
Time Series of Cross-Sectional Distributions

with Common Stochastic Trends

Yoosoon Chang

Department of Economics

Indiana University

20th International Panel Data Conference
Hitotsubashi Hall

Tokyo, Japan
9-10 July 2014

Yoosoon Chang (Indiana) Distributional Cointegration 10 July 2014



Related Work

“Nonstationarity in Time Series of State Densities,” with Changsik
Kim and Joon Park.

“Time Series Analysis of Global Temperature Distributions:
Identifying and Estimating Persistent Features in Temperature
Anomalies,” with Changsik Kim, J. Isaac Miller, Joon Y. Park and
Sung-Keun Park.

“Time Series of Cross-Sectional Distributions with Common
Stochastic Trends,” with Changsik Kim and Joon Y. Park.

Yoosoon Chang (Indiana) Distributional Cointegration 10 July 2014



Outline

I. Basic Framework

II. Distributional Unit Roots

III. Distributional Cointegration

IV. Stationary Distributional Regression

Yoosoon Chang (Indiana) Distributional Cointegration 10 July 2014



I. Basic Framework



Objective

To analyze the time series of cross-sectional distributions such as

individual earnings

global temperatures

household income

household expenditures
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Cross-sectional Distributions of Individual Earnings
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Global Temperature Distributions
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Cross-sectional Distributions of Household Income
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Cross-sectional Distributions of Household Expenditures
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Model for Persistent Functional Data



Model for Functional Data

For each time t = 1, 2, . . ., suppose there is a distribution represented
by a probability density ft, whose value at ordinate s ∈ R is denoted
by ft(s).

Denote by
wt = ft − Eft

a centered density function and treat wt as functional data taking
values in Hilbert space H.

We define H to be the set of functions on a compact subset K of R
that have vanishing integrals and are square integrable, i.e.,

H =

{
w

∣∣∣∣∫
K
w(s)ds = 0,

∫
K
w2(s)ds <∞

}
with inner product 〈v, w〉 =

∫
v(s)w(s)ds for v, w ∈ H.
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Coordinate Process

We assume that there exists an orthonormal basis (vi) of H such that

wt =

∞∑
i=1

〈vi, wt〉vi

And the i-th coordinate process

〈vi, wt〉

has a unit root for i = 1, . . . , n, while it is stationary for all i ≥ n+ 1.

By convention, we set n = 0 if all the coordinate processes are
stationary.
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Unit Root and Stationarity Subspaces

Using the symbol
∨

to denote span, we let

HN =

n∨
i=1

vi and HS =

∞∨
i=n+1

vi

so that H = HN ⊕HS . In what follows, HN and HS will respectively
be referred to as the unit root and stationarity subspaces of H.

We also let ΠN and ΠS be the projections on HN and HS ,
respectively. Moreover, we define

wNt = ΠNwt and wSt = ΠSwt

Note that ΠN + ΠS = 1 (the identity operator on H), so in particular
we have

wt = wNt + wSt
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Unit Root and Stationary Processes

When ut = 4wt = Φ(L)εt, it follows that

wNt = ΠNwt = ΠNΦ(1)

t∑
i=1

εi −ΠN ūt

and
wSt = ΠSwt = −ΠS ūt

Clearly, (wNt ) is an integrated process, while (wSt ) is stationary.

The unit root dimension n is unknown in practical applications.

We will explain how to

o Determine n statistically
o Estimate the subspaces HS and HN
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Functional Principal Component Analysis (FPCA)

Our procedure to estimate HN and test for its dimension M is based
on the FPCA on the unnormalized sample variance operator of (wt)

MT =

T∑
t=1

wt ⊗ wt

where T is the sample size.

Denote the pairs of eigenvalues and eigenvectors of MT by

(λTi , v
T
i ), i = 1, . . . , T

and order (λTi ) so that λT1 ≥ · · · ≥ λTT .
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Sample Unit Root and Stationarity Subspaces

Assuming T > n, we define sample unit root space as the subspace

HT
N =

n∨
i=1

vTi

spanned by the eigenvectors corresponding to n largest eigenvalues of
MT . Denote by ΠT

N the projection on HT
N .

