρ)(d [R(ρ)′R(ρ)]−1)R(ρ)′

− R(ρ)[R(ρ)′R(ρ)]−1[d R(ρ)]′

= −(d R(ρ))[R(ρ)′R(ρ)]−1R(ρ)′

+ R(ρ)[R(ρ)′R(ρ)]−1(d [R(ρ)′R(ρ)])[R(ρ)′R(ρ)]−1R(ρ)′

− R(ρ)[R(ρ)′R(ρ)]−1[d R(ρ)]′

= −(d R(ρ))[R(ρ)′R(ρ)]−1R(ρ)′

+ R(ρ)[R(ρ)′R(ρ)]−1([d R(ρ)]′R(ρ) + R(ρ)′[d R(ρ)])[R(ρ)′R(ρ)]−1R(ρ)′

− R(ρ)[R(ρ)′R(ρ)]−1[d R(ρ)]′

= −P(ρ)(d R(ρ))[R(ρ)′R(ρ)]−1R(ρ)′ − R(ρ)[R(ρ)′R(ρ)]−1[d R(ρ)]′P(ρ),

suggesting

d vec P(ρ)

= −[R(ρ)[R(ρ)′R(ρ)]−1 ⊗ P(ρ)]d vec R(ρ)− [P(ρ)⊗ R(ρ)[R(ρ)′R(ρ)]−1]d vec R(ρ)′

= −[R(ρ)[R(ρ)′R(ρ)]−1 ⊗ P(ρ)]d vec R(ρ)

− [P(ρ)⊗ R(ρ)[R(ρ)′R(ρ)]−1]KTr(T+1)(r+1)/4d vec R(ρ)

= −[R(ρ)[R(ρ)′R(ρ)]−1 ⊗ P(ρ)]d vec R(ρ)

− KT2(T+1)2/4[R(ρ)[R(ρ)′R(ρ)]−1 ⊗ P(ρ)]d vec R(ρ)

= −(IT2(T+1)2/4 + KT2(T+1)2/4)[R(ρ)[R(ρ)′R(ρ)]−1 ⊗ P(ρ)]d vec R(ρ).

Here

d vec R(ρ) = vec [W1/2C1d U(ρ)] = [Ir(r+1)/2 ⊗ W1/2C1]d vec U(ρ),

and therefore

Dρ R(ρ) = [Ir(r+1)/2 ⊗ W1/2C1]Dρ U(ρ).
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Consider Dρ U(ρ). A direct calculation reveals that

d vec U(ρ)

= vec [vec IT ⊗ (IT ⊗ d Γ(ρ))(F ⊗ F0)Dr]

= (KT2r(r+1)/2 ⊗ IT2)[vec IT ⊗ vec ((IT ⊗ d Γ(ρ))(F ⊗ F0)Dr)]

= (KT2r(r+1)/2 ⊗ IT2)[vec IT ⊗ (D′
r(F ⊗ F0)′ ⊗ IT2)vec (IT ⊗ d Γ(ρ))]

= (KT2r(r+1)/2 ⊗ IT2)[vec IT ⊗ D′
r(F ⊗ F0)′ ⊗ IT2)(IT ⊗ KT2 ⊗ IT)(vec IT ⊗ d vec Γ(ρ))].

Clearly,

Dρ Γ(ρ) = vec


0 0 . . . 0

1 0
. . .

...
...

. . . . . . 0
ρT−2 . . . 1 0

 ,

which we can use, together with the fact that vec IT is vector, to show that

Dρ U(ρ) = (KT2r(r+1)/2 ⊗ IT2)

× [vec IT ⊗ D′
r(F ⊗ F0)′ ⊗ IT2)(IT ⊗ KT2 ⊗ IT)(vec IT ⊗ Dρ Γ(ρ))]

= C2Dρ Γ(ρ),

where

C2 = (KT2r(r+1)/2 ⊗ IT2)[vec IT ⊗ D′
r(F ⊗ F0)′ ⊗ IT2)(IT ⊗ KT2 ⊗ IT)(vec IT ⊗ IT2)].

