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Abstract 

The most popular way to handle unobservable individual-specific effects in panel data models is 

to remove the effects by first-differencing or quasi-differencing regression equations.  Then, the 

differenced equations are estimated by the Generalized Method of Moments (GMM).  We show 

that when a constant is not used as an instrument, the GMM estimation results from this method 

are not invariant to linear transformations of regressors.  In contrast, when a constant is used as 

an instrument, GMM estimators are asymptotically invariant to linear transformations of 

regressors.  The estimators may not be invariant in finite samples.  An example is the GMM 

estimator for count panel data models with endogenous regressors.  For the models, two-step 

GMM estimators are not invariant in finite samples.  Nonetheless, our simulation results indicate 

that the two-step GMM estimator is less sensitive to linear transformation of regressors when it 

is computed with a constant instrument than when it is not.  
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1. Introduction 

Panel data regression models have been popularly used for empirical studies.  Using panel data, 

researchers can consistently estimate regression coefficients controlling for unobservable time-

invariant individual-specific effects that may be correlated with regressors.  The most popular 

way to handle the individual effects is to remove them by first-differencing or quasi-differencing 

regression equations.  Then, the differenced equations are estimated by the Generalized Method 

of Moments (GMM) of Hansen (1982); for example, see, amongst many, Anderson and Hsiao 

(1981), Arellano and Bond (1991), and Ahn and Schmidt (1995), for linear dynamic models, and 

Chamberlain (1992), Wooldridge (1997), and Windmeijer (2000), for count data models.  The 

typical instruments used for the differenced equations are lagged level regressors.  We refer to 

this approach as “level-instruments-for-differenced-equations” (LIDE) approach. 

 The purpose of this paper is to remind the LIDE users of the importance of including a 

constant (typically, one) in instrument sets.  Consequently, we consider two types of GMM 

estimators: the first is the estimator using a constant as an instrument in addition to lagged level 

regressors, and the second, the estimator without a constant in the instrument set.  We refer to 

these two estimators respectively as “GMM-C” and “GMM-WC” estimators.  For dynamic panel 

data models, Crépon, Kramarz and Trognon (1997) have shown that the GMM-C estimator is 

asymptotically more efficient than the GMM-WC estimator.  In this paper, we address a more 

serious problem related to the GMM-WC estimator.  That is, we show that the GMM-WC 

estimation results are not invariant to the means of regressors.  That is, when some constant 

numbers are added to regressors, the estimation results can change.    

 The asymptotic variance of the GMM-WC estimator could increase or decrease as the 

mean of a regressor increases.  Use of linearly transformed regressors can lead to different 

statistic inferences.  For example, suppose a researcher wishes to estimate dynamics of earnings 

of individual workers using panel data.  The dependent variable is logarithm of earnings and a 

regressor is its one-period lagged value.  The mean of the logarithmic earnings depends on what 

unit is used to measure earnings.  The mean is greater if earnings are measured in dollars instead 

of thousand dollars.  For this case, the asymptotic variance matrix of the GMM-WC estimator 

depends on what units of earnings are used.  In contrast, the asymptotic variance matrix of the 

GMM-C estimator is invariant to the units of earnings used.  This problem is not limited to 

estimation of dynamic panel models.   
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 Differenced equations contain intercepts if the model to be estimated contains time-

specific effects common to all individuals.  To estimate the models with time effects, researchers 

naturally use the GMM-C estimator to estimate the time effects.  On the other hand, differenced 

equations of the models without time effects do not contain intercepts.  The GMM-WC estimator 

is often used to estimate such models.  In particular, theoretical papers often consider the models 

without time effects for analytical convenience.  Simulations comparing finite-sample properties 

of GMM estimators are also done without using a constant as an instrument.  This tradition 

might have given empirical researchers a perception that use of GMM-C estimators may be 

desirable for the estimation of the models without time effects.  It is well known that GMM 

estimators using too many moment conditions (instrumental variables) often have poor finite 

sample properties.1  A large number of moment conditions are available for panel data models.  

It is often even infeasible to implement all of the available moment conditions in GMM.  

Accordingly, researchers are often forced to use only a subset of moment conditions.  For such 

cases, researchers may prefer the GMM-C estimator to the GMM-WC estimator because the 

latter uses a smaller number of moment conditions.  

The main message of this paper is that the GMM-C estimator should be used for panel 

models not only because it is more efficient than the GMM-WC estimator, but also because it is 

often invariant to linear transformation of regressors.  Although the GMM-C estimator is 

asymptotically invariant, it is not always invariant in finite samples.  For example, count panel 

data models can be estimated by the quasi-differencing method of Wooldridge (1997) when 

regressors are endogenous.  While the two-step GMM-C estimator using the Wooldridge method 

is invariant to linear transformation of regressors asymptotically, it is not invariant in finite 

sample.  However, our simulation results indicate that even for such cases, the GMM-C 

estimator is less sensitive to linear transformations than the GMM-WC estimator is.    

 This paper is organized as follows.  Section 2 considers three different LIDE methods.  

One is the Arellano-Bond (1991) method for dynamic panel data models.  The other two 

methods are the quasi-differencing methods of Chamberlain (1992) and Wooldridge (1997, 

endnote 2) for count panel data models.  We show that both the asymptotic and finite-sample 

distributions of the GMM-WC estimators from these methods are not invariant to the means of 

regressors.  We also consider the GMM-C estimators from the three methods.  Section 3 reports 

                                                 
1  See Altonji and Segal (1996) and Burnside and Eichenbaum (1996), amongst many others. 
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the results from our small-scale simulation exercises.  Some concluding remarks follow in 

section 4. 

 

2. Asymptotic Distributions of GMM Estimators   

This section investigates the asymptotic distributions of GMM-WC and GMM-C estimators for 

simple dynamic and count data models.  We consider the models with a large number of cross-

section observations (N) and a small number of time series observations (T).  Accordingly, 

asymptotics apply as N → ∞  with fixed T .  We assume that data are cross-sectionally 

independently and identically distributed (i.i.d.) with finite fourth moments.  Under this 

assumption, usual GMM asymptotic theory apples.  To save space, we only consider the cases 

with T = 2 and a single regressor.  Our results can be easily generalized to the cases with more 

regressors and larger T.   

