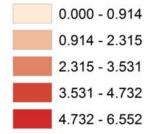
Do Risk Preferences Change? Evidence from Panel Data Before and After the Great East Japan Earthquake

Chie Hanaoka Kyoto Sangyo University

Hitoshi Shigeoka Simon Fraser University Yasutora Watanabe Northwestern University

Introduction

- Risk preferences are fundamental determinants of individual decision-making on economic behaviors.
- Standard economic models assume that individual risk preferences are stable across time.
- Recent literature suggests that negative shocks may change risk preferences and risk-taking behaviors. However, evidence is <u>mixed</u>.
 - early life financial experiences (Malmendier and Nagel, 2011)
 - conflicts (Voors et al., 2012; Callen et al., 2014)
 - natural disasters (Eckel et al., 2009; Cameron and Shah, 2010; Cassar et al., 2011).


This Paper

- We study how risk preferences are affected by the Great East Japan Earthquake.
 - Occurred on March 11, 2011
 - *Largest* Earthquake in Japanese History
- We exploit the regional variation of the Earthquake's severity.

Great East Japan Earthquake

Intensity of earthquake

Х

Novelty of This Paper

- We use *panel* data on risk preference collected before and after the Earthquake.
- Existing studies rely on cross-section data collected <u>after</u> the occurrence of negative shocks.
 - Cross section and fixed effect specifications generate different results in our study.
 - This finding suggests that the presence of unobserved heterogeneity may *bias* cross section studies.

Summary of Results

- 1. Individuals become more risk tolerant if exposed to larger intensity above "frightening" level.
- 2. All the results are driven by men.
 - Women show opposite patterns, but not very robust.
- 3. Those men become more engaged in gambling and drinking.
- 4. Cross-section specification generates very different estimates from panel specification.

Seismic Intensity

- Seismic intensity (*Shindo*) is a metric of strength of earthquake *at a specific location*
 - More than 1,700 observation stations across Japan
- *Shindo* is a logarithm of acceleration, and increase of seismic intensity by two means 10-fold of acceleration.
- *Shindo* can take values between 0 (no shaking) to 7, and most people feel scared above 4. (Description)

Data on Risk Preference

- Our measure of risk preferences are directly elicited using a hypothetical lottery question in the Japan Household Panel Survey on Consumer Preferences and Satisfactions (JHPS-CPS).
 - A nationally representative annual *panel* survey
 - Two waves: 2011 (*before* the Earthquake) and 2012 (*after* the Earthquake).
- We follow Cramer et al. (2002, JEBO) to construct a measure of risk aversion.

Measuring Risk Preference

• Respondents choose "buy" or "do not buy" a lottery with 50% chance of wining JPY100,000 (expected value of JPY50,000) at *each* of the following 8 prices.

JPY 10	(USD 0.1)	Buy 🛛	Not Buy 🛛 🤺	More risk averse
JPY 2,000	(USD 20)	Buy 🗆	Not Buy	
JPY 4,000	(USD 40)	Buy 🛛	Not Buy	
JPY 8,000	(USD 80)	Buy 🗆	Not Buy	
JPY 15,000	(USD 150)	Buy 🗆	Not Buy	
JPY 25,000	(USD 250)	Buy 🗆	Not Buy	
JPY 35,000	(USD 350)	Buy 🗆	Not Buy	Less risk averse
JPY 50,000	(USD 500)	Buy 🗆	Not Buy	

- The reservation price λ is the midpoint of the prices at which a respondent switches from "Buy" to "Not Buy".
- Risk aversion measure = $1 \lambda/50,000$ (Raw data) (Validity)
 - Value of 0 if risk-neutral, and 1 for perfect risk-aversion.
 - As the vaue is in [0,1], we logit-transform it in our regression.

Summary Statistics

• Sample size of 3,221 respondents located across 226 municipalities.

Variables	Ν	Mean	SD	Min	Max
A. Individual-Level Variables					
Risk Aversion Measure	3,221	0.81	0.21	0	0.9998
Age (in years)	3,221	52.1	12.6	22	78
Male	3,221	0.47	0.50	0	1
High School graduation or less	3,204	0.55	0.50	0	1
Married	3,171	0.82	0.38	0	1
B. Municipality-Level Variables					
X (seismic intensity)	226	2.83	1.94	0	6.06
Radiation (µSv/h)	226	0.10	0.24	0	2.40
Fatality rate (per 1,000 population)	226	0.25	2.43	0	26.9

Identification Strategy

• A basic model would be:

 $Y_{ijt} = \alpha_t + \beta X_{jt} + \gamma Z_{ijt} + \pi \underline{W_i} + \varepsilon_{ijt}$

