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1. Introduction

LIDE (level-instruments-for-differenced-equations)
approach

®» The most popular way of controlling for the fixed effects: to remove them
by first-differencing or quasi-differencing regression equations.

» The differenced equations are estimated by the Generalized Method of
Moments (GMM) of Hansen (1982); for example, Arellano and Bond (1991),
and Ahn and Schmidt (1995), for linear dynamic models, and Chamberlain
(1992), Wooldridge (1997), Windmeijer (2000), for count data models.

®» The typical instruments used for the differenced equations are lagged level
regressors. (LIDE “level-instruments-for-differenced-equations” approach).



Purpose of this paper: to remind the LIDE users of
the importance of including a constant (typically,
one) in instrument sets

» “GMM-C” estimator: using a constant as an instrument in addition to
lagged level regressors for the differenced equations

» “GMM-WC” estimator: without a constant in the instruments set

» The GMM-C estimator is asymptotically more efficient than the GMM-WC
estimator (Crépon, Kramarz and Trognon (1997)).

» The GMM-WC estimation results are not invariant to the means of regressors,
but the GMM-C estimation results are invariant to the means of regressors
asymptotically and often in finite sample, when using the first-difference
and quasi-difference transformations.



Structure of Paper

®» Section 2: considering three different LIDE methods: Arellano-Bond (1991)
method for dynamic panel data models and the quasi-differencing
methods of Chamberlain (1992) and Wooldridge (1997, endnote 2) for
count panel data models, and showing that both the asymptotic and
finite-sample distributions of the GMM-WC estimators from these methods
are not invariant to the means of regressors.

®» Section 3: Small-scale Monte Carlo simulation

®» Section 4: Concluding remark




2. Asymptotic Distributions of GMM
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» \We suppose the case of N - oand T beingfixed (i=1,..,Nandt=1,..,T).
| and t denote the individual and time respectively.

®» [ is the regression coefficient.

= myi;(f): moment function used for GMM-WC estimator.

» m;(B) = (my;(B), m;(B))": moment function used for GMM-WC estimator,
where m ;(B) is simply the differenced error.

®» \we use notation f, to denote the true value of f.
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2.1. Simple Dynamic Panel Model
Model

Covariance
Restriction
Ahn and Schmidt
(1995)

i individual
t: time period (t=1, 2)



Generally, the GMM-C estimator is strictly more efficient
than the GMM-WC estimator, as Crépon, Kramarz and
Trognon (1997) projected.
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The asymptotic variance of the GMM-WC estimator
/ depends on the choice of b, but that of the GMM-C does
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General relationship between 2. and b

= Suppose the stationarity: y;, = % + vy, Where E[v;,] = 0, var(vy) = o2, and
— PO

Vjo IS uncorrelated with ¢;4, €, and q;.

» Holding other things equal (given 6?2, 62, o2, and f3,), the efficiency of the
GMM-WC estimator (i.e. the smallness of £ . ) has a negative relationship
with the absolute value of the mean of y;;.




In finite sample, the minimands of the one-step and

two-

step GMM-C estimators do not depend on the choices

of b. Implying that both the one-step and two-step GMM-C estimators are
| invariant to b in finite samples, for the case of using Y~ , Z’HZ?' as the
= That is, one-step weighting matrix.
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2.2. Simple Count Data Models

Model

ni = exp(a;) Vit = exp(&;r)

= Model \ /

y' 3 eXp(X,tﬂ + CZ + gl'[) _ exp(X,t,B )77| it
/

Count COmiLeE Parameter of Fixed
| dependent explanatory effects

: ) interest
variable variable

E(vi, [7,, %) =1 E(vi, |7, X1, %) =1



Both the asymptotic variance of the GMM-C estimator and
the GMM minimands of the one-step and two-step GMM-
C estimator are invariant to the choice of b, when using
Chamberlain transformation.

®» Chamberlain Transformation
The asymptotic
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The asymptotic variance of the GMM-C estimator is
iInvariant to the choice of b, but the GMM minimands of
the one-step and two-step GMM-C estimators are not so,
when using Wooldridge transformation.

» \Nooldridge Transformation
The asymptotic
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3. Simulations

®» This section investigates the finite-sample properties of the two-step GMM-C
and GMM-WC estimators.

» \\e also illustrate the invariance property of the GMM-C estimator.

®» Our experiments are carried out with a simple dynamic panel model and
two count panel models.