 Throughout this paper we use the following notation.  First, subscripts “i” and “t” index 

individuals and time, respectively ( 1, ... ,i N= , 1, ... ,t T= ).  Second, β  denotes a regression 

coefficient.  Third, we use notation 
, ( )

wc i
m β  and 

, ,( ) ( ( ) , ( ) )
i wc i c i

m m mβ β β′ ′ ′=  to denote the 

moment functions used for the GMM-WC and GMM-C estimators, respectively.  The moment 

function , ( )wc im β  has the form of a lagged level regressor (level instrument) times a differenced 

(or quasi-differenced) error term, while 
, ( )

c i
m β  is simply the differenced error (i.e., a constant 

times differenced error).  Fourth, we use notation 
oβ  to denote the true value of β .  Fifth, we 

use 

 
, ,( ) ( )

; ;
wcwc i o c i o

wc c

c

Mm m
M E M E M

M

β β

β β

∂ ∂     
= = =     ′ ′∂ ∂     

; 

 , , ,[ ( ) ( ) ]j j j i o j i oV E m mβ β′ ′
′= ; 

.j jV V ′ =   , where ,j j′  = wc, c. 

Sixth, for any variable itx , , 1it it i tx x x −∆ = − .   

 Seventh, ˆ
wcβ  and ˆ

cβ  denote the GMM-WC and GMM-C estimators, respectively.  These 

estimators are obtained by minimizing 1

,
ˆ( ) ( ) ( )wc wc wc wcm V mβ β−′  and 1ˆ( ) ( )m V mβ β−′ , respectively, 

where 1

1 ,( ) ( )N

wc i wc im N mβ β−

== Σ , 1

1( ) ( )N

i im N mβ β−
== Σ , and ,

ˆ
wc wcV and V̂  are any consistent 

estimators of 
,wc wc

V  and V .  Eighth, ˆlim var ( )wc N wc oN β β→∞
 Ξ = −   is the asymptotic 
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variance of ˆ( )wc oN β β− , and cΞ  is similarly defined.  Since data are i.i.d. over different i, 

1 1
[ ]

wc wc wc wc
M V M

− −′Ξ =  and 1 1
[ ]

c
M V M

− −′Ξ = .   

 Finally, for any variable 
itx , b

it itx x b= − , where b  is a constant.   The constant b  could 

be replaced by a random variable Nb  (which depends on N, such as 1

1 1( ) N T

i t itx NT x−
= == Σ Σ ), so 

long as limN Np b b→∞ = < ∞ .  We will use superscript “b” for the terms related to the GMM 

estimators using b

itx  instead of itx ; e.g., b
M  for M  and b

V  for  V .   

   

2.1. Simple Dynamic Panel Model  

Consider the following simple dynamic panel model: 

  , 1it o i t i ity yβ α ε−= + + , (1) 

where 01 1β− < < , ity  is the dependent variable, iα  is the unobservable time-invariant 

individual effect, and 
itε  is a usual regression error term.  We assume that the initial values 

0iy  

are observed.  Following Ahn and Schmidt (1995), we assume: 

 

2
0 0 0 0

2

0

2
1

2
2

0 0

0 0
~ ,

0 0 0 0

0 0 0 0

i

i

i

i

y

N

α

α α α

ε

ε

µ σ σ

α µ σ σ

ε σ

ε σ

     
     
     
     
           

.  (2) 

 As is well known in the literature, the ordinary least squares (OLS) or the within 

estimators of β  are inconsistent (see Nickell (1981)).  A consistent estimator can be obtained by 

the GMM methods of Anderson and Hsiao (1981) or Arellano and Bond (1991).2  To use their 

methods, we first-difference the equation (1) and then estimate oβ  by GMM using the 

instruments 0( ,1)iy ′ . 

 Let 
, 0 2 1( ) ( )wc i i i im y y yβ β= ∆ − ∆  and 

, 2 1( )c i i im y yβ β= ∆ − ∆ .3   Then, under (2), we can 

                                                 
2  When T > 2 or some restrictions are imposed on 

0αα , some additional moment conditions are available that are 

not of the form of level lagged regressors times differenced errors.  See Arellano and Bover (1995), Ahn and 

Schmidt (1995), and Blundell and Bond (1999), for more details.  We do not consider these additional moment 

conditions here.  However, our result here can be easily extended to their estimators.  

    
3  The original moment conditions proposed by Crépon, Kramarz and Trognon (1997) are not of the form of 

, ( )
c i

m β . 
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easily show that 

  ( ) , 0 2 1 0 2

, 2 1 2

( ) ( )
( ) 0

( )

wc i o i i o i i i

i o

c i o i o i i

m y y y y
E m E E E

m y y

β β ε
β

β β ε

∆ − ∆ ∆     
= = = =     ∆ − ∆ ∆    

.4  

Thus, the GMM-WC ( ˆ
wcβ ) and GMM-C ( ˆ

cβ ) estimators respectively using the moment 

functions , ( )wc im β  and ( )im β  are consistent. 

 Since 1 0 1( 1)i o i i iy yβ α ε∆ = − + + , we can easily show that under (2), 

  
2

1 0 0 0 0

1 0

( ) ( 1) {( 1) }

( ) ( 1)

io i o o

i o

E y y
M

E y

α α

α

β σ σ µ β µ µ

β µ µ

∆  − + + − + 
= − = −   ∆ − +   

; 

  
2 2 2 2 2

20 2 0 2 0 0 0

2 2

0 2 2 0

( ) ( )
2

( ) ( ) 1

i i i i

i i i

y y
V E

y
ε

ε ε µ σ µ
σ

ε ε µ

   ∆ ∆ +
= =   

∆ ∆   
. 

where 1( 1) ( )o o iE yαβ µ µ− + = ∆ .  With these results, a straightforward algebra shows 

  
2 2 2

1
1 0 0

, 2
2

0 0 0 0

2 ( )
( )

( 1) {( 1) }
wc wc wc wc wc

o o

M V M ε

α α

σ µ σ

β σ σ µ β µ µ

−− +
′ Ξ = = 

 − + + − + 

; (3) 

  
2 2

1
1 0

2 2 2 2

0 0 0 0

2

[( 1) ] [( 1) ]
c

o o

M V M ε

α α

σ σ

β σ σ σ β µ µ

−−′ Ξ = =  − + + − +
. (4) 

It can be also shown 

 
( )

2
2 2

0 0 0

2
2 2 2 2 2

0 0 0 0 0 0 0 0

2
0

( 1) {( 1) } {( 1) } {( 1) }
wc c

o o o o

ε α α

α α α α

σ µ σ σ µ

β σ σ µ β µ µ β σ σ σ β µ µ

−
Ξ − Ξ = ≥

   − + + − + − + + − +   

, 

where the equality holds only if 0 0αµ µ= = .  That is, the GMM-C estimator is strictly more 

efficient that the GMM-WC estimator unless 0 0αµ µ= = , as Crépon, Kramarz and Trognon 

(1997) projected. 

