Internal and External Effects of R&D Subsidies and Fiscal Incentives Empirical Evidence Using Spatial Dynamic Panel Models

Econometric models and Methods

Benjamin Montmartin and Marcos Herrera

20th International Panel Data Conference

Tokyo - July 9-10, 2014

Context

Motivation

•0000000

- Most OECD countries have set objective for (private) R&D intensity
- For most of them, public R&D objective has been achieved but...
- ...the private contribution is lagging

Motivation

0000000

Consequences:

- Generalized and increasing implementation of R&D financial support (especially fiscal incentives)
- Fiscal incentives In 12 OECD coutries in $1996 \rightarrow 26$ in 2013
- Increasing public budget devoted to such policies France [Tax credit+Direct subsidies (Region and State levels)]: 2001 : 2,5 billion euros (Tax credit : \simeq 500 millions) 2011 : 8 billion euros (Tax credit : more than 6 billions)

- Macroeconomic facts question the efficiency of these policies (especially fiscal incentives)
 - ▷ Relatively flat private R&D intensity in countries that have substantially raised fiscal incentives (France, Czech Republik, Belgium, Japan, Norway, UK, Mexico)
 - ▷ Countries with the highest level of private R&D intensity are countries with a (relatively) low level of public support (Germany, Denmark, Finland, Sweden, Korea, US)

The specificities of the related literature

- An extensive empirical literature evaluating the impact of financial support on private investment in R&D
- Most of them are carried out at a microeconomic level and evaluate the capacity of a specific measure to increase private R&D investment
- Numerous Surveys: Capron et al. (1997), David, Hall & Toole (2000), Hall and Van Reenen (2000), Berube and Mohnen (2009), Lentille and Mairesse (2009)
- Micro-results: Mixed
- Globally: Ambiguous effect for direct subsidies and Positive Effect for tax credits (except for level-based tax credits? - see Baghana-Mohnen (2009), Lokshin and Mohnen (2009))

- Allow to evaluate the global effect of R&D policies (including crowding-out effects, distortions between firms and sectors generated by these measures, price-effect...)
- Allow to discuss the complementarity of instruments and the pertinence of the policy mix
- Allow to understand their cross-border effects (the existence of a competition or complementary effect of such policies)
 - ...And finally provide complementary arguments (to the micro ones) to explain observed facts

Investigate more comprehensively the global effects of R&D subsidies and tax credits by considering both temporal and spatial dependence of R&D activities because...

- the empirical literature mostly ignores the possibility of an external (out-of-country) impact of R&D policies
- efficiency cannot be address correctly without considering both internal (in-country) and external (out-of-country) effects of R&D policies
- econometric methods ignoring spatial effects generate biased estimates

- There exists a non-linear (convex U) relationship between the effect of instruments on private R&D and their level of use
- R&D policies implemented within a country are substitutes
- R&D policies implemented by different countries are substitutes
- Private R&D generates positive spatial spillovers

Outline

Motivation

0000000

- I. Theoretical and empirical elements
- II. Econometric models and Methods
- III. Results

The internal (in-country) effect of R&D subsidies and fiscal incentives

Internal (In-country) effect =

Direct effect (Reduce the marginal cost of R&D project)

- + Direct externalities
 - Positive: learning and training effect, positive signal for future demand,...
 - Negative : substitutes to private R&D funding, sectoral distortions, price effect
- + Indirect externalities (between instruments)

The internal (in-country) effect of R&D subsidies and fiscal incentives

External (Out-of-country) effect

Correspond to the macroeconomic effect that the R&D subsidies and fiscal incentives of other countries generate for a specific country

Related to:

- Fiscal competition to attract R&D and/or fiscal optimization
- Access to new sources of fund, learning and training effects

Can be complements or substitutes to national R&D support

Two main empirical models tested

1. The basic model with only temporal dependence

$$y_t = \tau y_{t-1} + x_t \beta + \mu + \eta_t \iota_n + \varepsilon_t$$

$$\varepsilon_t \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^2 I_n\right), \, \mu' = [\mu_1, \mu_2, \dots, \mu_n] \text{ and } \iota_n \text{ a } (n \times 1) \text{ vector.}$$

2. The model with internal and external effects (SDM) with temporal and spatial dependence

$$y_t = \tau y_{t-1} + \rho W y_t + x_t \beta + W x_t \theta + \mu + \eta_t \iota_n + \varepsilon_t$$