The sample stationarity subspace is defined by ΠT
S = 1−ΠT

N , so that
we have ΠT

N + ΠT
S = 1 analogously as the relationship ΠN + ΠS = 1.

We show that

ΠT
N = ΠN +Op(T

−1) and ΠT
S = ΠS +Op(T

−1)

for all large T .
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Decomposition of Sample Variance Operator

To develop our asymptotics, we decompose MT as

MT = T 2MT
NN + TMT

NS + TMT
SN + TMT

SS

where

MT
NN =

1

T 2
ΠN

(
T∑

t=1

wt ⊗ wt

)
ΠN =

1

T 2

T∑
t=1

wN
t ⊗ wN

t

MT
NS =

1

T
ΠN

(
T∑

t=1

wt ⊗ wt

)
ΠS =

1

T

T∑
t=1

wN
t ⊗ wS

t

MT
SS =

1

T
ΠS

(
T∑

t=1

wt ⊗ wt

)
ΠS =

1

T

T∑
t=1

wS
t ⊗ wS

t

and MT
SN is the adjoint of MT

NS , i.e., MT
SN = MT∗

NS .
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Asymptotics for Sample Variance Operators

Lemma Under some regularity conditions, we have

MT
NN →d MNN =

∫ 1

0
(W ⊗W )(r)dr

where W is Brownian motion on HN with variance operator
ΠNΦ(1)ΣΦ(1)′ΠN . Also, it follows that

MT
SS →p MSS = ΠS

( ∞∑
i=0

Φ̄iΣΦ̄′i

)
ΠS

Moreover, we have
MT
NS ,M

T
SN = Op(1)

for all large T .
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Asymptotics for Eigenvalues and Eigenvectors

Theorem Under some regularity conditions, we have(
T−2λTi , v

T
i

)
→d (λi(MNN ), vi(MNN ))

jointly for i = 1, . . . , n, and(
T−1λTn+i, v

T
n+i

)
→p (λi, vi)

for i = 1, 2, . . ..

In stationarity subspace HS , eigenvectors and appropriately
normalized eigenvalues of sample variance operator MT of (wt)
converge in probability to their population counterparts.

In unit root subspace HN , they converge in distribution, and their
distributional limits are given by the distributions of eigenvalues and
eigenvectors of random operator MNN .
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II. Distributional Unit Roots



Sample Variance Operator

Our test for unit roots in (wt) is based on the sample variance
operator

MT =

T∑
t=1

wt ⊗ wt,

whose quadratic form is given by

〈v,MT v〉 =

T∑
t=1

〈v, wt〉2

for v ∈ H.

Asymptotic behavior of the quadratic form of sample variance
operator depends crucially on whether v is in HN or in HS .
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Stationarity-Nonstationarity of Coordinate Processes

For v ∈ HS , the coordinate process (〈v, wt〉) becomes stationary and
we expect that

T−1
T∑
t=1

〈v, wt〉2 →p E〈v, wt〉2

as long as the expectation exists.

On the other hand, if v ∈ HN and the coordinate process (〈v, wt〉) is
integrated, it follows under a very mild condition that

T−2
T∑
t=1

〈v, wt〉2 →d

∫ 1

0
V (r)2dr −

(∫ 1

0
V (r)dr

)2

,

where V is a Brownian motion.

Therefore, the quadratic form has different orders of magnitude, i.e.,
Op(T ) and Op(T

2), depending upon whether the coordinate process
(〈v, wt〉) is stationary or integrated.
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Nonstationarity and Stationarity Subspaces

We let HN be n-dimensional and denote by vT1 , v
T
2 , . . . the

orthonormal eigenvectors of the sample variance operator MT .

It is shown that
vTi →p vi

for i = 1, 2, . . ., as T →∞.
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Estimation of Nonstationarity Subspace

Once we determine the number of unit roots n in (wt), we may
estimate the nonstationarity subspace HN by

HT
N =

n∨
i=1

vTi ,

i.e., the span of the n orthonormal eigenvectors of the sample
variance operator MT associated with n largest eigenvalues of MT .

