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1. Introduction
LIDE (level-instruments-for-differenced-equations) 
approach

 The most popular way of controlling for the fixed effects: to remove them 
by first-differencing or quasi-differencing regression equations.

 The differenced equations are estimated by the Generalized Method of 
Moments (GMM) of Hansen (1982); for example, Arellano and Bond (1991), 
and Ahn and Schmidt (1995), for linear dynamic models, and Chamberlain 
(1992), Wooldridge (1997), Windmeijer (2000), for count data models.

 The typical instruments used for the differenced equations are lagged level 
regressors. (LIDE “level-instruments-for-differenced-equations” approach).
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Purpose of this paper: to remind the LIDE users of 
the importance of including a constant (typically, 
one) in instrument sets
 “GMM-C” estimator: using a constant as an instrument in addition to 

lagged level regressors for the differenced equations

 “GMM-WC” estimator: without a constant in the instruments set

 The GMM-C estimator is asymptotically more efficient than the GMM-WC 
estimator (Crépon, Kramarz and Trognon (1997)).

 The GMM-WC estimation results are not invariant to the means of regressors, 
but the GMM-C estimation results are invariant to the means of regressors
asymptotically and often in finite sample, when using the first-difference 
and quasi-difference transformations.
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Structure of Paper

 Section 2: considering three different LIDE methods: Arellano-Bond (1991) 
method for dynamic panel data models and the quasi-differencing 
methods of Chamberlain (1992) and Wooldridge (1997, endnote 2) for 
count panel data models, and showing that both the asymptotic and 
finite-sample distributions of the GMM-WC estimators from these methods 
are not invariant to the means of regressors.

 Section 3: Small-scale Monte Carlo simulation

 Section 4: Concluding remark

4



2. Asymptotic Distributions of GMM 
Estimators

 We suppose the case of ܰ → ∞	and ܶ being fixed (݅ ൌ 1,… , ܰ and t ൌ 1,… , ܶ). 
i and t denote the individual and time respectively.

 ߚ is the regression coefficient.

 ݉௪,ሺߚሻ: moment function used for GMM-WC estimator.

 ݉ ߚ ൌ ሺ݉௪, ߚ ᇱ,݉, ߚ ᇱሻ′: moment function used for GMM-WC estimator, 
where ݉,ሺߚሻ is simply the differenced error.

 we use notation  ߚ to denote the true value of  ߚ.
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We only consider the cases with T=2.
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2.1. Simple Dynamic Panel Model
Model
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Generally, the GMM-C estimator is strictly more efficient 
than the GMM-WC estimator, as Crépon, Kramarz and 
Trognon (1997) projected.

 That is,
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The asymptotic variance of the GMM-WC estimator 
depends on the choice of b, but that of the GMM-C does 
not.

 That is,
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General relationship between Ξ୵ୡୠ and  ܾ

 Suppose the stationarity: ௧ݕ ൌ
ఈ

ଵିఉబ
 ܧ , whereߥ ݒ ൌ ݎܽݒ ,0 ݒ ൌ  ఔଶ, andߪ

ߥ is uncorrelated with ߝଵ, ߝଶ and ߙ.

 Holding other things equal (given ߪఌଶ, ߪఈଶ, ߪఔଶ, and ߚ), the efficiency of the 
GMM-WC estimator (i.e. the smallness of Ξ୵ୡୠ ) has a negative relationship 
with the absolute value of the mean of ݕ௧.
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In finite sample, the minimands of the one-step and two-
step GMM-C estimators do not depend on the choices 
of b.

 That is,
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Implying that both the one-step and two-step GMM-C estimators are 
invariant to b in finite samples, for the case of using ∑ ܼܼܪ′ே

ୀଵ as the 
one-step weighting matrix.
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2.2. Simple Count Data Models
Model

 Model

exp( ) exp( )it it o i it it o i ity x x v       
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Assumptions on disturbances: predeterminedness is assumed here.
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Both the asymptotic variance of the GMM-C estimator and 
the GMM minimands of the one-step and two-step GMM-
C estimator are invariant to the choice of b, when using 
Chamberlain transformation.

 Chamberlain Transformation
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The asymptotic variance of the GMM-C estimator  is 
invariant to the choice of b, but the GMM minimands of 
the one-step and two-step GMM-C estimators are not so, 
when using Wooldridge transformation.

 Wooldridge Transformation
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3. Simulations

 This section investigates the finite-sample properties of the two-step GMM-C 
and GMM-WC estimators. 