 We now investigate the asymptotic variances of the GMM-WC and GMM-C estimators 

                                                                                                                                                             
Their moment conditions are 

, 1 0 2 1( ) [( ), ( )]
ckt i i i i i

m y y y yβ β β ′= − − .  However, these moment functions are valid to 

use only if 0αµ = .  When 0αµ ≠ , the moment function 
, ( )wc im β  should replace 

, ( )
ckt i

m β .    

 
4 When the data 

it
y  are mean-stationary (i.e., ( )

it
E y  is the same for all t ), the moment function 

, ( )
c i

m β  alone 

cannot identify 
o

β  because 
,( ( )) 0

c i
E m β =  for all β .  However, even for this case, the GMM estimator using 

, ( )
c i

m β in addition to 
, ( )

we i
m β  as moment functions is asymptotically more efficient than the GMM estimation 

using 
, ( )

wc i
m β  alone.       
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using b

it
y  (= ity b− ) instead of ity .  We could consider a more general case in which 

*

it ity ay b= −  is used for 
ity .  However, the constant a  does not influence the statistical 

inferences from the GMM-WC and GMM-C estimators. 

 Rewriting equation (1) with ity  replaced by b

ity , we have  

  , 1

b b b

it o i t i ity yβ α ε−= + + , (5) 

where ( 1)b

i i o bα α β= + − .  We can still consistently estimate β  by the LIDE approach using 

0

b

iy   or 0(1, )b

iy ′  as instruments.  Observe that var( )b

ity  = 2

0σ , 0 0cov( , )b b

i iy αα σ= , and 

2var( )b

i αα σ= .  Accordingly, the two equations (1) and (5) are the same except that 

0 0( )b

iE y bµ= −  and ( ) ( 1)b

i oE bαα µ β= + −  in (5).  Therefore, the asymptotic variances of the 

GMM-WC and GMM-C estimators using the b
ity   instead of the ity  can be easily obtained by 

replacing 0µ and αµ  in (3) and (4) by 
0 0( )

b

i
E y bµ= −  and ( ) ( 1) .

b

i o
E bαα µ β= + −   That is,  

  
2 2 2

0 0

2
2 2

0 0 0 0

2 [( ) ]

( 1){( ) } ( ){ ( 1)}

b

wc wc

o o

b

b b b

ε

α α

σ µ σ

β µ σ σ µ µ β

− +
Ξ = ≠ Ξ

 − − + + + − + − 

; 

  
2 2

0

2 2 2 2

0 0 0 0

2

[( 1) ] [( 1) ]

b

c c

o o

ε

α α

σ σ

β σ σ σ β µ µ
Ξ = = Ξ

− + + − +
, 

if 0b ≠ .  Observe that b

wc
Ξ  depends on b .  In contrast, b

c
Ξ  is invariant to the choice of b . 

 We are unable to track down the general relationship between b

wcΞ  and b .  The 

asymptotic variance could increase or decrease with b depending on the values of the other 

parameters in b

wc
Ξ .  However, a clear relationship emerges if we impose some restrictions on the 

parameters in (2).  For example, suppose that the dynamics of the ity  had begun from a far past 

although they are observed from time zero.  Under this assumption, Ahn and Schmidt (1997) 

have shown that 

    
0 0

1

i
i i

o

y v
α

β
= +

−
 , (6) 

where 
0( ) 0iE v = , 2

0var( )i vv σ= , and 
0iv  is uncorrelated with 

1iε , 
2iε , and 

iα . 

 Many previous studies have used (1), (2) and (6) for their Monte Carlo experiments (see, 

for example, Arellano and Bond (1991), Blundell and Bond (1999), and Hahn (1999)).  The 
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restriction (6) implies that  

  
2 2

2 2

0 0 02
; ;

1 1(1 )
v

o oo

α α α
α

µ σ σ
µ σ σ σ

β ββ
= = + =

− −−
. (7) 

Substituting these restrictions into wcΞ  and with some algebra, we have 

 
2 2 2 2 2

4 4

2 ( ) (1 )

(1 )

o v
wc

o v

ε α ασ µ σ β σ

β σ

+ + −
Ξ =

−
;  (8) 

 
2 2 2 2

4 4

2 (1 )

(1 )

o v
c

o v

ε ασ σ β σ

β σ

+ −
Ξ =

−
. (9) 

Observe that given 2

εσ , 2

ασ , 2

vσ  and 
oβ , 

wcΞ  monotonically increases with αµ .  In fact, the 

variance wcΞ  is minimized at cΞ  if 0αµ =  (and therefore, 0( ) 0iE y = ).  Holding other things 

equal, the efficiency of the GMM-WC estimator has a negative relationship with the absolute 

value of the mean of ity , because ( ) / (1 )it oE y αµ β= −  for all t if (6) holds. 

 This result also implies that the GMM-WC estimator is not invariant to b.  Observe that 

0 0/ (1 )
b b

i i o i
y vα β= − + .  Thus, b

wcΞ  can be obtained by replacing αµ  in (8) with ( )
b

i
E α  = 

[ ( 1) ]o bαµ β+ − .  That is, 

  
2 2 2 2 2

4 4

2 [{ ( 1) } ] (1 )

(1 )

b o o v
wc

o v

bε α ασ µ β σ β σ

β σ

+ − + + −
Ξ =

−
. (10) 

 The non-invariance of the GMM-WC estimator can be analyzed in a more systematic 

way that can be also used in the later subsections.  Observe that     

 

0 2 10 2 1

2 12 1

1

2

( )1( )
( )

0 1

( )
( ) ( ) ( )

b b b

i i o ib i i o i

i b b

i o ii o i

i i

y y yby y y
m

y yy y

c b
m C b m

c

ββ
β

ββ

β β

∆ − ∆− ∆ − ∆   
= =     ∆ − ∆∆ − ∆     

′ 
′≡ ≡ ′ 

. (11) 

