A Non-Invariance Problem in Panel GMM Estimators When Level Instruments Are Used for Differenced Equations

Seung C. Ahn Sogang University (Correspondence, Email: <u>smahn@sogang.ac.kr</u>)

Yoshitsugu Kitazawa Kyushu Sangyo University (Email: <u>kitazawa@ip.kyusan-u.ac.jp</u>)

Presented at 20th International Panel Data Conference held at the Hitotsubashi Hall in Tokyo on 9 and 10 July 2014.

1. Introduction LIDE (level-instruments-for-differenced-equations) approach

- The most popular way of controlling for the fixed effects: to remove them by first-differencing or quasi-differencing regression equations.
- The differenced equations are estimated by the Generalized Method of Moments (GMM) of Hansen (1982); for example, Arellano and Bond (1991), and Ahn and Schmidt (1995), for linear dynamic models, and Chamberlain (1992), Wooldridge (1997), Windmeijer (2000), for count data models.
- The typical instruments used for the differenced equations are lagged level regressors. (LIDE "level-instruments-for-differenced-equations" approach).

Purpose of this paper: to remind the LIDE users of the importance of including a constant (typically, one) in instrument sets

- "GMM-C" estimator: using a constant as an instrument in addition to lagged level regressors for the differenced equations
- "GMM-WC" estimator: without a constant in the instruments set

- The GMM-C estimator is asymptotically more efficient than the GMM-WC estimator (Crépon, Kramarz and Trognon (1997)).
- The GMM-WC estimation results are not invariant to the means of regressors, but the GMM-C estimation results are invariant to the means of regressors asymptotically and often in finite sample, when using the first-difference and quasi-difference transformations.

Structure of Paper

- Section 2: considering three different LIDE methods: Arellano-Bond (1991) method for dynamic panel data models and the quasi-differencing methods of Chamberlain (1992) and Wooldridge (1997, endnote 2) for count panel data models, and showing that both the asymptotic and finite-sample distributions of the GMM-WC estimators from these methods are not invariant to the means of regressors.
- Section 3: Small-scale Monte Carlo simulation
- Section 4: Concluding remark

2. Asymptotic Distributions of GMM Estimators We only consider the cases with T=2.

- We suppose the case of $N \to \infty$ and T being fixed (i = 1, ..., N and t = 1, ..., T). *i* and t denote the individual and time respectively.
- β is the regression coefficient.
- $m_{wc,i}(\beta)$: moment function used for GMM-WC estimator.
- $m_i(\beta) = (m_{wc,i}(\beta)', m_{c,i}(\beta)')'$: moment function used for GMM-WC estimator, where $m_{c,i}(\beta)$ is simply the differenced error.
- we use notation β_0 to denote the true value of β .

$$M_{wc} = E\left(\frac{\partial m_{wc,i}(\beta_o)}{\partial \beta'}\right); M_c = E\left(\frac{\partial m_{c,i}(\beta_o)}{\partial \beta'}\right); M = \begin{pmatrix} M_{wc} \\ M_c \end{pmatrix} \qquad V_{j,j'} = E[m_{j,i}(\beta_o)m_{j',i}(\beta_o)'] \qquad V = \begin{bmatrix} V_{j,j'} \end{bmatrix}$$

Generally, the GMM-C estimator is strictly more efficient than the GMM-WC estimator, as Crépon, Kramarz and Trognon (1997) projected.