This can be substituted back into the expression for Dρ R(ρ), giving

Dρ R(ρ) = [Ir(r+1)/2 ⊗ W1/2C1]Dρ U(ρ) = [Ir(r+1)/2 ⊗ W1/2C1]C2Dρ Γ(ρ),

which in turn implies

Dρ P(ρ) = −(IT2(T+1)2/4 + KT2(T+1)2/4)[R(ρ)[R(ρ)′R(ρ)]−1 ⊗ P(ρ)]Dρ R(ρ)

= −(IT2(T+1)2/4 + KT2(T+1)2/4)[R(ρ)[R(ρ)′R(ρ)]−1 ⊗ P(ρ)]

× [Ir(r+1)/2 ⊗ W1/2C1]C2Dρ Γ(ρ). (A8)

We had

Dρ gC(ρ) = [ẑT(ρ)
′ ⊗ IT(T+1)/2]Dρ P(ρ) + P(ρ)Dρ ẑT(ρ).
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Since Dρ P(ρ), P(ρ) and W1/2 are just constant matrices, in order to work out the limit of

Dρ gC(ρ) we only need to consider ẑT(ρ) and Dρ ẑT(ρ). The limits of these terms are simple

consequences of the law of large numbers. Indeed, letting zT(ρ) = W1/2(m− ρm0), we have

ẑT(ρ) = zT(ρ) + op(1), (A9)

Dρ ẑT(ρ) = −W1/2m0 + op(1) = Dρ zT(ρ) + op(1), (A10)

from which we obtain

Dρ gC(ρ) = γ1(ρ) + op(1),

where γ1(ρ) = [zT(ρ)
′ ⊗ IT(T+1)/2]Dρ P(ρ) + P(ρ)Dρ zT(ρ).

Next, consider D2
ρ gC(ρ). In view of the result for Dρ gC(ρ), which is already in vector

form, it is clear that

d Dρgc(ρ)

= d ([ẑT(ρ)
′ ⊗ IT(T+1)/2]DρP(ρ) + P(ρ)DρẑT(ρ))

= [d ẑT(ρ)
′ ⊗ IT(T+1)/2]DρP(ρ) + [ẑT(ρ)

′ ⊗ IT(T+1)/2]d DρP(ρ)

+ d P(ρ)DρẑT(ρ) + P(ρ)d DρẑT(ρ)

= [DρP(ρ)⊗ IT(T+1)/2](IT(T+1)/2 ⊗ KT(T+1)/2 ⊗ IT(T+1)/2)[d vec ẑT(ρ)⊗ vec IT(T+1)/2]

+ [ẑT(ρ)
′ ⊗ IT(T+1)/2]d vec DρP(ρ)

+ [DρẑT(ρ)
′ ⊗ IT(T+1)/2]d vec P(ρ) + P(ρ)d vec DρẑT(ρ),

where we have made use of

[d ẑT(ρ)
′ ⊗ IT(T+1)/2]DρP(ρ)

= vec (IT(T+1)/2[d ẑT(ρ)
′ ⊗ IT(T+1)/2]DρP(ρ))

= [DρP(ρ)⊗ IT(T+1)/2]vec [d ẑT(ρ)
′ ⊗ IT(T+1)/2]

= [DρP(ρ)⊗ IT(T+1)/2](IT(T+1)/2 ⊗ KT(T+1)/2 ⊗ IT(T+1)/2)[vec d ẑT(ρ)
′ ⊗ vec IT(T+1)/2]

= [DρP(ρ)⊗ IT(T+1)/2](IT(T+1)/2 ⊗ KT(T+1)/2 ⊗ IT(T+1)/2)[d vec ẑT(ρ)⊗ vec IT(T+1)/2],

and

d P(ρ)DρẑT(ρ) = vec [IT(T+1)/2d P(ρ)DρẑT(ρ)] = [DρẑT(ρ)
′ ⊗ IT(T+1)/2]d vec P(ρ).
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Hence,