Thus, we have ( )bM C b M′=  and ( ) ( )bV C b VC b′= .  Therefore,   

 1 1 1 1
1 1 1 1 2

1

( ) ( )
[ ( )( ( ) ( )) ( ) ]

( ( ) )

b

wc

c b Vc b
M c b c b Vc b c b M

c b M

− − ′
′ ′ ′Ξ = =

′
; (12) 

 
1

1 1 1( )( ( ) ( )) ( ) [ ]b

c cM C b C b VC b C b M M V M
−− − −′ ′ ′ ′ Ξ = = = Ξ  . (13) 

From (12), we can clearly see that why b

wcΞ  depends on b  through 
1( ) (1, )c b b′ = − .  Because 
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1( )c b  is a vector, not an invertible matrix, it does not cancel out from (12).  In contract, ( )C b  is 

an invertible square matrix, and therefore, it cancel out from b

cΞ . 

 In fact the GMM-C estimator is invariant to b even in finite samples.  This is because the 

matrix ( )C b  in (11) does not depend on data or the parameter β .  Let 
0( ,1)

b b

i i
Z y ′=  and 

( )b

ir β = 2 1

b b

i iy yβ∆ − ∆  for any scalar b including zero.  Using this notation, the moment function of 

the GMM-C estimator is given by ( ) ( )b b b

i i im Z rβ β= .  Then, following Arellano and Bond (1991), 

we can obtain a one-step GMM-C estimator 
b

cβ�  by minimizing  

 ( ) ( )
1

1, 1 1 1( ) ( ) ( )b N b b N b b N b b

N i i i i i i i i iQ Z r Z HZ Z rβ β β
−

= = =

′  ′≡ Σ Σ Σ
 

, (14) 

where H = 2.5  However, 1, ( )b

NQ β  is the same for all b, because  

 

( ) ( )

( ) ( )

1
0 0 0 0 0 0

1, 1 1 1

1
0 0 0 0 0 0

1 1 1

0

1,

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )

b N N N

N i i i i i i i i i

N N N

i i i i i i i i i

N

Q C b Z r C b Z HZ C b C b Z r

Z r Z HZ Z r

Q

β β β

β β

β

−

= = =

−

= = =

′  ′′ ′ ′= Σ Σ Σ
 

′  = Σ Σ Σ 

≡

  

Similarly, the minimand of the two-step GMM-C estimator using the b

ity , say 2, ( )b

NQ β , is the 

same for all b, because 

 

( ) ( )

( ) ( )

( )

1

2, 1 1 1

1
0 0 0 0 0 0 0 0 0 0

1 1 1

0 0 0 0 0 0

1 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) (

b N b b N b b b b b b N b b

N i i i i i i c i c i i i i

N N N

i i i i i i c i c i i i i

N N

i i i i i i c i

Q Z r Z r r Z Z r

C b Z r C b Z r r Z C b C b Z r

Z r Z r r

β β β β β

β β β β

β β β

−

= = =

−

= = =

= =

′  ′′≡ Σ Σ Σ
 

′  ′′ ′ ′ ′≡ Σ Σ Σ
 

′= Σ Σ

� �

� �

� � ( )
1

0 0 0 0

1

0

2,

) ( )

( ).

N

c i i i i

N

Z Z r

Q

β

β

−

=
 ′′ Σ
 

≡

 (15) 

Thus, both the one-step and two-step GMM-C estimators are invariant to b in finite samples. 

 

2.2. Simple Count Data Models  

We now consider a simple multiplicative count data model where the dependent variable takes 

nonnegative integer numbers only.  Following Chamberlain (1992), Wooldridge (1997, endnote 

                                                 
5 The general form of H for the cases with 2T >  can be found from Arellano and Bond (1991) or Section 3 of this 

paper. 
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2) and Windmeijer (2000), amongst many others, we consider the model:    

  exp( ) exp( )it it o i it it o i ity x x vβ α ε β η= + + = , (16) 

where exp( )i iη α=  and exp( )it itv ε= .  We assume that the regressor itx  is only weakly 

exogenous to the error itv  conditional on iη .  That is,  

 1 1( | , ) 1i i iE v xη = ; 2 1 2( | , , ) 1i i i iE v x xη = . (17) 

 There are two differencing methods that can be used to control for the individual effects.  

The first is the one by Chamberlain (1992).  His method utilizes the following quasi-differenced 

error function:     

  0
1 2 2( ) exp( )i i i ip y x yβ β= − −∆ .  

Under (16), 0

1 1 2( ) exp( ) ( )i o i o i i ip x v vβ β η= − .  Thus, we can easily show that [ ( )] 0i oE m β = , 

where 0

1i iS x= , 0 0( ,1)i iZ S ′= , and  

 
, 0 0

,

( )
( ) ( )

( )

wc i

i i i

c i

m
m Z p

m

β
β β

β

 
= = 
 

. (18) 

Notice that 0

2 2 2( ) / exp( )
i i i i

p x x yβ β β∂ ∂ = −∆ ∆ .  Thus, the asymptotic variance of the GMM-C 

estimator using the moment functions (18) equals 1 1[ ]c M V M− −′Ξ = , where 

 ( ) ( )0 0

2 2 2 1 2exp( ) exp( )i i o i i i i o i iM E Z x y x E Z x xβ β η= −∆ ∆ = ∆ ; (19)  

 2 2 0 0

1 1 2[exp(2 ) ( ) ]i o i i i i iV E x v v Z Zβ η ′= − . (20) 

 We now consider the GMM-WC and GMM-C estimators using b

itx  instead of itx  (t = 1, 

2).  Let 
1

b b

i i
S x= , ( ,1)

b b

i i
Z S ′=  and 

1 2 2( ) exp( )
b b

i i i i
p y x yβ β= − −∆ . Because 

2 2

b

i i
x x∆ = ∆ , ( )

b

ip β  =  

0( )ip β .  Thus, we can easily show that ( ) ( ) ( )b

i im C b mβ β′= , where ( )C b  is defined as in (11).  

Thus, we obtain the results (12) and (13); that is, b

wcΞ  depends on the choice of b , while cΞ  does 

not. 

 The GMM-C estimator is invariant to b even in finite samples.  To see this, set H = 1.  