Recall

HN =

M∨
i=1

vi and HS =

∞∨
i=M+1

vi

We establish the consistency of HT
N for HN .
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Functional Principal Component Analysis

If we define λT1 ≥ λT2 ≥ · · · to be the eigenvalues of MT associated
with the eigenvectors vT1 , v

T
2 , . . ., then we have

λTi = 〈vTi ,MT vTi 〉 =

T∑
t=1

〈vTi , wt〉2

for i = 1, 2, . . ..

Therefore, it follows that

λTi =

{
Op(T

2) for i = 1, . . . , n
Op(T ) for i = n+ 1, . . .

,
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Onto Testing for Distributional Unit Roots

To determine the number of unit roots in (wt), we consider the test
of the null hypothesis

H0 : dim (HN ) = n

against the alternative hypothesis

H1 : dim (HN ) ≤ n− 1

successively downward.

More precisely, we start testing the null with n = nmax, where nmax is
large enough so that dim (HN ) ≤ nmax.

Continue with n = nmax − 1 if the null is rejected in favor of the
alternative. If, for any n, dim (HN ) ≤ n and the null is not rejected,
then we may conclude that dim (HN ) = n.

Therefore, we may estimate the number of unit roots in (wt) by the
smallest value of n for which we fail to reject the null.
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Intuitive but Infeasible Test

We expect that the eigenvalue λTn would have a discriminatory power
for the test of null against the alternative, since it has different orders
of stochastic magnitudes under the null and alternative hypotheses.

However, it cannot be used directly as a test statistic, since its limit
distribution is dependent upon nuisance parameters.

Therefore, we need to modify it appropriately to get rid of its
nuisance parameter dependency problem.
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A Feasible Test for Unit Root Dimension

To introduce our test, define (zTt ) for t = 1, . . . , T by

zTt = (〈vT1 , wt〉, . . . , 〈vTn , wt〉)′

Also define the product sample moment MT
n =

∑T
t=1 z

T
t z

T ′
t (sample

variance in the unit root subspace), and the long-run variance
estimator ΩT

n =
∑
|k|≤`$`(k)ΓT (k) of (zTt ), where $` is the weight

function with bandwidth parameter ` and ΓT is the sample
autocovariance function defined as ΓT (k) = T−1

∑
t ∆zTt ∆zT ′t−k.

Our test statistic is defined as

τTn = T−2λmin

(
MT
n ,Ω

T
n

)
,

where λmin

(
MT
n ,Ω

T
n

)
is the smallest generalized eigenvalue of MT

n

with respect to ΩT
n .
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Asymptotics for Distributional Unit Root Test

Under very general conditions, we show that

τTn →d λmin

(∫ 1

0
Wn(r)Wn(r)′dr −

∫ 1

0
Wn(r)dr

∫ 1

0
Wn(r)′dr

)
under the null, as T →∞, where Wn is n-dimensional standard
vector Brownian motion and λmin(·) denotes the smallest eigenvalue
of its matrix argument.

On the other hand, we have τTn →p 0 under the alternative as
T →∞.

Therefore, we reject the null in favor of the alternative if the test
statistic τTn takes small values.
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Critical Values for Distributional Unit Root Test τTn

Critical values for the tests are obtained based on τTn for n = 1, . . . , 5,
by simulations.

For simulations, BM is approximated by standardized partial sum of
mean zero i.i.d. normal random variates with sample size 10,000, and
actual critical values are computed using 100,000 iterations.

n 1 2 3 4 5

1% 0.0274 0.0175 0.0118 0.0103 0.0085
5% 0.0385 0.0223 0.0154 0.0127 0.0101
10% 0.0478 0.0267 0.0175 0.0139 0.0111
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Degree of Persistency in Cross-sectional Moments

We may now find how much nonstationarity proportion exists in each
cross-sectional moments.

In what follows, we redefine ικ as ικ −
∫
K ικ(s)ds, so that we may

regard it as an element in H.