3.1. Dynamic Panel Data Model

» Data Generating Process
Yi = BoYira T & + & Yio =7 2+ Vio
B,=05 o*=c?=1 o, ,=0.1(1-5)
g ~NOc) & ~N(0.;)  v~NOS)

» Number of replications = 1000

» y” =y, — b isused in the estimation, by changing b variously.



Table 1 presents the simulation results from the two-step
GMM estimation of the simple dynamic model.

®» Reported statistics: bias, rmse (root mean squared error), mcsd (Monte
Carlo standard deviation) and mcmse (Monte Carlo mean of standard
error)

®» The distribution of the GMM-WC estimator changes depending on b (for
each N, both the mcsd and rmse of the GMM-WC estimator increases as
|b| increases).

» For given N, the GMM-C estimation results are the same for any choice of b.



Table 1: Monte Carlo Results for a Dynamic Panel Data
Model
(T=5, Bp = 0.5,62 =62 = 1)

N=100 N =500 N=1000

bias rmse bias rmse bias rmse
(mcsd) (mcmse) (mcsd) (mcmse) (mcsd) (mcsd)

b=20 GMM-WC -0.08 0.18 -0.01 0.08 -0.01 0.05
0.17) (0.14) (0.08) (0.07) (0.05) (0.05)

GMM-C -0.06 0.14 -0.01 0.06 -0.01 0.04

(0.13) (0.10) (0.06) (0.05) (0.04) (0.04)

b=2 GMM-WC —-0.06 0.16 -0.01 0.06 -0.01 0.05
(0.15) (0.12) (0.06) (0.06) (0.04) (0.04)

GMM-C —-0.06 0.14 -0.01 0.06 -0.01 0.04

(0.13) (0.10) (0.06) (0.05) (0.04) (0.04)

b=0 GMM-WC -0.04 0.14 -0.01 0.06 -0.01 0.04
(0.13) 0.11) (0.06) (0.05) (0.04) (0.04)

GMM-C —-0.06 0.14 -0.01 0.06 -0.01 0.04

(0.13) (0.10) (0.06) (0.05) (0.04) (0.04)

b=-2 GMM-WC —0.06 0.16 -0.01 0.07 —-0.01 0.05
(0.15) (0.12) (0.06) (0.06) (0.05) (0.04)

GMM-C —-0.06 0.14 -0.01 0.06 -0.01 0.04

(0.13) (0.10) (0.06) (0.05) (0.04) (0.04)

b=-20 GMM-WC -0.08 0.18 -0.01 0.08 -0.01 0.05
(0.17) (0.14) (0.08) (0.07) (0.05) (0.05)

GMM-C —-0.06 0.14 -0.01 0.06 -0.01 0.04

(0.13) (0.10) (0.06) (0.05) (0.04) (0.04)




3.2. Count Panel Data Model with
Predetermined Regressor

» Data Generating Process

yie ~ Poisson[exp(xi 3 + a; + & — (11 2)o?)]

o 1 .
= s > (O + W) Xit = PXj -1+ 07 + 06 1_1 + Wy
—pP J1-p
% ~NQO.o;) & ~N(@0,0)) Vv, ~N00) w~NO0c2)
=» Number of replications = 1000

» x) =x; — b isused in the estimation, by changing b variously.



Table 2 presents the Monte Carlo results from the two-step
Chamberlain GMM estimation.

®» The two-step GMM-C estimates are identical to the change of b, as
discussed in Section 2.2.

» As predicted, the distribution of the two-step GMM-WC estimator changes
as b changes (The performance of the GMM-WC estimator appears to be
guite sensitive to b, especially when the sample size N is small. ).




Table 2: Monte Carlo Results from Count Panel Data Models with
Predetermined Regressors
(T=5, B, =0.5, 6 =0.1, p=0.8, 8 =0.3, 62=02=0.3, g2 = 0.25)

N=100 N=500 N= 1000

bias rmse bias rmse bias rmse
(mcsd) (mcmse) (mcsd) (mcmse) (mcsd) (mcsd)

b=1 GMM-WC -0.09 0.33 -0.03 0.17 -0.01 0.11
(0.32) (0.25) 0.17) (0.15) (0.11) (0.11)

GMM-C -0.14 0.30 -0.03 0.13 -0.02 0.09

(0.27) 0.17) (0.13) (0.11) (0.09) (0.08)

b=05 GMM-WC -0.09 0.29 -0.03 0.13 -0.01 0.09
(0.28) (0.20) (0.13) (0.11) (0.09) (0.09)