D2
ρ gC(ρ)

= [Dρ P(ρ)⊗ IT(T+1)/2](IT(T+1)/2 ⊗ KT(T+1)/2 ⊗ IT(T+1)/2)[Dρ ẑT(ρ)⊗ vec IT(T+1)/2]

+ [ẑT(ρ)
′ ⊗ IT(T+1)/2]D

2
ρ P(ρ) + [Dρ ẑT(ρ)

′ ⊗ IT(T+1)/2]Dρ P(ρ)

+ P(ρ)D2
ρ ẑT(ρ), (A11)

where all terms but D2
ρ P(ρ) and D2

ρ ẑT(ρ) are known from before. We start with D2
ρ P(ρ),

whose differential is given by

d Dρ P(ρ) = −(IT2(T+1)2/4 + KT2(T+1)2/4)d ([R(ρ)[R(ρ)′R(ρ)]−1 ⊗ P(ρ)]Dρ R(ρ))

= −(IT2(T+1)2/4 + KT2(T+1)2/4)(d [R(ρ)[R(ρ)′R(ρ)]−1 ⊗ P(ρ)])Dρ R(ρ)

− (IT2(T+1)2/4 + KT2(T+1)2/4)[R(ρ)[R(ρ)′R(ρ)]−1 ⊗ P(ρ)]d Dρ R(ρ).

Consider d [R(ρ)[R(ρ)′R(ρ)]−1 ⊗ P(ρ)], which can be expanded in the following manner:

d [R(ρ)[R(ρ)′R(ρ)]−1R(ρ)]−1 ⊗ P(ρ)]

= d (R(ρ)[R(ρ)′R(ρ)]−1)⊗ P(ρ) + R(ρ)[R(ρ)′R(ρ)]−1 ⊗ d P(ρ),

where

d (R(ρ)[R(ρ)′R(ρ)]−1)

= (d R(ρ))[R(ρ)′R(ρ)]−1 + R(ρ)(d [R(ρ)′R(ρ)]−1)

= (d R(ρ))[R(ρ)′R(ρ)]−1 − R(ρ)[R(ρ)′R(ρ)]−1(d [R(ρ)′R(ρ)])[R(ρ)′R(ρ)]−1

= (d R(ρ))[R(ρ)′R(ρ)]−1

−R(ρ)[R(ρ)′R(ρ)]−1([d R(ρ)]′R(ρ) + R(ρ)′d R(ρ))[R(ρ)′R(ρ)]−1.

We now put this in vector form. Note in particular how

vec ([d R(ρ)]′R(ρ) + R(ρ)′d R(ρ))

= vec (Ir(r+1)/2[d R(ρ)]′R(ρ)) + vec (R(ρ)′d R(ρ)Ir(r+1)/2)

= (R(ρ)′ ⊗ Ir(r+1)/2)vec d R(ρ)′ + (Ir(r+1)/2 ⊗ R(ρ)′)d vec R(ρ)

= [(R(ρ)′ ⊗ Ir(r+1)/2)KTr(T+1)(r+1)/4 + Ir(r+1)/2 ⊗ R(ρ)′]d vec R(ρ)

= (Kr2(r+1)2/4 + Ir2(r+1)2/4)[Ir(r+1)/2 ⊗ R(ρ)′]d vec R(ρ),
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giving

vec d (R(ρ)[R(ρ)′R(ρ)]−1)

= ([R(ρ)′R(ρ)]−1 ⊗ IT(T+1)/2)d vec R(ρ)

− ([R(ρ)′R(ρ)]−1 ⊗ R(ρ)[R(ρ)′R(ρ)]−1)vec ([d R(ρ)]′R(ρ) + R(ρ)′d R(ρ))

= ([R(ρ)′R(ρ)]−1 ⊗ IT(T+1)/2)d vec R(ρ)

− ([R(ρ)′R(ρ)]−1 ⊗ R(ρ)[R(ρ)′R(ρ)]−1)(Kr2(r+1)2/4 + Ir2(r+1)2/4)

× [Ir(r+1)/2 ⊗ R(ρ)′]d vec R(ρ).