The asymptotic variance of the GMM-WC estimator 8 depends on the choice of b, but that of the GMM-C does not. The asymptotic The asymptotic variance of the GMMvariance of the WC estimator when y_{it} is used **GMM-WC** That is, estimator when $\Xi_{wc}^{b} = \frac{2\sigma_{\varepsilon}^{2}[(\mu_{0}-b)^{2}+\sigma_{0}^{2}]}{\left[(\beta_{o}-1)\{(\mu_{0}-b)^{2}+\sigma_{0}^{2}\}+\sigma_{a0}+(\mu_{0}-b)\{\mu_{a}+b(\beta_{o}-1)\}\right]^{2}} \neq \Xi_{wc}$ $y_{it}^b = y_{it} - b$ is used $\Xi_{c}^{b} = \frac{2\sigma_{\varepsilon}^{2}\sigma_{0}^{2}}{\left[(\beta_{c}-1)\sigma_{0}^{2}+\sigma_{c0}\right]^{2}+\sigma_{0}^{2}\left[(\beta_{c}-1)\mu_{0}+\mu_{c}\right]^{2}} = \Xi_{c}$ The asymptotic variance of the GMM-C estimator when $y_{it}^b = y_{it} - b$ is The asymptotic variance of the GMMused C estimator when y_{it} is used

General relationship between Ξ_{wc}^{b} and b

- Suppose the stationarity: $y_{it} = \frac{\alpha_i}{1-\beta_0} + v_{i0}$, where $E[v_{i0}] = 0$, $var(v_{i0}) = \sigma_v^2$, and v_{i0} is uncorrelated with ε_{i1} , ε_{i2} and α_i .
- Holding other things equal (given σ_{ε}^2 , σ_{α}^2 , σ_{ν}^2 , and β_0), the efficiency of the GMM-WC estimator (i.e. the smallness of Ξ_{wc}^b) has a negative relationship with the absolute value of the mean of y_{it} .

In finite sample, the minimands of the one-step and two-10 step GMM-C estimators do not depend on the choices of b. Implying that both the one-step and two-step GMM-C estimators are invariant to b in finite samples, for the case of using $\sum_{i=1}^{N} Z_{i}^{b} H Z_{i}^{b'}$ as the That is, one-step weighting matrix. Elements in H are constants/ $Q_{1,N}^b(\beta) \equiv \left(\sum_{i=1}^N Z_i^b r_i^b(\beta)\right)' \left[\sum_{i=1}^N Z_i^b H Z_i^{b'}\right]^{-1} \left(\sum_{i=1}^N Z_i^b r_i^b(\beta)\right)$ $Q_{2,N}^{b}(\beta) \equiv \left(\Sigma_{i=1}^{N} Z_{i}^{b} r_{i}^{b}(\beta)\right)' \left[\Sigma_{i=1}^{N} Z_{i}^{b} r_{i}^{b}(\tilde{\beta}_{c}^{b}) r_{i}^{b}(\tilde{\beta}_{c}^{b})' Z_{i}^{b'}\right]^{-1} \left(\Sigma_{i=1}^{N} Z_{i}^{b} r_{i}^{b}(\beta)\right)$ $= \left(\sum_{i=1}^{N} Z_{i}^{0} r_{i}^{0}(\beta) \right)^{\prime} \left[\sum_{i=1}^{N} Z_{i}^{0} r_{i}^{0}(\tilde{\beta}_{c}^{0}) r_{i}^{0}(\tilde{\beta}_{c}^{0})^{\prime} Z_{i}^{0^{\prime}} \right]^{-1} \left(\sum_{i=1}^{N} Z_{i}^{0} r_{i}^{0}(\beta) \right)$ $= \left(\sum_{i=1}^{N} Z_i^0 r_i^0(\beta) \right)' \left[\sum_{i=1}^{N} Z_i^0 H Z_i^0 \right]^{-1} \left(\sum_{i=1}^{N} Z_i^0 r_i^0(\beta) \right)$ $\equiv Q_{1,N}^0(\beta)$ $\equiv Q_{2,N}^0(\beta).$ Minimand of Minimand of Minimand of one-step two-step Minimand of **one-step** GMM-C estimator when two-step GMM-C GMM-C estimator when $y_{it}^b = y_{it} - b$ is used GMM-C estimator y_{it} is used estimator when when y_{it} is $y_{it}^b = y_{it} - b$ is used used

3. Simulations

- This section investigates the finite-sample properties of the two-step GMM-C and GMM-WC estimators.
- We also illustrate the invariance property of the GMM-C estimator.
- Our experiments are carried out with a simple dynamic panel model and two count panel models.