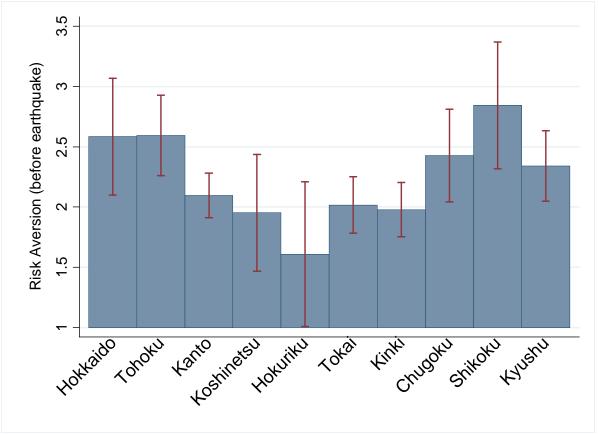
for individual *i*, location *j*, and time *t*.

 Y_{ijt} is a measure of risk preference

 α_t is an year effect

 X_{jt} is intensity of the Earthquake (=0 before the Earthquake)

 Z_{iit} is time-varying individual characteristics


 W_i is unobserved time-invariant individual characteristics

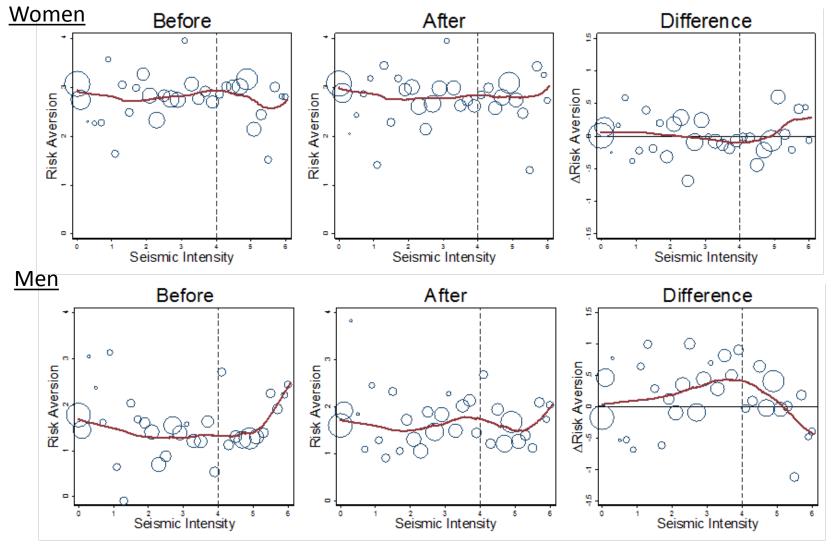
- susceptibility to local social norm
- physical and mental stress tolerance

 ε_{ijt} is a random shock.

Unobserved Heterogeneity

• The risk preference *before* the Earthquake differed among regions (through formation of risk preferences at regions or residential sorting).

Fixed Effects Specification


- To overcome the issue of unobserved heterogeneity, we adopt fixed effects specification.
- As the effect seems to have kink at around intensity of 4 (<u>description</u>), our main specification is:

$$\Delta Y_{ijt} = \Delta \alpha + \beta X_j + \rho I [X_j \ge 4] (X_j - 4) + \gamma \Delta Z_{ijt} + \Delta \varepsilon_{ijt}$$

 ρ captures the <u>additional</u> effect of being exposed to higher intensity

- If unobserved heterogeneity W_i are not correlated with X_j , then fixed-effects specification and cross-section specification must produce similar results.
 - But we find significant differences (discussed later)

Risk Preference Before and After the Earthquake

Main Result

	I	Full Sample	e		Men			Women	
-	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Х	0.030	0.017	0.012	0.127**	0.092*	0.053	-0.060	-0.055	-0.028
	(0.034)	(0.031)	(0.026)	(0.057)	(0.049)	(0.042)	(0.038)	(0.034)	(0.029)
$(X-4) * 1[X \ge 4]$	-0.135			-0.551***			0.255*		
	(0.123)			(0.195)			(0.134)		
$(X - 4.5) * 1[X \ge 4.5]$		-0.136			-0.709***			0.427**	
		(0.176)			(0.249)			(0.190)	
$(X-5) * 1[X \ge 5]$			-0.253			-0.995***			0.518*
			(0.263)			(0.336)			(0.301)
Constant	0.048	0.064	0.069	-0.003	0.037	0.087	0.094	0.091	0.058
	(0.082)	(0.080)	(0.077)	(0.137)	(0.133)	(0.129)	(0.096)	(0.093)	(0.090)
<i>Value of X when</i> $\Delta Y=0$	5.60	5.68	5.54	5.19	5.23	5.37	4.78	4.92	5.16
Individual FE	×	×	×	×	×	×	×	×	×
Mean of Δ risk aversion	0.089	0.089	0.089	0.184	0.184	0.184	0.005	0.005	0.005
Mean of risk aversion (before)	2.168	2.168	2.168	1.429	1.429	1.429	2.823	2.823	2.823
N of individuals	3,221	3,221	3,221	1,514	1,514	1,514	1,707	1,707	1,707
R-squared	0.000	0.000	0.000	0.004	0.004	0.003	0.002	0.003	0.001