Therefore,

Dρ (R(ρ)[R(ρ)′R(ρ)]−1) = ([R(ρ)′R(ρ)]−1 ⊗ IT(T+1)/2)Dρ R(ρ)

− ([R(ρ)′R(ρ)]−1 ⊗ R(ρ)[R(ρ)′R(ρ)]−1)

× (Kr2(r+1)2/4 + Ir2(r+1)2/4)[Ir(r+1)/2 ⊗ R(ρ)′]Dρ R(ρ).(A12)

It follows that since

vec d [R(ρ)[R(ρ)′R(ρ)]−1 ⊗ P(ρ)]

= vec [d (R(ρ)[R(ρ)′R(ρ)]−1)⊗ P(ρ)] + vec [R(ρ)[R(ρ)′R(ρ)]−1 ⊗ d P(ρ)]

= (Ir(r+1)/2 ⊗ KT2(T+1)2/4 ⊗ IT(T+1)/2)

× [d vec (R(ρ)[R(ρ)′R(ρ)]−1)⊗ vec P(ρ) + vec (R(ρ)[R(ρ)′R(ρ)]−1)⊗ d vec P(ρ)],

we can show that

Dρ [R(ρ)[R(ρ)′R(ρ)]−1 ⊗ P(ρ)]

= (Ir(r+1)/2 ⊗ KT2(T+1)2/4 ⊗ IT(T+1)/2)

× [Dρ (R(ρ)[R(ρ)′R(ρ)]−1)⊗ vec P(ρ) + vec (R(ρ)[R(ρ)′R(ρ)]−1)⊗ Dρ P(ρ)]. (A13)

Because

d Dρ P(ρ) = −(IT2(T+1)2/4 + KT2(T+1)2/4)(d [R(ρ)[R(ρ)′R(ρ)]−1 ⊗ P(ρ)])Dρ R(ρ)

− (IT2(T+1)2/4 + KT2(T+1)2/4)[R(ρ)[R(ρ)′R(ρ)]−1 ⊗ P(ρ)]d Dρ R(ρ)

= −[Dρ R(ρ)′ ⊗ (IT2(T+1)2/4 + KT2(T+1)2/4)]d vec [R(ρ)[R(ρ)′R(ρ)]−1 ⊗ P(ρ)]

− (IT2(T+1)2/4 + KT2(T+1)2/4)[R(ρ)[R(ρ)′R(ρ)]−1 ⊗ P(ρ)]d vec Dρ R(ρ),
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this implies

D2
ρ P(ρ) = −[Dρ R(ρ)′ ⊗ (IT2(T+1)2/4 + KT2(T+1)2/4)]Dρ [R(ρ)[R(ρ)′R(ρ)]−1 ⊗ P(ρ)]

− (IT2(T+1)2/4 + KT2(T+1)2/4)[R(ρ)[R(ρ)′R(ρ)]−1 ⊗ P(ρ)]D2
ρ R(ρ). (A14)

The only term missing here is D2
ρ R(ρ), which, in view of the expression for Dρ R(ρ), is given

by

D2
ρ R(ρ) = [Ir(r+1)/2 ⊗ W1/2C1]C2D2

ρ Γ(ρ),

where

D2
ρ Γ(ρ) = vec



0 0 0 . . . 0
0 0 0 . . . 0

1 0 0
. . .

...
...

. . . . . . . . . 0
ρT−3 . . . 1 0 0


.