3.1. Dynamic Panel Data Model

Data Generating Process

$$y_{it} = \beta_o y_{i,t-1} + \alpha_i + \mathcal{E}_{it} \qquad y_{i0} = \frac{\alpha_i}{1 - \beta_o} + v_{i0}$$
$$\beta_o = 0.5 \qquad \sigma_{\alpha}^2 = \sigma_{\varepsilon}^2 = 1 \qquad \sigma_{\nu}^2 = \sigma_{\varepsilon}^2 / (1 - \beta_o^2)$$
$$\alpha_i \sim N(0, \sigma_{\alpha}^2) \qquad \mathcal{E}_{it} \sim N(0, \sigma_{\varepsilon}^2) \qquad v_{i0} \sim N(0, \sigma_{\nu}^2)$$

- Number of replications = 1000
- $y_{it}^b = y_{it} b$ is used in the estimation, by changing *b* variously.

Table 1 presents the simulation results from the two-step GMM estimation of the simple dynamic model.

- Reported statistics: bias, rmse (root mean squared error), mcsd (Monte Carlo standard deviation) and mcmse (Monte Carlo mean of standard error)
- The distribution of the GMM-WC estimator changes depending on b (for each N, both the mcsd and rmse of the GMM-WC estimator increases as |b| increases).
- For given N, the GMM-C estimation results are the same for any choice of b.

Table 1: Monte Carlo Results for a Dynamic Panel Data Model

 $(T=5, \beta_0 = 0.5, \sigma_{\varepsilon}^2 = \sigma_{\alpha}^2 = 1)$

		<i>N</i> = 100		N= 500		N= 1000	
		bias	rmse	bias	rmse	bias	rmse
		(mcsd)	(mcmse)	(mcsd)	(mcmse)	(mcsd)	(mcsd)
<i>b</i> = 20	GMM-WC	-0.08	0.18	-0.01	0.08	-0.01	0.05
		(0.17)	(0.14)	(0.08)	(0.07)	(0.05)	(0.05)
	GMM-C	-0.06	0.14	-0.01	0.06	-0.01	0.04
		(0.13)	(0.10)	(0.06)	(0.05)	(0.04)	(0.04)
<i>b</i> = 2	GMM-WC	-0.06	0.16	-0.01	0.06	-0.01	0.05
		(0.15)	(0.12)	(0.06)	(0.06)	(0.04)	(0.04)
	GMM-C	-0.06	0.14	-0.01	0.06	-0.01	0.04
		(0.13)	(0.10)	(0.06)	(0.05)	(0.04)	(0.04)
<i>b</i> = 0	GMM-WC	-0.04	0.14	-0.01	0.06	-0.01	0.04
		(0.13)	(0.11)	(0.06)	(0.05)	(0.04)	(0.04)
	GMM-C	-0.06	0.14	-0.01	0.06	-0.01	0.04
		(0.13)	(0.10)	(0.06)	(0.05)	(0.04)	(0.04)
b = -2	GMM-WC	-0.06	0.16	-0.01	0.07	-0.01	0.05
		(0.15)	(0.12)	(0.06)	(0.06)	(0.05)	(0.04)
	GMM-C	-0.06	0.14	-0.01	0.06	-0.01	0.04
		(0.13)	(0.10)	(0.06)	(0.05)	(0.04)	(0.04)
<i>b</i> = -20	GMM-WC	-0.08	0.18	-0.01	0.08	-0.01	0.05
		(0.17)	(0.14)	(0.08)	(0.07)	(0.05)	(0.05)
	GMM-C	-0.06	0.14	-0.01	0.06	-0.01	0.04
		(0.13)	(0.10)	(0.06)	(0.05)	(0.04)	(0.04)