We may decompose ικ as ικ = ΠN ικ + ΠSικ, from which it follows
that

‖ικ‖2 = ‖ΠN ικ‖2 + ‖ΠSικ‖2 =

n∑
i=1

〈ικ, vi〉2 +

∞∑
i=n+1

〈ικ, vi〉2,

where (vi), i = 1, 2, . . ., is an orthonormal basis of H such that
(vi)1≤i≤n and (vi)i≥n+1 span HN and HS , respectively.
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Nonstationarity Proportion of Cross-sectional Moments

To measure the proportion of ικ lying in HN , we define

πκ =
‖ΠN ικ‖
‖ικ‖

=

√√√√√√√√√
n∑
i=1

〈ικ, vi〉2

∞∑
i=1

〈ικ, vi〉2
.

πκ = 1 and πκ = 0, respectively, if ικ is entirely in HN and HS .

Therefore, we may use πκ to represent the proportion of
nonstationary component in the κ-th cross-sectional moment of (wt).

The κ-th cross-sectional moment of (wt) has more dominant unit
root component as πκ tends to unity, whereas it becomes more
stationary as πκ approaches to zero. Clearly, the κ-th cross-sectional
moment of (wt) becomes more difficult to predict if πκ is closer to
unity, and easier to predict if πκ is small.
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Sample Nonstationarity Proportion

The nonstationarity proportion πκ of the κ-th cross-sectional moment
is not directly applicable, since HN and HS are unknown.

However, we may use its sample version

πTκ =

√√√√√√√√√
n∑
i=1

〈ικ, vTi 〉2

T∑
i=1

〈ικ, vTi 〉2
.

The sample version πTκ of πκ will be referred to as the sample
nonstationarity proportion of the κ-th cross-sectional moment of (wt).

We show that the sample version πTκ is a consistent estimator for the
original πκ.
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Empirical Illustrations



Overview

We demonstrate how to define and estimate the state densities, and
test for unit roots in the time series of densities representing
cross-sectional distributions of economic variables.

State densities are estimated using standard Gaussian kernel on
cross-sectional observations, and their nonstationarities are analyzed
using the test τnT .

Unit root dimension n of state densities is determined by applying τnT
successively downward starting from n = nmax with nmax = 5.

Unit root space HN is then estimated and the unit root proportion
(πi) is computed for the first four moments. πi provides the
proportion of nonstationary fluctuation in the i-th moment of state
distribution.
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Representation of Functions as Numerical Vectors

For the representation of functions in Hilbert space as numerical
vectors, we use a Daubechies wavelet basis.

Wavelets are spatially varying orthonormal bases with two parameters,
i.e., scale and translation, and hence they provide more flexibilities in
fitting the state densities in our applications, some of which have
severe asymmetry and time-varying support. The wavelet basis in
general yields a much better fit than the trigonometric basis.

The Daubechies wavelet is implemented with 1037 basis functions.
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Cross-Sectional Distributions

of Individual Earnings



Cross-Sectional Distributions of Individual Earnings

The cross-sectional observations of individual weekly earnings are
obtained at monthly frequency from Current Population Survey
(CPS) data set. The individual weekly earnings are deflated by
consumer price index with base year 2005.

The data set provides 204 time series observations spanning from
January 1994 to December 2010, and the number of cross-sectional
observations for each month ranges from 12,323 to 15,700.

For confidentiality reasons, individual earnings are topcoded above a
certain level. We drop all topcoded individual earnings as well as zero
earnings as in Liu (2011) and Shin and Solon (2011).
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Densities of Weekly Individual Earnings
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Demeaned Densities of Weekly Individual Earnings
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Testing for Unit Root Dimension

To determine the unit root dimension n in the time series of
cross-sectional distributions of individual earnings, we use the feasible
statistic τTn to test for the null hypothesis H0 : dim(HN ) = n against the
alternative H1 : dim(HN ) ≤ n− 1 with n = 1, . . . , 5.

n 1 2 3 4 5

τTn 0.0746 0.0383 0.0079 0.0062 0.0040

Our test, strongly and unambiguously, rejects H0 against H1

successively for n = 5, 4, 3. Clearly, however, the test cannot reject
H0 in favor of H1 for n = 2.