By using this and the fact that

D2
ρ ẑT(ρ) = −D2

ρ W1/2m̂0 = 0T(T+1)/2×1,

we can show that

D2
ρ gC(ρ)

= [Dρ P(ρ)⊗ IT(T+1)/2](IT(T+1)/2 ⊗ KT(T+1)/2 ⊗ IT(T+1)/2)[Dρ ẑT(ρ)⊗ vec IT(T+1)/2]

+ [ẐT(ρ)
′ ⊗ IT(T+1)/2]D

2
ρ P(ρ) + [Dρ ẑT(ρ)

′ ⊗ IT(T+1)/2]Dρ P(ρ) + P(ρ)D2
ρ ẑT(ρ)

= [Dρ P(ρ)⊗ IT(T+1)/2](IT(T+1)/2 ⊗ KT(T+1)/2 ⊗ IT(T+1)/2)[Dρ ẑT(ρ)⊗ vec IT(T+1)/2]

+ [ẐT(ρ)
′ ⊗ IT(T+1)/2]D

2
ρ P(ρ) + [Dρ ẑT(ρ)

′ ⊗ IT(T+1)/2]Dρ P(ρ). (A15)

whose limit is given by

D2
ρ gC(ρ) = γ2(ρ) + op(1),

where

γ2(ρ)

= [Dρ P(ρ)⊗ IT(T+1)/2](IT(T+1)/2 ⊗ KT(T+1)/2 ⊗ IT(T+1)/2)[Dρ zT(ρ)⊗ vec IT(T+1)/2]

+ [zT(ρ)
′ ⊗ IT(T+1)/2]D

2
ρ P(ρ) + [Dρ zT(ρ)

′ ⊗ IT(T+1)/2]Dρ P(ρ).

The results for Dρ gC(ρ) and D2
ρ gC(ρ) imply, together with the fact that

√
NgC(ρ0) =

Op(1),
√

NDρ QC(ρ0) = 2
√

NgC(ρ0)
′Dρ gC(ρ0)

d→ N(0, 4γ′
1ΣgC γ1)
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as N → ∞, where γ1 = γ1(ρ0). By using this and

D2
ρ QC(ρ0) = 2gC(ρ0)

′D2
ρ gC(ρ0) + 2Dρ gC(ρ0)

′Dρ gC(ρ0)

= 2Dρ gC(ρ0)
′Dρ gC(ρ0) + op(1)

= 2γ′
1γ1 + op(1), (A16)

we obtain
√

N(ρ̂ − ρ0) = −
√

NDρ QC(ρ0)

D2
ρ QC(ρ0)

+ op(1)
d→

√
γ′

1ΣgC γ1

γ′
1γ1

N(0, 1),

as was to be shown. Note also that, letting γ2 = γ2(ρ0),

D3
ρ QC(ρ0) = 4gC(ρ0)

′D3
ρ gC(ρ0) + 6Dρ gC(ρ0)

′D2
ρ gC(ρ0) = 6Dρ gC(ρ0)

′D2
ρ gC(ρ0) + op(1)

= 6γ′
1γ2 + op(1),

verifying that D3
ρ QC(ρ0) is indeed Op(1). �
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Table 1: Monte Carlo results for the case when ε i,t ∼ N(0, 1).

GMM1 GMM2
ρ0 N Mean SD RMSE t(1) Mean SD RMSE t(1) J BIC1

σ2
δ = 0.5, r0 = 1

1 100 .9977 .0219 .0220 .051 .9989 .0230 .0230 .109 .056 .939
1 400 .9993 .0096 .0096 .049 .9998 .0092 .0092 .063 .069 .968
1 1600 1.000 .0048 .0048 .048 1.000 .0042 .0042 .056 .067 .996

.99 100 .9875 .0229 .0230 .117 .9885 .0258 .0258 .302 .057 .948

.99 400 .9908 .0146 .0146 .220 .9907 .0133 .0133 .329 .069 .941

.99 1600 .9909 .0071 .0071 .432 .9905 .0064 .0064 .514 .067 .982

.95 100 .9471 .0248 .0250 .795 .9487 .0263 .0264 .892 .055 .962

.95 400 .9491 .0115 .0116 .982 .9498 .0109 .0109 .994 .068 .979

.95 1600 .9500 .0057 .0057 .998 .9500 .0052 .0052 1.000 .064 .996
σ2

δ = 2.5, r0 = 1
1 100 1.010 .0203 .0226 .065 1.006 .0222 .0223 .102 .037 .944
1 400 1.002 .0093 .0093 .059 1.001 .0089 .0089 .076 .041 .973
1 1600 1.000 .0041 .0041 .061 1.000 .0037 .0037 .073 .044 1.00