3.2. Count Panel Data Model with Predetermined Regressor

Data Generating Process

 $y_{it} \sim \text{Poisson}[\exp(x_{it}\beta + \alpha_i + \varepsilon_{it} - (1/2)\sigma_{\varepsilon}^2)]$ $x_{i1} = \frac{\delta}{1-\rho}\eta_i + \frac{1}{\sqrt{1-\rho^2}}(\theta v_i + w_{i1}) \qquad x_{it} = \rho x_{i,t-1} + \delta \eta_i + \theta \varepsilon_{i,t-1} + w_{it}$ $\alpha_i \sim N(0, \sigma_{\alpha}^2) \quad \varepsilon_{it} \sim N(0, \sigma_{\varepsilon}^2) \qquad v_i \sim N(0, \sigma_{\nu}^2) \qquad w_{it} \sim N(0, \sigma_{\omega}^2)$

Number of replications = 1000

• $x_{it}^b = x_{it} - b$ is used in the estimation, by changing *b* variously.

Table 2 presents the Monte Carlo results from the two-stepChamberlain GMM estimation.

- The two-step GMM-C estimates are identical to the change of b, as discussed in Section 2.2.
- As predicted, the distribution of the two-step GMM-WC estimator changes as b changes (The performance of the GMM-WC estimator appears to be quite sensitive to b, especially when the sample size N is small.).

 Table 2: Monte Carlo Results from Count Panel Data Models with

 Predetermined Regressors

 $(7=5, \beta_0 = 0.5, \delta = 0.1, \rho = 0.8, \theta = 0.3, \sigma_{\varepsilon}^2 = \sigma_{\alpha}^2 = 0.3, \sigma_{w}^2 = 0.25)$

		<i>N</i> = 100		N= 500		<i>N</i> = 1000	
		bias	rmse	bias	rmse	bias	rmse
		(mcsd)	(mcmse)	(mcsd)	(mcmse)	(mcsd)	(mcsd)
<i>b</i> = 1	GMM-WC	-0.09	0.33	-0.03	0.17	-0.01	0.11
		(0.32)	(0.25)	(0.17)	(0.15)	(0.11)	(0.11)
	GMM-C	-0.14	0.30	-0.03	0.13	-0.02	0.09
		(0.27)	(0.17)	(0.13)	(0.11)	(0.09)	(0.08)
<i>b</i> = 0.5	GMM-WC	-0.09	0.29	-0.03	0.13	-0.01	0.09
		(0.28)	(0.20)	(0.13)	(0.11)	(0.09)	(0.09)
	GMM-C	-0.14	0.30	-0.03	0.13	-0.02	0.09
		(0.27)	(0.17)	(0.13)	(0.11)	(0.09)	(0.08)
<i>b</i> = 0	GMM-WC	-0.14	0.36	-0.03	0.15	-0.02	0.10
		(0.33)	(0.21)	(0.14)	(0.12)	(0.10)	(0.08)
	GMM-C	-0.14	0.30	-0.03	0.13	-0.02	0.09
		(0.27)	(0.17)	(0.13)	(0.11)	(0.09)	(0.08)
<i>b</i> = -0.5	GMM-WC	-0.24	0.51	-0.09	0.30	-0.03	0.15
		(0.45)	(0.24)	(0.29)	(0.13)	(0.14)	(0.09)
	GMM-C	-0.14	0.30	-0.03	0.13	-0.02	0.09
		(0.27)	(0.17)	(0.13)	(0.11)	(0.09)	(0.08)
<i>b</i> = -1	GMM-WC	-0.27	0.54	-0.13	0.34	-0.05	0.21
		(0.46)	(0.25)	(0.32)	(0.15)	(0.20)	(0.10)
	GMM-C	-0.14	0.30	-0.03	0.13	-0.02	0.09
		(0.27)	(0.17)	(0.13)	(0.11)	(0.09)	(0.08)

3.3. Count Panel Data Model with Endogenous Regressor

- Data Generating Process
 - $y_{it} \sim \text{Poisson}(\exp(x_{it}\beta + \alpha_i + \varepsilon_{it} (1/2)\sigma_{\varepsilon}^2))$

$$\begin{aligned} x_{it} &= \rho x_{i,t-1} + \delta \eta_i + \theta \varepsilon_{it} + w_{it} \\ x_{i0} &= \frac{\delta}{1 - \rho} \alpha_i + \frac{1}{\sqrt{1 - \rho^2}} (\theta \varepsilon_{i0} + w_{i0}) \\ \alpha_i &\sim N(0, \sigma_{\alpha}^2) \qquad \varepsilon_{it} \sim N(0, \sigma_{\varepsilon}^2) \qquad w_{it} \sim N(0, \sigma_{w}^2) \end{aligned}$$

- Number of replications = 1000
- $x_{it}^b = x_{it} b$ is used in the estimation, by changing *b* variously.