We conclude that there exists two-dimensional unit root, and set
n = 2.
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Scree Plot of Eigenvalues - Individual Earnings
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Unit Root Proportions in Moments

We compute the estimates πTi of the unit root proportions πi with τTn = 2
for the first four moments.

πT1 πT2 πT3 πT4

0.5261 0.3420 0.2462 0.2013

The unit root proportions for the first four moments are all
nonnegligibly large. In particular, the unit root proportions for the
first two moments are quite substantial.

The presence of a substantial unit root proportion in the second
moment explains the recent empirical findings on changes in
volatilities of individual earnings. Dynan et al (2008) and others.

Nonstationarity in time series of individual earnings distributions
would certainly make their volatilities more persistent.
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Global Temperature Distributions



Data

Compiled by the Climatic Research Unit at the University of East
Anglia and the Hadley Centre of the UK Met office.

Global average of combined land and sea surface temperatures over
widely dispersed locations, in a time series from 1850 to date (From
1,652 to 55,576 stations).

Expressed as the deviation from the average of the period 1961-1990
and these deviations are called ‘temperature anomalies’.

Temperature anomalies on a 5 ◦ by 5 ◦ grid-box basis
(number of Monthly grids : 36*72 = 2,592, number of Annual grids:
2,592*12 = 31,104)
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Figure: Number of observations for the globe, the northern hemisphere and the
southern hemisphere; Total number of 5 ◦ by 5 ◦ grid-boxes is 31,104(=36*72*12)
for the globe and 15,552(=18*72*12) for the northern and southern hemisphere.
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Figure: Annual temperature anomalies distributions (undemeaned and demeaned
densities); Temperature anomalies on a 5 ◦ by 5 ◦ grid-box basis are used. A
normal kernel with optimal fixed bandwidth is used for the estimation of the
density functions.
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Figure: Mean, Variance, Skewness and Kurtosis for the globe

Yoosoon Chang (Indiana) Distributional Cointegration 10 July 2014



Figure: Annual temperature anomalies distributions for the northern hemisphere
(undemeaned and demeaned densities)
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Figure: Mean, Variance, Skewness and Kurtosis for the northern hemisphere
(Estimated annual temperature anomalies distributions are used.)
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Figure: Annual temperature anomalies distributions for the southern hemisphere
(undemeaned and demeaned densities)
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Figure: Mean, Variance, Skewness and Kurtosis for the southern hemisphere
(Estimated annual temperature anomalies distributions are used.)
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Findings

We estimate annual temperature anomalies densities for the globe,
northern and southern hemisphere, (fgt ), (fnt ) and (fst ).

For the northern and the southern hemisphere, we choose the support
that preserves 95% of the total probability mass of the northern(f̄n)
and the southern hemisphere(f̄ s).

For the globe, we estimate total probability mass(f̄g) as the average
of (f̄n) and (f̄ s) and find the support covering 95% of total
probability mass for the globe(f̄g).

Densities for the globe, (fgt ) is the average of the densities of northern
and the southern, (fnt ) and (fst ). This is so as not to give too much
weight to the northern hemisphere, where there are more observations.
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Table: Critical Values of the Test Statistics τTn

τTn,1 n=1 n=2 n=3 n=4 n=5

1% 0.0274 0.0175 0.0118 0.0103 0.0085
5% 0.0385 0.0223 0.0154 0.0127 0.0101

10% 0.0478 0.0267 0.0175 0.0139 0.0111

τTn,2
99% 0.7487 1.0073 1.2295 1.4078 1.5952
95% 0.4660 0.6787 0.8645 1.0336 1.1892
90% 0.3494 0.5399 0.7066 0.8574 1.0092
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Table: Test Results for the Globe

(a) Values of Statistic for Testing n=m
n=1 n=2 n=3 n=4

τTn,1 0.0531 0.0289 0.0105 0.0097

τTn,2 0.0531 0.0536

(b) Critical Value
n=1 n=2 n=3 n=4

5% 0.0385 0.0223 0.0154 0.0127

95% 0.4660 0.6787

(c) Unit Root Proportions in First Seven Moments
π̂T1 π̂T2 π̂T3 π̂T4 π̂T5 π̂T6 π̂T7
0.516 0.270 0.235 0.188 0.151 0.142 0.117
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Table: Test Results for the Northern Hemisphere