.99 100 .9915 .0226 .0227 .146 .9908 .0220 .0220 .313 .035 .974

.99 400 .9911 .0101 .0102 .345 .9910 .0096 .0097 .447 .042 .999

.99 1600 .9907 .0049 .0051 .518 .9906 .0039 .0040 .792 .051 .998

.95 100 .9531 .0204 .0206 .517 .9528 .0238 .0239 .684 .031 .974

.95 400 .9521 .0101 .0103 .876 .9506 .0095 .0095 .959 .052 .983

.95 1600 .9504 .0049 .0049 .997 .9509 .0044 .0045 1.00 .055 1.00
σ2

δ = 0.5, r0 = 2
1 100 .9929 .0263 .0272 .077 .9926 .0279 .0289 .128 .040 .910
1 400 .9969 .0105 .0110 .055 .9977 .0102 .0105 .074 .055 .963
1 1600 .9996 .0058 .0058 .060 1.000 .0051 .0051 .058 .053 .984

.99 100 .9979 .0268 .0279 .047 .9949 .0256 .0261 .081 .033 .927

.99 400 .9869 .0151 .0154 .251 .9891 .0119 .0119 .293 .055 .963

.99 1600 .9895 .0081 .0081 .610 .9901 .0076 .0076 .650 .053 .996

.95 100 .9685 .0333 .0397 .331 .9655 .0312 .0397 .482 .035 .896

.95 400 .9581 .0132 .0155 .611 .9556 .0124 .0137 .779 .040 .993

.95 1600 .9486 .0059 .0061 .969 .9505 .0052 .0052 .985 .054 .999
σ2

δ = 2.5, r0 = 2
1 100 .9986 .0249 .0249 .071 .9990 .0253 .0253 .111 .039 .948
1 400 .9987 .0120 .0121 .065 .9992 .0118 .0118 .067 .041 .971
1 1600 .9998 .0051 .0051 .056 .9997 .0045 .0045 .065 .042 1.00

.99 100 .9945 .0231 .0235 .081 .9962 .0233 .0241 .130 .047 .938

.99 400 .9935 .0242 .0245 .298 .9918 .0116 .0117 .213 .045 .987

.99 1600 .9905 .0069 .0069 .692 .9903 .0064 .0064 .749 .056 .998

.95 100 .9556 .0310 .0315 .312 .9551 .0254 .0259 .464 .032 .946

.95 400 .9527 .0228 .0230 .631 .9518 .0123 .0124 .868 .048 .988

.95 1600 .9501 .0115 .0115 .865 .9508 .0070 .0070 .997 .054 .999

Notes: “GMM1” and “GMM2” refer to the one- and two-step GMM estimators, “Mean”, “SD” and
“RMSE” refer to the mean standard deviation, and root mean squared error of the estimators, “t(1)”
and “J” refer to the rejection frequency of the unit root t-statistic and Hansen–Sargan statistics,
and “BIC1” refers to the correct selection frequency of the BIC1, respectively.
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Table 2: Monte Carlo results for the case when ε i,t follows an MA(1) process.

GMM1 GMM2
ρ0 N Mean SD RMSE t(1) Mean SD RMSE t(1) J BIC1

σ2
δ = 0.5, r0 = 1

1 100 .9964 .0257 .0260 .041 .9971 .0251 .0253 .091 .051 .912
1 400 .9991 .0136 .0136 .053 .9991 .0131 .0131 .057 .071 .959
1 1600 1.005 .0068 .0084 .047 1.004 .0057 .0070 .051 .063 .981