 We also illustrate the invariance property of the GMM-C estimator. 

 Our experiments are carried out with a simple dynamic panel model and 
two count panel models.
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3.1. Dynamic Panel Data Model

 Data Generating Process

 Number of replications = 1000

 ௧ݕ ൌ ௧ݕ 	െ ܾ		is used in the estimation, by changing b variously.
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Table 1 presents the simulation results from the two-step 
GMM estimation of the simple dynamic model. 

 Reported statistics: bias, rmse (root mean squared error), mcsd (Monte 
Carlo standard deviation) and mcmse (Monte Carlo mean of standard 
error)

 The distribution of the GMM-WC estimator changes depending on b (for 
each N, both the mcsd and rmse of the GMM-WC estimator increases as 
|ܾ| increases).

 For given N, the GMM-C estimation results are the same for any choice of b.
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Table 1: Monte Carlo Results for a Dynamic Panel Data 
Model 
(T=5, ߚ ൌ 0.5, ఌଶߪ ൌ ఈଶߪ ൌ 1)

N = 100 N = 500 N = 1000

bias rmse bias rmse bias rmse

(mcsd) (mcmse) (mcsd) (mcmse) (mcsd) (mcsd)

b = 20 GMM-WC -0.08 0.18 -0.01 0.08 -0.01 0.05

(0.17) (0.14) (0.08) (0.07) (0.05) (0.05)

GMM-C -0.06 0.14 -0.01 0.06 -0.01 0.04

(0.13) (0.10) (0.06) (0.05) (0.04) (0.04)

b = 2 GMM-WC -0.06 0.16 -0.01 0.06 -0.01 0.05

(0.15) (0.12) (0.06) (0.06) (0.04) (0.04)

GMM-C -0.06 0.14 -0.01 0.06 -0.01 0.04

(0.13) (0.10) (0.06) (0.05) (0.04) (0.04)

b = 0 GMM-WC -0.04 0.14 -0.01 0.06 -0.01 0.04

(0.13) (0.11) (0.06) (0.05) (0.04) (0.04)

GMM-C -0.06 0.14 -0.01 0.06 -0.01 0.04

(0.13) (0.10) (0.06) (0.05) (0.04) (0.04)

b = -2 GMM-WC -0.06 0.16 -0.01 0.07 -0.01 0.05

(0.15) (0.12) (0.06) (0.06) (0.05) (0.04)

GMM-C -0.06 0.14 -0.01 0.06 -0.01 0.04

(0.13) (0.10) (0.06) (0.05) (0.04) (0.04)

b = -20 GMM-WC -0.08 0.18 -0.01 0.08 -0.01 0.05

(0.17) (0.14) (0.08) (0.07) (0.05) (0.05)

GMM-C -0.06 0.14 -0.01 0.06 -0.01 0.04

(0.13) (0.10) (0.06) (0.05) (0.04) (0.04)
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3.2. Count Panel Data Model with 
Predetermined Regressor
 Data Generating Process

 Number of replications = 1000

 ௧ݔ ൌ ௧ݔ 	െ ܾ		is used in the estimation, by changing b variously.
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Table 2 presents the Monte Carlo results from the two-step 
Chamberlain GMM estimation.

 The two-step GMM-C estimates are identical to the change of b, as 
discussed in Section 2.2.

 As predicted, the distribution of the two-step GMM-WC estimator changes 
as b changes (The performance of the GMM-WC estimator appears to be 
quite sensitive to b, especially when the sample size N is small. ).
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Table 2: Monte Carlo Results from Count Panel Data Models with 
Predetermined Regressors
(T=5, ߚ ൌ 0.5, ߜ	 ൌ 0.1, ߩ ൌ 0.8, ߠ ൌ ఌଶൌߪ		,0.3 ఈଶߪ ൌ 0.3, ௪ଶߪ ൌ 0.25)

N = 100 N = 500 N = 1000

bias rmse bias rmse bias rmse

(mcsd) (mcmse) (mcsd) (mcmse) (mcsd) (mcsd)

b = 1 GMM-WC -0.09 0.33 -0.03 0.17 -0.01 0.11

(0.32) (0.25) (0.17) (0.15) (0.11) (0.11)

GMM-C -0.14 0.30 -0.03 0.13 -0.02 0.09

(0.27) (0.17) (0.13) (0.11) (0.09) (0.08)

b = 0.5 GMM-WC -0.09 0.29 -0.03 0.13 -0.01 0.09

(0.28) (0.20) (0.13) (0.11) (0.09) (0.09)