(a) Values of Statistic for Testing n=m
n=1 n=2 n=3 n=4

τTn,1 0.0387 0.0379 0.0119 0.0105

τTn,2 0.0387 0.0407

(b) Critical Value
n=1 n=2 n=3 n=4

5% 0.0385 0.0223 0.0154 0.0127

95% 0.4660 0.6787

(c) Unit Root Proportions in First Seven Moments
π̂T1 π̂T2 π̂T3 π̂T4 π̂T5 π̂T6 π̂T7
0.409 0.205 0.160 0.129 0.101 0.094 0.078
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Table: Test Results for the Southern Hemisphere

(a) Values of Statistic for Testing n=m
n=1 n=2 n=3 n=4

τTn,1 0.0611 0.0219 0.0097 0.0089

τTn,2 0.0611

(b) Critical Value
n=1 n=2 n=3 n=4

5% 0.0385 0.0223 0.0154 0.0127

95% 0.4660

(c) Unit Root Proportions in First Seven Moments
π̂T1 π̂T2 π̂T3 π̂T4 π̂T5 π̂T6 π̂T7
0.633 0.199 0.331 0.168 0.212 0.140 0.157
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Cross-sectional Distributions of

Household Income and Consumption



Data

The cross-sectional observations of household income and
consumptions are obtained at monthly frequency from Consumer
Expenditure Survey (CES), collected for Bureau of Labor Statistics,
US Census Bureau.

CES consists of two surveys - Quarterly Interview Survey and Diary
Survey, that provide information on buying habits, expenditures,
income, and consumer unit (families and single consumers)
characteristics. CES is the only Federal survey that provides the
complete range of consumers’ expenditures and incomes.

CES data provide 400 time series obs from October 1979 to February
2013, with cross-sectional obs for each month ranging from 1,537 to
5,406.

During this sample period, each household is included in the survey at
most five times, and therefore the CE survey provides a pseudo panel
data.
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More on Data

To construct monthly household income and consumption, we follow
the definitions in Krueger and Perri (2006), and aggregate the
monthly values provided in Universal Classification Code (UCC) level
for each month and year.

Nominal income and consumption values are deflated by monthly CPI
provided by BLS for all urban households using a base year which
varies among 1982, 1983 and 1984.

The survey uses topcoding when original data exceeds some
prescribed thresholds, which may change annually and be applied at a
different starting point. We drop all top-coded values.

We correct expenditure on food and impute services from vehicle and
primary residence, according to the regressions specified in Krueger
and Perri (2006). We also exclude obs with possible measurement
error or inconsistency problem, following their sample selection
criteria.
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Cross-sectional Distributions of Household Income
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Densities of Cross-sectional Distributions of Household
Consumptions
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Densities of Cross-sectional Distributions of Income and
Consumption

Figure presents the time series of cross-sectional distributions for
income and consumption with and without demeaning.

Both the income and consumption distributions show some sign of
nonstationary fluctuations evolving over time.

In particular, it seems evident that the time series of their
cross-sectional distributions do not randomly fluctuate around some
fixed mean functions. This suggests the presence of nonstationarity in
their time series.
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Nonstationarity in Income Dynamics

To determine the unit root dimension p in the time series of
cross-sectional distributions of household incomes, use the test τTn to
test the null hypothesis H0 : p = n against the alternative hypothesis
H1 : p ≤ n− 1 with n = 1, . . . , 5.

n 1 2 3 4 5

τTn 0.1077 0.0248 0.0101 0.0096 0.0083

Our test, strongly and unambiguously, rejects H0 against H1

successively for n = 5, 4, 3. Clearly, however, the test cannot reject
H0 in favor of H1 for n = 2.

Therefore, we conclude that there exists two-dimensional unit root,
and set p = 2.