.99 100 .9871 .0274 .0276 .101 .9869 .0271 .0273 .286 .051 .963

.99 400 .9910 .0173 .0173 .194 .9887 .0162 .0163 .311 .063 .952

.99 1600 .9903 .0099 .0099 .417 .9897 .0085 .0085 .519 .066 .979

.95 100 .9473 .0284 .0285 .761 .9469 .0291 .0293 .912 .059 .958

.95 400 .9496 .0153 .0153 .967 .9479 .0140 .0142 .983 .061 .976

.95 1600 .9510 .0084 .0085 .983 .9505 .0080 .0080 1.000 .054 .994
σ2

δ = 2.5, r0 = 1
1 100 1.013 .0231 .0284 .060 1.011 .0240 .0241 .083 .032 .924
1 400 1.008 .0113 .0139 .054 1.006 .0097 .0097 .068 .039 .962
1 1600 1.003 .0062 .0069 .058 1.009 .0042 .0042 .061 .048 .994

.99 100 .9924 .0260 .0261 .139 .9937 .0243 .0246 .284 .038 .967

.99 400 .9917 .0145 .0146 .340 .9924 .0129 .0131 .419 .041 .985

.99 1600 .9911 .0081 .0082 .501 .9912 .0067 .0069 .804 .056 1.00

.95 100 .9538 .0260 .0263 .525 .9542 .0248 .0252 .648 .037 .961

.95 400 .9526 .0133 .0137 .861 .9523 .0115 .0117 .975 .042 .968

.95 1600 .9511 .0069 .0072 .984 .9513 .0058 .0059 .996 .043 .989
σ2

δ = 0.5, r0 = 2
1 100 .9932 .0298 .0306 .071 .9944 .0304 .0309 .101 .047 .894
1 400 .9956 .0141 .0148 .059 .9958 .0135 .0141 .068 .059 .957
1 1600 .9991 .0077 .0078 .061 .9987 .0064 .0064 .053 .054 .979

.99 100 .9864 .0317 .0319 .062 .9851 .0314 .0318 .073 .033 .924

.99 400 .9872 .0204 .0206 .236 .9876 .0194 .0196 .249 .037 .954

.99 1600 .9887 .0116 .0117 .601 .9889 .0106 .0107 .641 .042 .974

.95 100 .9445 .0341 .0345 .319 .9441 .0332 .0337 .467 .037 .906

.95 400 .9479 .0168 .0169 .631 .9476 .0159 .0161 .762 .041 .984

.95 1600 .9486 .0109 .0110 .954 .9491 .0093 .0093 .977 .046 .993
σ2

δ = 2.5, r0 = 2
1 100 1.019 .0262 .0324 .069 1.023 .0270 .0355 .093 .033 .936
1 400 1.013 .0129 .0183 .061 1.016 .0114 .0197 .062 .037 .959
1 1600 1.006 .0069 .0091 .058 1.004 .0059 .0071 .055 .041 .994

.99 100 .9927 .0284 .0285 .082 .9944 .0294 .0270 .104 .037 .942

.99 400 .9921 .0178 .0179 .274 .9931 .0162 .0165 .195 .042 .975

.99 1600 .9915 .0094 .0095 .668 .9916 .0081 .0083 .716 .051 .997

.95 100 .9576 .0309 .0318 .305 .9578 .0304 .0314 .469 .037 .959

.95 400 .9541 .0144 .0150 .657 .9547 .0140 .0148 .832 .043 .991

.95 1600 .9528 .0093 .0097 .926 .9521 .0081 .0084 .983 .041 1.00

Notes: See table 1 for an explanation.
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Table 3: Empirical results.

Measure ρ̂ σ̂ρ t(1) p-value J p-value BIC1 r̂ q
EMP .879 .091 -1.32 .186 10.23 .176 4.26 2 1
FA .843 .105 -1.49 .135 11.91 .104 5.93 1 2

Notes: “ρ̂” and “σ̂ρ” refer to the GMM2 estimator of ρ0 and its estimated standard
error, “t(1)” refers to the unit root t-statistic, “J” refers to the Hansen–Sargan statistic,
“BIC1” refers to the minimizing value of the BIC1, “r̂” refers to the estimated number
of factors using the BIC1, and “q” refers to the order of the assumed MA errors.
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