Then, the minimands of the one-step and two-step GMM-C estimators have the same forms as 

(14) and (15), respectively.  Thus, both the one-step and two-step GMM-C estimators are 

invariant to b.      

 The second quasi-differencing method is the one by Wooldridge (1997, endnote 2).  The 
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differenced error function he considered is  

  0
1 1 2 2( ) exp( ) exp( )i i i i iq x y x yβ β β= − − − .  

Because 0

1 2( ) ( )
i o i i i

q v vβ η= −  under (16), [ ( )] 0i oE m β = , where 0
1i iS x= , 0 0( ,1)i iZ S ′= , and   

  
, 0 0

,

( )
( ) ( )

( )

wc i

i i i

c i

m
m Z q

m

β
β β

β

 
= = 
 

. (21) 

The asymptotic variance of the GMM-C estimator using the moment function (21) is of the form 

1 1[ ]M V M− −′ , where 

  ( ) ( )0 0

1 1 2 2 2[ ]
wc

i i i i i i i i i i

c

M
M E Z x v x v E Z x

M
η η η

  ′ ′= = − − + = ∆ 
 

; (22) 

  ( ), , 2 2 0 0

1 2

, ,

( )
wc wc wc c

i i i i i

wc c c c

V V
V E v v Z Z

V V
η


′= = −

 
. (23) 

From now on, we refer to the GMM estimators using the moment functions (18) and (21) as the 

Chamberlain and Wooldridge GMM-C estimators, respectively. 

 Comparing (19) and (20) with (22) and (23), we can easily see that the asymptotic 

distribution of the Chamberlain GMM-C estimator is different from that of the Wooldridge 

GMM-C estimator unless 
oβ = 0.  When 0oβ ≠ , we are unable to determine which of the two 

GMM-C estimators is more efficient unless the data generating process is fully specified.   

 This paper does not attempt to determine which of the Chamberlain and Wooldridge 

GMM-C estimators would be preferred for actual data analysis, although it should be an 

important research agenda.  However, we note that the Chamberlain GMM-C estimator would be 

inconsistent for the cases in which the regressors itx  are endogenous and contemporaneously 

correlated with the errors itv  (that is, cov( , ) 0it itx v ≠ ).  In contrast, when the Wooldridge 

transformation is used in GMM, the parameter β  can be consistently estimated by using higher 

order lagged regressors as instruments.  For example, if 0ix  is observed, then 0( ,1)ix ′  is used for 

0
iZ  in (22). 

 As Wooldridge (1997, endnote 2) pointed out, a problem of using the moment functions 

(21), which, is that lim ( ) 0
i

mβ β→∞ =  for all i if the support of 
itx  contains only non-negative 

numbers.  A similar problem arises when the support of 
itx  contains only non-positive numbers.    
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This implies that the GMM estimation using the moment functions (21) may fail to obtain an 

interior solution.  As a treatment to this problem, Windmeijer (2000) proposes using the 

demeaned regressor itx x−  instead of the level regressor itx , where 1

1 1( ) N T

i t itx NT x−
= == Σ Σ .  When 

the demeaned regressor is used in GMM, the moment functions (21) have zero expectations only 

at the interior point oβ β=  because the support of the demeaned regressor contains both positive 

and negative numbers. 

 Demeaning is not the only solution for this computational problem.  Use of b

itx  could be a 

solution, so long as b  is chosen such that the support of the b

itx  contains both negative and 

positive values.  The Windmeijer estimator is a GMM-C estimator obtained using b

itx  for itx with 

b x= . 

 Differently from its GMM-WC counterpart, the Woodridge GMM-C estimator is 

asymptotically invariant to b . To see why, let ( )b

iq β  = 1 1exp( )b

i ix yβ−  - 2 2exp( )b

i ix yβ− ; and 

( ) ( )
b b b

i i i
m Z qβ β= .  Then, it can be shown that ( ) exp( ) ( ) ( )

b

i i
m b C b mβ β β′= , where ( )C b  is 

defined in (11) and ( )im β , in (21).  This implies that  

  exp( ) ( )b

oM b C b Mβ ′= ; exp(2 ) ( ) ( )b

oV b C b VC bβ ′= , 

where M and V  are defined in (22) and (23).  Thus, 1 1 1 1[ ( ) ] [ ]b b b
M V M M V M

− − − −′ ′= , which 

indicates that the asymptotic variance of the Woodridge GMM-C estimator is invariant to b.  

 The one-step and two-step GMM-C estimators using the Wooldridge moment function 

are however not invariant to b in small samples.  To see why, notice that the minimand of the 

one-step GMM estimator b

cβ�   is given: 

  
( ) ( )

( ) ( )

1

1 1 1

1
0 0 0 0 0 0

1 1 1

( ) ( )

exp(2 ) ( ) ( ) .

N b b N b b N b b

i i i i i i i i i

N N N

i i i i i i i i i

Z q Z Z Z q

b Z r Z Z Z r

β β

β β β

−

= = =

−

= = =

′  ′Σ Σ Σ
 

′  ′= Σ Σ Σ
 

 (24) 

Clearly, the minimand (24) depends on b and thus, the one-step GMM estimator depends on b. 

The minimand of the two-step GMM-C estimator ˆ b

cβ  is  
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( ) ( )

( ) ( )

1

1 1 1

1
0 0 0 0 0 0 0 0

1 1 1

( ) ( ) ( ) ( )

exp(2 )
( ) ( ) ( ) ( ) .

exp(2 )

N b b N b b b b b b N b b

i i i i i i c i c i i i i

N N b b N

i i i i i i c i c i i i ib

c

Z q Z q q Z Z q

b
Z q Z q q Z Z q

b

β β β β

β
β β β β

β

−

= = =

−

= = =

′  ′′Σ Σ Σ
 

′  ′′= Σ Σ Σ
 

� �

� �
�

 (25) 

The two-step GMM-C estimator depends on b for two reasons.  First, the one-step estimator b
cβ�  

is not invariant.  Second, even if the one-step estimator were the same for all b, the minimand of 

the two-step GMM estimator still would depend on b. 