1. The non linear effect of R&D subsidies and fiscal incentives

$$eta_{sub} = lpha_1 sub + lpha_2 sub^2$$

 $eta_{bindex} = lpha_1 bindex + lpha_2 bindex^2$

Econometric models and Methods

0000

2. The externalities between instruments

Introduction of a crossed variable in the model:

$$\beta_{interact}(sub \times bindex)$$

Estimation strategy

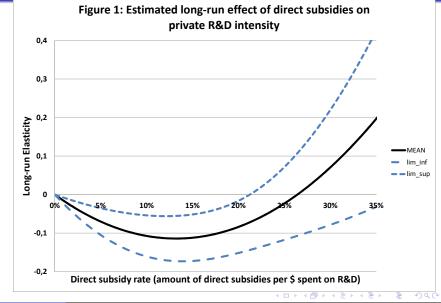
- Data: 25 OECD countries (1990-2009) mainly from OECD and IMF
- Relative measure for R&D subsidies and Fiscal incentives ▷ indirect subsidy rate = fiscal subsidies per \$ spent on R&D
- Two other variables: Interest rate and Public R&D intensity
- All variables are I(1) ⇒ First-differences model
- Potential unbiased estimators : LSDVC, GMM and QML

Basic Statistics

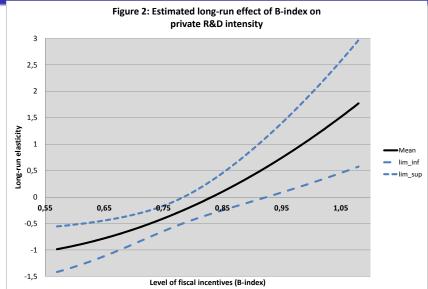
Variable	Obs.	Mean	Std. dev.	Min.	Max.
Dirdefi (% GDP)	500	0.96	0.66	0.004	2.96
Înteretlt	500	7.95	6.73	1.00	66.94
Dirdpub (% GDP)	500	0.67	0.25	0.016	1.34
Sub (% BERD)	500	8.28	7.92	0.053	94.40
Bindex	500	0.94	0.11	0.57	1.08

Evolution of Variables over time

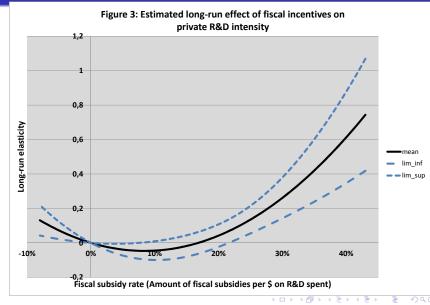
	Variable	1990-1993	1994-1997	1998-2001	2002-2005	2006-2009
	Dirdefi (% GDP)	0.83	0.87	0.97	1.02	1.11
	Interetlt	13.28	10.41	6.79	4.69	4.57
	Dirdpub (% GDP)	0.59	0.63	0.66	0.71	0.76
	Sub (% BERD)	10.01	9.25	7.42	7.01	6.91
Ī	Bindex	0.98	0.97	0.96	0.91	0.88


First results

$$\Delta y_t = \tau \triangle y_{t-1} + \triangle x_t \beta + \mu + \eta_t \iota_n + \varepsilon_t$$


VARIABLE	MODEL 1		MODEL 2		MODEL 3	
	GMM	CLSDV	GMM	CLSDV	GMM	CLSDV
$\Delta ldirdefi_{-1}$	0.379***	0.434***	0.373***	0.429***	0.366***	0.419***
$\Delta interetlt$	-0.008***	-0.005**	-0.008***	-0.006**	-0.009***	-0.008***
$\Delta lsub$	-0.042***	-0.045***	-0.034***	-0.037***		
$\Delta lsub \times sub$					-1.009***	-1.000***
$\Delta lsub \times sub^2$					3.966***	3.787***
$\Delta ldirpub_{-1}$	0.317***	0.245***	0.310***	0.237***	0.288***	0.233***
$\Delta lbindex_{-1}$	-0.196***	-0.198***	-0.251***	-0.248***		
$\Delta lbindex_{-1} \times lbindex$					-3.765***	-3.176***
$\Delta lbindex_{-1} \times lbindex^2$					4.623***	3.819***
∆interact			0.589***	0.581***	1.097***	1.020***
constant	-0.038**		-0.039**		-0.033**	

Notes: *, ** and *** denotes significance at 10%, 5% and 1%. Dep. variable is log Dirdefi %GDP (first difference). Terms Δ and I denotes first diff. and log. All tests are based on robust std. errors. Time effects are included but not reported.