GMM-C -0.14 0.30 -0.03 0.13 -0.02 0.09

(0.27) (0.17) (0.13) (0.11) (0.09) (0.08)

b = 0 GMM-WC -0.14 0.36 -0.03 0.15 -0.02 0.10

(0.33) (0.21) (0.14) (0.12) (0.10) (0.08)

GMM-C -0.14 0.30 -0.03 0.13 -0.02 0.09

(0.27) (0.17) (0.13) (0.11) (0.09) (0.08)

b = -0.5 GMM-WC -0.24 0.51 -0.09 0.30 -0.03 0.15

(0.45) (0.24) (0.29) (0.13) (0.14) (0.09)

GMM-C -0.14 0.30 -0.03 0.13 -0.02 0.09

(0.27) (0.17) (0.13) (0.11) (0.09) (0.08)

b = -1 GMM-WC -0.27 0.54 -0.13 0.34 -0.05 0.21

(0.46) (0.25) (0.32) (0.15) (0.20) (0.10)

GMM-C -0.14 0.30 -0.03 0.13 -0.02 0.09

(0.27) (0.17) (0.13) (0.11) (0.09) (0.08)
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3.3. Count Panel Data Model with 
Endogenous Regressor
 Data Generating Process

 Number of replications = 1000

 ௧ݔ ൌ ௧ݔ 	െ ܾ		is used in the estimation, by changing b variously.

2~ Poisson(exp( (1/ 2) ))it it i ity x      
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Table 3 presents the Monte Carlo results for the two-step 
Wooldridge GMM estimators.

 The finite sample performances of both the GMM-WC and GMM-C 
estimators deteriorate as |b| deviates from zero, especially when N = 100.

 As the distribution of  ݔ௧	becomes more skewed to the positive or negative 
sides, the mcsd and rmse of the GMM-WC (and GMM-C) estimator get 
larger.

 However, the finite-sample performance of the GMM-C estimator is less 
sensitive to b than that of the GMM-WC estimator.
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Table 3: Monte Carlo Results from Count Panel Data Models with 
Predetermined Regressors
(T=5, ߚ ൌ 0.5, ߜ ൌ 0.1, ߩ ൌ 0.8, ߠ ൌ ఈଶൌߪ		,0.3 ఌଶߪ		,0.3 ൌ 0.25, ௪ଶߪ	 ൌ 0.25)

N = 100 N = 500 N = 1000

bias rmse bias rmse bias rmse

(mcsd) (mcmse) (mcsd) (mcmse) (mcsd) (mcsd)

b = 1 GMM-WC -0.48 0.52 -0.22 0.25 -0.13 0.16

(0.22) (0.22) (0.12) (0.13) (0.10) (0.10)

GMM-C -0.39 0.44 -0.17 0.21 -0.10 0.13

(0.19) (0.18) (0.11) (0.11) (0.08) (0.08)

b = 0.5 GMM-WC -0.21 0.27 -0.09 0.14 -0.05 0.10

(0.17) (0.19) (0.10) (0.12) (0.08) (0.09)

GMM-C -0.18 0.24 -0.08 0.13 -0.05 0.09

(0.17) (0.16) (0.10) (0.11) (0.08) (0.08)

b = 0 GMM-WC 0.01 0.16 0.00 0.10 0.00 0.08

(0.16) (0.19) (0.10) (0.12) (0.08) (0.09)

GMM-C 0.01 0.16 0.01 0.10 0.00 0.08

(0.16) (0.17) (0.10) (0.11) (0.08) (0.08)

b = -0.5 GMM-WC 0.26 0.33 0.10 0.15 0.06 0.11

(0.20) (0.22) (0.11) (0.13) (0.09) (0.09)

GMM-C 0.22 0.29 0.10 0.15 0.06 0.10

(0.19) (0.18) (0.11) (0.12) (0.09) (0.09)

b = -1 GMM-WC 0.67 0.77 0.28 0.33 0.16 0.20

(0.38) (0.30) (0.17) (0.16) (0.12) (0.11)

GMM-C 0.56 0.64 0.23 0.28 0.13 0.17

(0.32) (0.24) (0.16) (0.13) (0.11) (0.09)
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4. Concluding Remark

 Non-invariance problem in the panel GMM estimation based on the level-
instruments-for-differenced-equations (LIDE) approach: 

 When a constant is not used as instrument, the asymptotic and finite-
sample distributions of the GMM estimators depend on overall means of the 
regressors used. 

 This problem can be solved simply by including a constant into the 
instrument set.
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