 An invariant estimator that has the same asymptotic distribution as the two-step 

Wooldridge estimator is the continuous-updating GMM estimator proposed by Hansen, Heaton 

and Yaron (1996).  This estimator minimizes 

    
( ) ( )

( ) ( )

1

1 1 1

1
0 0 0 0 0 0 0 0

1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

N b b N b b b b N b b

i i i i i i i i i i i

N N N

i i i i i i i i i i i

Z q Z q q Z Z q

Z q Z q q Z Z q

β β β β

β β β β

−

= = =

−

= = =

′  ′′Σ Σ Σ
 

′  ′′= Σ Σ Σ
 

. (26) 

This minimand is the same for all b.  Thus, the continuous-updating GMM estimator should be 

invariant to b.  

 

3. Simulations 

This section investigates the finite-sample properties of the two-step GMM-C and GMM-WC 

estimators.  We also illustrate the invariance property of the GMM-C estimator.  Our 

experiments are carried out with a simple dynamic panel model and two count panel models.  

The econometric software TSP 4.5 (Hall and Cummins, 2006) is used.  When we conduct the 

simulations, the data are demeaned with their overall means before subtracting b from them. 

 

3.1. Dynamic Panel Data Model 

Our first simulation experiment is conducted with a simple dynamic panel model.  Data are 

generated by (1) and (6) with 0.5oβ = , 2 2 1α εσ σ= = , and 2 2 2/ (1 )v oεσ σ β= − .   The 
iα , 

itε , and 

0iv  are independently drawn from 2(0, )N ασ , 2(0, )N εσ , and 2(0, )vN σ , respectively.  Because αµ  

= 0, under this setup, the asymptotic variance (or standard deviation) of the GMM-WC estimator 

using the b

ity  instead of 
ity  increases with b , as shown in (10).  When 0b = , the GMM-WC and 

GMM-C estimators have the same asymptotic variances.         
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When the b

ity  are used instead of the ity , the moment functions used for the GMM-WC 

and GMM-C estimators are , ( ) ( )b b b

wc i i im S rβ β=  and ( ) ( )b b b

i i im Z rβ β= , respectively, where 

 0 0 1 0 , 2diag( ,( , ), ,( , , ))b b b b b b
i i i i i i TS y y y y y −
′ = … … ; 1( , )b b

i i TZ S I −
′ ′= ; 

 , 1( )b b b

it it i tu y yβ β −= − ; 2( ) ( ( ), , ( ))b b b
i i iTr u uβ β β ′= ∆ ∆… .  

The one-step and two-step GMM-C estimators are obtained by minimizing (14) and (15), 

respectively, replacing H  by the ( 1) (T 1)T − × −  square matrix [ ]jkH H=  whose (s,s)th elements 

are two, (s,s+1)th and (s,s-1)th elements are minus one, and other elements are all zero.  The one-

step and two-step GMM-WC estimators are obtained by minimizing (14) and (15), respectively, 

replacing b

iZ  by b

iS .  We generate 1,000 different data sets to find the finite-sample distribution 

of the GMM-WC and GMM-C estimators. 

 We can easily show that 0b
i iZ AZ=  and 0b

i ir r= , where A is an invertible matrix of the 

form 

 
( 1)/2

10

T T

T

I bB
A

I

−

−

− 
= 
 

, 

where (1,(1,1), ... ,(1,...,1))B diag′ = .  Thus, both the one-step and two-step GMM-C estimators 

are invariant to any selection of b as we discussed in Section 2. 

 Table 1 presents the simulation results from the two-step GMM estimation of the simple 

dynamic model.  For each of the GMM-WC and GMM-C estimators, the reported statistics are 

bias, rmse (root mean squared error), mcsd (Monte Carlo standard deviation) and mcmse (Monte 

Carlo mean of standard error)).  As predicted, the distribution of the GMM-WC estimator 

changes depending on b.  For each N, both the mcsd and rmse of the GMM-WC estimator 

increases as b  increases, although only in a small margin.  In contrast, for given N, the GMM-C 

estimation results are the same for any choice of b.  

 

3.2. Count Panel Data Model with Predetermined Regressor 

Our second experiment is done with the count panel model with a predetermined explanatory 

variable.  We generate data following Windmeijer (2008): 

  2~ Poisson[exp( (1/ 2) )]it it i ity x εβ α ε σ+ + − ; 
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  1 1
2

1
( )

1 1
i i i ix w

δ
η θν

ρ ρ
= + +

− −
; 

  , 1 , 1it i t i i t itx x wρ δη θε− −= + + + , 

where t = 1, ... , T.  The random variables, iα , itε , iv , and itw , are independently drawn from 

2(0, )N ασ , 2(0, )N εσ , 2(0, )vN σ , and 2(0, )wN σ , respectively.  Under this setup, the regressor itx  is 

weakly exogenous to the error term 
itε .  Thus, both the Chamberlain and Wooldridge GMM 

estimators can be used to consistently estimate β .  We here only consider the Chamberlain 

GMM estimators.  

 Define: 

 , 1 , 1( ) exp( )b b

it it i t i tp y x yβ β+ += − −∆ ;  

 1 1 2 1 , 1diag( ,( , ),...,( ,..., ))b b b b b b
i i i i i i TS x x x x x −
′ = ; 1Z ( , )b b

i i TS I −
′ ′= ; 

 1 , 1( ) ( ( ),..., ( ))b b b
i i i Tr p pβ β β− ′= . 

With this notation, the one-step and two-step Chamberlain GMM-C estimators are computed by 

minimizing (14) and (15), respectively, with 1TH I −= .  The one-step and two-step Chamberlain 

GMM-WC estimators are obtained by the same methods but with b

i
Z  replaced by b

i
S .  The one-

step and two-step GMM-C estimators are invariant to b as discussed in Section 2.2.  The finite-

sample properties of the Wooldridge GMM estimators are examined in the next subsection.   

 Table 2 presents the Monte Carlo results from the two-step Chamberlain GMM 

estimation.  As predicted, the distribution of the two-step GMM-WC estimator changes as b 

changes.  Interestingly, for given N, the mcsd and rmse of the GMM-WC estimator are smallest 

when b = 0.5 (not when 0b = ) and they increase as b decreases from 0.5 .  When 100N =  and 

0.5b = , the mcsd and rmse of the GMM-WC estimator are almost identical to those of the 

GMM-WC estimator.  However, when 100N =   and 1b = − , the rmse of the GMM-WC 

estimator is greater than that of the GMM-C estimator by 80 (= (0.54-0.30)/0.30×100) percent.  

The mcsd of the GMM-WC estimator is also much larger than that of the GMM-C estimator.  