The non-linear effect of R&D subsidies

The non-linear effect of Fiscal incentives

The non-linear effect of Fiscal incentives

The introduction of spatial effects

Motivation

Idea: private R&D of a country could be impacted by private R&D of its neighbors and their R&D policy incentives

Spatial dependence is understood as proximity, not necessarily geographical distance

• We introduce spatial dependence using two alternative criteria :

$$w_{ij} = \frac{1}{2T} \sum_{t \in T} \left(\frac{export_{ij,t}}{\sum_{j} export_{ij,t}} + \sum_{j} import_{ij,t}}{\sum_{j} mport_{ij,t}} \right)$$

$$w_{ij} = \frac{\frac{1}{T} \sum_{t \in T} p_{ij,t}}{\sum_{j} \left[\frac{1}{T} \sum_{t \in T} p_{ij,t} \right]}$$

• We use a binary transformation to avoid endogeneity problems and break down the connection between countries:

$$w_{ij} = egin{cases} 1 & \textit{if} & \sum\limits_{j} w_{ij}^o \leq 0.75 \ 0 & \textit{otherwise} \end{cases}$$
 ,

Dynamic spatial estimates

	dynSDM 1		dynSDM 2		dynSDM 3		
	W (trade)	W (patent)	W (trade)	W (patent)	W (trade)	W (patent)	
MAIN EFFECTS							
$\Delta ldirdefi_{-1}$	0.372***	0.371***	0.367***	0.363***	0.359***	0.349***	
$\Delta interetlt$	-0.005***	-0.005***	-0.005***	-0.005***	-0.007***	-0.007***	
$\Delta lsub$	-0.044***	-0.044***	-0.036***	-0.036***			
$\Delta lsub \times sub$					-1.029***	-0.974***	
$\Delta lsub \times sub^2$					3.862***	3.662***	
$\Delta ldirpub_{-1}$	0.256*	0.258**	0.247*	0.248**	0.241*	0.241**	
$\Delta lbindex_{-1}$	-0.193***	-0.198***	-0.247***	-0.260***			
$\Delta lbindex_{-1} \times bindex$					-3.286***	-3.214***	
$\Delta lbindex_{-1} \times bindex^2$					3.958***	3.843***	
$\Delta interact$			0.608***	0.584***	1.066***	1.060***	
	_	SPATIA	L EFFECTS		•		
W∆ldirdefi	0.139**	0.321**	0.161**	0.323**	0.147**	0.272**	
$W\Delta interetlt$	0.014*	-0.038**	0.013*	-0.043**	0.011*	-0.044**	
$W\Delta lsub$	0.006	0.063	0.017	0.077			
$W\Delta lsub \times sub$					0.140	-0.108	
$W\Delta lsub \times sub^2$					-0.698	21.729	
$W\Delta ldirpub_{-1}$	-0.047	0.150	-0.042	0.086	-0.052	0.072	
$W\Delta lbindex_{-1}$	-0.027	-0.091	-0.116	1.047*			
$W\Delta lbindex_{-1} \times bindex$					-2.939	-0.348	
$W\Delta lbindex_{-1} \times bindex^2$					3.556	2.053	
W∆interact			0.589	15.427***	1.221	15.239***	
AIC	-1049	-1050	-1046	-1055	-1044	-1055	
BIC	-954	-955	-931	- 940 ► 4 t	5 ►-88 7 ► <	<u>-899</u> ✓	

Core results

- R&D policies influence significantly the private R&D investment
- Non linear (convex U) effect of both R&D subsidies and fiscal incentives ⇒ possibility of crowding-out and leveraging effect depending on the level of use
- R&D subsidies and fiscal incentives (within a country) are substitutes in stimulating private R&D
- Spatial dependence is present :
 - ⇒ Positive externalities generated by private R&D
 - ⇒ National R&D policies could be substitutes (especially for fiscal incentives)

Conclusions

- Necessity to take into account internal AND external effects of R&D policies to assess their global effect
- Based on our results, if governments do not take into account the spatial dependence in the definition of their R&D policies, then there will be likely to be in favor of indirect support compared to direct support...
- ...even if the global effect of indirect support could be less positive

Thank you