Note: X is seismic intensity (Shindo)

Robustness Check

Our results are robust to control for

- income and assets (Table)
- <u>radiation and fatalities (Table</u>)

Also robust to

- alternative measure of intensity measure (Table)
- alternative measure of risk preferences(Table)

Panel vs. Cross-Section Specifications

• Our cross-section estimates significantly differs from panel estimates suggesting that unobserved heterogeneity may *bias* cross section studies.

	Men				
Specification	Panel	Cross Section			
	BEFORE				
Data	and	AFTER earthquake			
Data	AFTER	only			
	earthquake				
	(1)	(2)	(3)		
Х	0.127**	-0.001	0.017		
	(0.057)	(0.055)	(0.054)		
$(X-4) * 1[X \ge 4]$	-0.551***	-0.048	-0.047		
	(0.195)	(0.195)	(0.187)		
Constant	-0.003	1.633***	1.469		
	(0.137)	(0.140)	(1.166)		
Individual FE	×	_	—		
Covariates	_		×		
N of individuals	1,514	1,514	1,514		
R-squared	0.004	0.000	0.047		

Results on "Risk-Taking" Behaviors

 Gambling and drinking at high-intensity locations increases as the intensity increase. (Fig) (<u>Definition</u>)

	Men				
Outcomes	Gambling	Drinking	Smoking		
	(1)	(2)	(3)		
Х	-0.013**	-0.003	-0.001		
	(0.007)	(0.002)	(0.003)		
$(X-4) * 1[X \ge 4]$	0.047**	0.018*	0.000		
	(0.019)	(0.011)	(0.010)		
Constant	0.042**	0.007	0.012		
	(0.018)	(0.005)	(0.009)		
Individual FE	×	×	×		
Income	×	×	×		
Mean of ∆outcome	0.018	0.003	0.011		
Mean of outcome (before)	0.145	0.024	0.024		
N of individuals	1,514	1,514	1,514		
R-squared	0.004	0.002	0.000		

A Possible Mechanism: Emotional Response

- Previous literature suggests emotional response to a negative shock may affect risk preference.
- We investigate this channel using the following three questions in the survey.
 - Depression: Do you feel depressed lately?
 - Stress: Do you feel stressed lately?
 - Sleep problem: Have you been sleeping well lately?
- We find that men exposed to higher intensity have more emotional/mental issues.
 - The result do not hold for women.

A Possible Mechanism: Emotional Response

Note: Lower the score, more the mental issues

Dep. Emotional Response Score	Men	Women
	(1)	(2)
Χ	0.011	0.015
	(0.015)	(0.015)
$(X - 4) * 1[X \ge 4]$	-0.124**	-0.071
	(0.051)	(0.052)
Constant	-0.005	-0.022
	(0.040)	(0.032)
Individual FE	×	×
Income	×	×
N of individuals	1,493	1,690
R-squared	0.005	0.001

Attrition, Multiple Switch, and Migration

- <u>Attrition</u>: 263 respondents (7.5%) did not complete the survey in 2012.
- <u>Multiple Switch</u>: 198 respondents (5.8%) have multiple switches in answering hypothetical lottery question.
- <u>Migration</u>: 147 respondents (4.4%) moved municipalities between 2011 and 2012.
- Attrition, multiple switch, and migration do *not* seem to be systematically related to the intensity of the Earthquake.

Conclusion -1

- We test whether experiencing a negative shock—the Great East japan Earthquake—alters risk preference.
- We use unique panel data collected before and after the Earthquake to overcome the bias resulting from unobserved heterogeneity.
- We find people exposed to larger intensity become more risk tolerant, and the result is driven by men.
- Also, these men become more engaged in gambling and drinking.

Conclusion -2

- Questions for the future research
 - Is the effect persistent?
 - Effect on other behavior such as saving and investment
 - What exactly is the mechanism on how experiencing high intensity alters risk preference.