The performance of the GMM-WC estimator appears to be quite sensitive to b, especially when 

the sample size N is small.   

 



15 

 

3.3. Count Panel Data Model with Endogenous Regressor 

Our third and final experiment is based on the count panel model with an endogenous regressor.  

Following Windmeijer (2000), we generate data by 

 
2~ Poisson(exp( (1/ 2) ))it it i ity x εβ α ε σ+ + − ; 

 , 1it i t i it itx x wρ δη θε−= + + + , 

where 1, 2, ... ,t T= , and  

 0 0 0
2

1
( )

1 1
i i i ix w

δ
α θε

ρ ρ
= + +

− −
. 

The random variables, 
iα , 

itε , and 
itw  are generated independently drawn from 2(0, )N ασ , 

2(0, )N εσ , and 2(0, )wN σ , respectively.  Under this setup, the regressor itx  is endogenous because 

it is contemporaneously correlated with the error term itε .  The Chamberlain GMM estimation is 

not appropriate.  Thus, we estimate β  by the Wooldridge GMM.  As we discussed in Section 2, 

both the Wooldridge GMM-WC and GMM-C estimators are not invariant to linear 

transformation of the regressor itx  in finite sample, although the later one is invariant 

asymptotically.    

Let  

 , 1 , 1( ) exp( ) exp( )b b b
it it it i t i tq x y x yβ β β+ += − − − ; 

 0 0 1 0 , 2diag({ },{ , }, ,{ , , })b b b b b b
i i i i i i TS x x x x x −
′ = … … ; 1Z ( , )b b

i i TS I −
′ ′= ; 

 1 , 1( ) ( ( ),..., ( ))b b b

i i i Tr p pβ β β−
′= . 

With these, the two-step GMM-WC and GMM-C estimators are computed by minimizing (14) 

and (15), respectively, with 
1TH I −= .    

 Table 3 presents the Monte Carlo results for the two-step Wooldridge GMM estimators.  

The finite sample performances of both the GMM-WC and GMM-C estimators deteriorate as b   

deviates from zero, especially when N = 100.  It appears that the performance of the GMM-WC 

estimator depends on the ratio of positive and negative values of the regressor itx .  As the 

distribution of 
itx  becomes more skewed to the positive or negative sides, the mcsd and rmse of 

the GMM-WC estimator get larger.  The GMM-C estimator shows a similar pattern.  However, 
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the finite-sample performance of the GMM-C estimator is less sensitive to b than that of the 

GMM-WC estimator. 

 The results reported in Table 3 indicate that both the Wooldridge GMM-C and GMM-

WC estimators need to be used with some caution, especially when the sample size N is small.  

When a regressor’s realized values in data are too often positive or negative, the two-step GMM-

C estimator, as well as its GMM-WC counterpart, can have large bias and large standard error.  

Windmeijer (2000) reported that use of demeaned regressors could improve the finite-sample 

properties of the Wooldridge GMM estimators.  Under our simulation setting, the b

itx  with 0b =   

is the same as the demeaned regressor 
itx x− .  Thus, the results in Table 3 are consistent with 

his findings. 

 The continuous-updating GMM-C estimator could be a viable alternative to the two-step 

counterpart because it should be invariant to b, although we here do not investigate the finite-

sample property of the estimator.  We leave the analysis of the finite-sample properties of the 

continuous-updating estimator to a future study.     

 

4. Concluding Remark 

In this paper, we have investigated a non-invariance problem in the panel GMM estimation 

based on the level-instruments-for-differenced-equations (LIDE) approach.  Panel studies often 

first-difference or quasi-difference regression equations to remove the unobservable individual 

effects.  Then, the differenced equations are estimated by GMM using lagged level regressors as 

instruments.  We have shown that when a constant is not used as instrument, the asymptotic and 

finite-sample distributions of the GMM estimators depend on overall means of the regressors 

used.  When the sample size is small, estimation results could change dramatically when linearly 

transformed regressors are used.  For many cases, this non-invariance problem can be solved 

simply by including a constant into the instrument set.  Using a constant as an instrument often 

serves as a ballast for stabilizing the LIDE estimators.  

The GMM estimators using a constant as an additional instrument have the asymptotic 

distributions that are invariant to linear transformation of regressors.  However, their finite 

sample distributions may depend on overall means of regressors.  One example is the quasi-

differencing method of Woodridge (1997, footnote 2).  Even if a constant is used as an 

instrument, the finite-sample distribution of the GMM estimator depends on overall means of 
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regressors, although its asymptotic distribution does not.  However, consistent with Windmeijer 

(2000), our simulation results support the notion that the GMM-C estimator computed with 

demeaned regressors produces quite reliable inferences.  
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Table 1: Monte Carlo Results for a Dynamic Panel Data Model 

( 5T = , 0.5oβ = , 2 2
1ε ασ σ= = ) 

  N = 100 N = 500 N = 1000 

  bias rmse bias rmse bias rmse 

  (mcsd) (mcmse) (mcsd) (mcmse) (mcsd) (mcsd) 

b = 20 GMM-WC -0.08 0.18 -0.01 0.08 -0.01 0.05 

  (0.17) (0.14) (0.08) (0.07) (0.05) (0.05) 

 GMM-C -0.06 0.14 -0.01 0.06 -0.01 0.04 

  (0.13) (0.10) (0.06) (0.05) (0.04) (0.04) 

        

b = 2 GMM-WC -0.06 0.16 -0.01 0.06 -0.01 0.05 

  (0.15) (0.12) (0.06) (0.06) (0.04) (0.04) 

 GMM-C -0.06 0.14 -0.01 0.06 -0.01 0.04 

  (0.13) (0.10) (0.06) (0.05) (0.04) (0.04) 

        

b = 0  GMM-WC -0.04 0.14 -0.01 0.06 -0.01 0.04 

  (0.13) (0.11) (0.06) (0.05) (0.04) (0.04) 

 GMM-C -0.06 0.14 -0.01 0.06 -0.01 0.04 

  (0.13) (0.10) (0.06) (0.05) (0.04) (0.04) 

        

b = -2  GMM-WC -0.06 0.16 -0.01 0.07 -0.01 0.05 

  (0.15) (0.12) (0.06) (0.06) (0.05) (0.04) 

 GMM-C -0.06 0.14 -0.01 0.06 -0.01 0.04 

  (0.13) (0.10) (0.06) (0.05) (0.04) (0.04) 