GMM-C -0.14 0.30 -0.03 0.13 -0.02 0.09

(0.27) 0.17) (0.13) (0.11) (0.09) (0.08)

b=0 GMM-WC -0.14 0.36 -0.03 0.15 -0.02 0.10
(0.33) (0.21) (0.14) (0.12) (0.10) (0.08)

GMM-C -0.14 0.30 -0.03 0.13 -0.02 0.09

(0.27) 0.17) (0.13) 0.11) (0.09) (0.08)

b=-05 GMM-WC -0.24 0.51 -0.09 0.30 -0.03 0.15
(0.45) (0.24) (0.29) (0.13) (0.14) (0.09)

GMM-C -0.14 0.30 -0.03 0.13 -0.02 0.09

(0.27) 0.17) (0.13) (0.11) (0.09) (0.08)

b=-1 GMM-WC -0.27 0.54 -0.13 0.34 -0.05 0.21
(0.46) (0.25) (0.32) (0.15) (0.20) (0.10)

GMM-C -0.14 0.30 -0.03 0.13 -0.02 0.09

(0.27) (0.17) (0.13) 0.11) (0.09) (0.08)




3.3. Count Panel Data Model with
Endogenous Regressor

» Data Generating Process
yie ~ Poisson(exp(Xxi 3 + & + & — (11 2)o2))

Xit = PXj -1 +0m; + Osjp + W
o 1

Xijo = Eai +ﬁ(6’5i0 +Wip)

%~NO?)  &~N(©0c?) w~-NOG)

» Number of replications = 1000

b — b is used in the estimation, by changing b variously.

w Xt = Xit




Table 3 presents the Monte Carlo results for the two-step
Wooldridge GMM estimators.

®» The finite sample performances of both the GMM-WC and GMM-C
estimators deteriorate as |b|] deviates from zero, especially when N = 100.

» As the distribution of x;; becomes more skewed to the positive or negative

sides, the mcsd and rmse of the GMM-WC (and GMM-C) estimator get
larger.

®» However, the finite-sample performance of the GMM-C estimator is less
sensitive to b than that of the GMM-WC estimator.

N

Corroborating that the asymptotic variance of the GMM-C
estimator is invariant according to the change of b, but that

of the GMM-WC is not, when Wooldridge transformation is
used.




Table 3: Monte Carlo Results from Count Panel Data Models with
Predetermined Regressors
(T=5, B, = 0.5, § =0.1, p=10.8, 6 =0.3, 62=0.3, 62 = 0.25, o= 0.25)

N=100 N=500 N= 1000

bias rmse bias rmse bias rmse
(mcsd) (mcmse) (mcsd) (mcmse) (mcsd) (mcsd)

b=1 GMM-WC -0.48 0.52 -0.22 0.25 -0.13 0.16
(0.22) (0.22) (0.12) (0.13) (0.10) (0.10)

GMM-C -0.39 0.44 -0.17 0.21 -0.10 0.13

(0.19) (0.18) (0.11) 0.11) (0.08) (0.08)

b=05 GMM-WC -0.21 0.27 -0.09 0.14 -0.05 0.10
0.17) (0.19) (0.10) (0.12) (0.08) (0.09)

GMM-C -0.18 0.24 -0.08 0.13 -0.05 0.09

(0.17) (0.16) (0.10) (0.11) (0.08) (0.08)

b=0 GMM-WC 0.01 0.16 0.00 0.10 0.00 0.08
(0.16) (0.19) (0.10) 0.12) (0.08) (0.09)

GMM-C 0.01 0.16 0.01 0.10 0.00 0.08

(0.16) 0.17) (0.10) (0.11) (0.08) (0.08)

b=-05 GMM-WC 0.26 0.33 0.10 0.15 0.06 0.11
(0.20) (0.22) (0.11) (0.13) (0.09) (0.09)

GMM-C 0.22 0.29 0.10 0.15 0.06 0.10

(0.19) (0.18) (0.11) (0.12) (0.09) (0.09)

b=-1 GMM-WC 0.67 0.77 0.28 0.33 0.16 0.20
(0.38) (0.30) 0.17) (0.16) (0.12) (0.11)

GMM-C 0.56 0.64 0.23 0.28 0.13 0.17

(0.32) (0.24) (0.16) (0.13) 0.11) (0.09)




4. Concluding Remark

®» Non-invariance problem in the panel GMM estimation based on the level-
instruments-for-differenced-equations (LIDE) approach:

®» \When a constant is not used as instrument, the asymptotic and finite-
sample distributions of the GMM estimators depend on overall means of the
regressors used.

» This problem can be solved simply by including a constant into the
instrument set.