Table 3 presents the Monte Carlo results for the two-step Wooldridge GMM estimators.

- The finite sample performances of both the GMM-WC and GMM-C estimators deteriorate as | b | deviates from zero, especially when N = 100.
- As the distribution of x_{it} becomes more skewed to the positive or negative sides, the mcsd and rmse of the GMM-WC (and GMM-C) estimator get larger.
- However, the finite-sample performance of the GMM-C estimator is less sensitive to b than that of the GMM-WC estimator.

Corroborating that the asymptotic variance of the GMM-C estimator is invariant according to the change of b, but that of the GMM-WC is not, when Wooldridge transformation is used. Table 3: Monte Carlo Results from Count Panel Data Models with Predetermined Regressors $(T=5, \beta_0 = 0.5, \delta = 0.1, \rho = 0.8, \theta = 0.3, \sigma_{\alpha}^2 = 0.3, \sigma_{\varepsilon}^2 = 0.25, \sigma_w^2 = 0.25)$

		N= 100		N = 500		N= 1000	
		bias	rmse	bias	rmse	bias	rmse
		(mcsd)	(mcmse)	(mcsd)	(mcmse)	(mcsd)	(mcsd)
<i>b</i> = 1	GMM-WC	-0.48	0.52	-0.22	0.25	-0.13	0.16
		(0.22)	(0.22)	(0.12)	(0.13)	(0.10)	(0.10)
	GMM-C	-0.39	0.44	-0.17	0.21	-0.10	0.13
		(0.19)	(0.18)	(0.11)	(0.11)	(80.0)	(0.08)
<i>b</i> = 0.5	GMM-WC	-0.21	0.27	-0.09	0.14	-0.05	0.10
		(0.17)	(0.19)	(0.10)	(0.12)	(0.08)	(0.09)
	GMM-C	-0.18	0.24	-0.08	0.13	-0.05	0.09
		(0.17)	(0.16)	(0.10)	(0.11)	(0.08)	(0.08)
<i>b</i> = 0	GMM-WC	0.01	0.16	0.00	0.10	0.00	0.08
		(0.16)	(0.19)	(0.10)	(0.12)	(0.08)	(0.09)
	GMM-C	0.01	0.16	0.01	0.10	0.00	0.08
		(0.16)	(0.17)	(0.10)	(0.11)	(0.08)	(0.08)
<i>b</i> = -0.5	GMM-WC	0.26	0.33	0.10	0.15	0.06	0.11
		(0.20)	(0.22)	(0.11)	(0.13)	(0.09)	(0.09)
	GMM-C	0.22	0.29	0.10	0.15	0.06	0.10
		(0.19)	(0.18)	(0.11)	(0.12)	(0.09)	(0.09)
<i>b</i> = -1	GMM-WC	0.67	0.77	0.28	0.33	0.16	0.20
		(0.38)	(0.30)	(0.17)	(0.16)	(0.12)	(0.11)
	GMM-C	0.56	0.64	0.23	0.28	0.13	0.17
		(0.32)	(0.24)	(0.16)	(0.13)	(0.11)	(0.09)

4. Concluding Remark

- Non-invariance problem in the panel GMM estimation based on the levelinstruments-for-differenced-equations (LIDE) approach:
- When a constant is not used as instrument, the asymptotic and finitesample distributions of the GMM estimators depend on overall means of the regressors used.
- This problem can be solved simply by including a constant into the instrument set.