        

b = -20  GMM-WC -0.08 0.18 -0.01 0.08 -0.01 0.05 

  (0.17) (0.14) (0.08) (0.07) (0.05) (0.05) 

 GMM-C -0.06 0.14 -0.01 0.06 -0.01 0.04 

  (0.13) (0.10) (0.06) (0.05) (0.04) (0.04) 

Notes: The number of replications is 1,000. The standard errors of the two-step GMM estimators 

are computed by the usual GMM formulas.  The finite variance correction proposed by 

Windmeijer (2005, 2008) is not used.   
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Table 2: Monte Carlo Results from Count Panel Data Models with Predetermined Regressors 

( 5T = , 0.5oβ = , 0.1δ = , 0.8ρ = , 0.3θ = , 2 2 0.3α εσ σ= = , 2 0.25wσ = ) 

  N = 100 N = 500 N = 1000 

  bias rmse bias rmse bias rmse 

  (mcsd) (mcmse) (mcsd) (mcmse) (mcsd) (mcsd) 

b = 1 GMM-WC -0.09 0.33 -0.03 0.17 -0.01 0.11 

  (0.32) (0.25) (0.17) (0.15) (0.11) (0.11) 

 GMM-C -0.14 0.30 -0.03 0.13 -0.02 0.09 

  (0.27) (0.17) (0.13) (0.11) (0.09) (0.08) 

        

b = 0.5 GMM-WC -0.09 0.29 -0.03 0.13 -0.01 0.09 

  (0.28) (0.20) (0.13) (0.11) (0.09) (0.09) 

 GMM-C -0.14 0.30 -0.03 0.13 -0.02 0.09 

  (0.27) (0.17) (0.13) (0.11) (0.09) (0.08) 

        

b = 0  GMM-WC -0.14 0.36 -0.03 0.15 -0.02 0.10 

  (0.33) (0.21) (0.14) (0.12) (0.10) (0.08) 

 GMM-C -0.14 0.30 -0.03 0.13 -0.02 0.09 

  (0.27) (0.17) (0.13) (0.11) (0.09) (0.08) 

        

b = -0.5  GMM-WC -0.24 0.51 -0.09 0.30 -0.03 0.15 

  (0.45) (0.24) (0.29) (0.13) (0.14) (0.09) 

 GMM-C -0.14 0.30 -0.03 0.13 -0.02 0.09 

  (0.27) (0.17) (0.13) (0.11) (0.09) (0.08) 

        

b = -1  GMM-WC -0.27 0.54 -0.13 0.34 -0.05 0.21 

  (0.46) (0.25) (0.32) (0.15) (0.20) (0.10) 

 GMM-C -0.14 0.30 -0.03 0.13 -0.02 0.09 

  (0.27) (0.17) (0.13) (0.11) (0.09) (0.08) 

Notes: The number of replications is 1,000.  The GMM-C estimates of β are the same for the 

data demeaned with different values of b  while the GMM-WC estimates are not.  Three 

different starting values of β  were used in nonlinear GMM optimization processes.  This table 

displays the Monte Carlo results from the estimation using the true value of β  ( 0.5oβ = ) as the 

starting value.  In almost all replications, three different starting values produced the same 

estimation results.  The standard errors of the two-step GMM estimators are computed by the 

usual GMM formulas.  The finite variance correction proposed by Windmeijer (2005, 2008) is 

not used.   
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Table 3: Monte Carlo Results from Count Panel Data Models with Predetermined Regressors 

( 5T = , 0.5oβ = , 0.1δ = , 0.8ρ = , 0.3θ = , 2 0.3ασ = , 2 0.25εσ = , 2 0.3wσ = )  

  N = 100 N = 500 N = 1000 

  bias rmse bias rmse bias rmse 

  (mcsd) (mcmse) (mcsd) (mcmse) (mcsd) (mcsd) 

b = 1 GMM-WC -0.48 0.52 -0.22 0.25 -0.13 0.16 

  (0.22) (0.22) (0.12) (0.13) (0.10) (0.10) 

 GMM-C -0.39 0.44 -0.17 0.21 -0.10 0.13 

  (0.19) (0.18) (0.11) (0.11) (0.08) (0.08) 

        

b = 0.5 GMM-WC -0.21 0.27 -0.09 0.14 -0.05 0.10 

  (0.17) (0.19) (0.10) (0.12) (0.08) (0.09) 

 GMM-C -0.18 0.24 -0.08 0.13 -0.05 0.09 

  (0.17) (0.16) (0.10) (0.11) (0.08) (0.08) 

        

b = 0  GMM-WC 0.01 0.16 0.00 0.10 0.00 0.08 

  (0.16) (0.19) (0.10) (0.12) (0.08) (0.09) 

 GMM-C 0.01 0.16 0.01 0.10 0.00 0.08 

  (0.16) (0.17) (0.10) (0.11) (0.08) (0.08) 

        

b = -0.5  GMM-WC 0.26 0.33 0.10 0.15 0.06 0.11 

  (0.20) (0.22) (0.11) (0.13) (0.09) (0.09) 

 GMM-C 0.22 0.29 0.10 0.15 0.06 0.10 

  (0.19) (0.18) (0.11) (0.12) (0.09) (0.09) 

        

b = -1  GMM-WC 0.67 0.77 0.28 0.33 0.16 0.20 

  (0.38) (0.30) (0.17) (0.16) (0.12) (0.11) 

 GMM-C 0.56 0.64 0.23 0.28 0.13 0.17 

  (0.32) (0.24) (0.16) (0.13) (0.11) (0.09) 

Notes: The number of replications is 1,000.  For both the GMM-WC and GMM-C estimation, 

different estimates of β are obtained from the data demeaned with different values of b . Three 

different starting values of β  were used in nonlinear GMM optimization processes.  This table 

displays the Monte Carlo results from the estimation using the true value of β  ( 0.5oβ = ) as the 

starting value.  In almost all replications, three different starting values produced the same 

estimation results. The average rates of the positive b

itx  in each replication are approximately 15 

percent when 1b = , 30 percent when 0.5b = , 50 percent when 0b = , 70 percent when 0.5b = − , 

and 85 percent for 1b = − .  The standard errors of the two-step GMM estimators are computed 

by the usual GMM formulas.  The finite variance correction proposed by Windmeijer (2005, 

2008) is not used.   

 