Scree plot in the next slide shows that the leading principal
component dominates all others, including the second principal
component. However, it turns out that the second principal
component is significantly larger than all other smaller components.
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Scree Plot for Time Series of Income Distributions
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Unit Root Portion Estimates for Cross-sectional Moments
of Household Income Distributions

With p = 2, we also compute the unit root portion estimates πTκ for
the κ-th cross-sectional moments of household income distributions
for κ = 1, 2, 3 and 4, as shown below.

πT1 πT2 πT3 πT4

0.6064 0.4137 0.2909 0.2154

The unit root proportions for the first four cross-sectional moments of
household income distributions are all substantially large.

In particular, the unit root proportions for the first two cross-sectional
moments are quite substantial. Needless to say, nonstationarity in the
cross-sectional moments of household income would certainly make
changes in the time series of income distributions more persistent.
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Nonstationarity in Consumption Dynamics

To test for existence of unit root in time series of cross-sectional
distributions of household consumptions, we also use the statistic τTn
to test the null hypothesis H0 : q = n against the alternative
hypothesis H1 : q ≤ n− 1 with n = 1, . . . , 5.

n 1 2 3 4 5

τTn 0.0392 0.0143 0.0137 0.0074 0.0071

Our test successively rejects H0 against H1 for n = 5, 4, 3, 2. However,
at 5% level, the test cannot reject H0 in favor of H1 for n = 1.

Therefore, our test result implies q = 1.

Scree plot in the next slide shows that there is one leading principal
component in the time series of household consumption distributions.
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Scree Plot for Time Series of Consumption Distributions
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Unit Root Portion Estimates for Cross-sectional Moments
of Household Consumptions

Similarly as before, we compute the estimates πTκ of the unit root
proportions πκ for the first four cross-sectional moments of household
consumption, with q = 1.

πT1 πT2 πT3 πT4

0.097 0.028 0.012 0.007

The unit root proportions are small for all of the first four moments,
implying the nonstationarity in the cross-sectional distributions of
household consumptions is not concentrated in the first four moments.

However, the nonstationarity is relatively more concentrated in the
first and the second moments, with the unit root proportion of the
first moment being the largest.
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III. Distributional Cointegration



Common Trends in Time Series of Cross-sectional
Distributions

Introduce a notion of distributional cointegration between two time
series of densities representing cross-sectional distributions of some
economic variables

Explain how to estimate and test for such cointegrating relationships.
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A New Framework

To analyze time series of densities representing cross-sectional
distributions allowing for unit root type of nonstationarity

To analyze possible cointegration between cross-sectional distributions

To learn and interpret both longrun and shortrun relationships
between two time series of cross-sectional distributions
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Model and Methodology



Distributional Time Series

Let (ft) and (gt) be two time series of densities representing
cross-sectional distributions of some economic variables, which we call
distributional time series for short.

We regard the densities (ft) and (gt) as random elements taking
values on the Hilbert space H of square integrable functions on R.

For the main application in the paper, we designate (ft) and (gt)
respectively to be the monthly time series of densities for income and
consumption distributions. They are of course not directly observable
and should be estimated using cross-sectional observations on
household income and consumption.

However, to present our framework and methodology more effectively,
we tentatively assume that they are observable.
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Coordinate Processes

For the time series of densities (ft) and (gt), we define(
〈v, ft〉

)
and

(
〈w, gt〉

)
to be the coordinate processes of (ft) and (gt) respectively in the
directions of v and w for any v, w ∈ H.
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Cross-sectional Moments

The coordinate processes of (ft) and (gt) in the direction of ικ, where

ικ(s) = sκ,

are particularly importance, since we have

〈ικ, ft〉 =

∫
sκft(s)ds and 〈ικ, gt〉 =

∫
sκgt(s)ds,

which represent the κ-th moments of the distributions represented by
ft and gt for each t = 1, . . . , T .

They will be referred subsequently to as the κ-th cross-sectional
moments of (ft) and (gt) respectively.
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Distributional Regression

We consider the distributional regression

gt = µ+Aft + et

for t = 1, . . . , T , where the regressand and regressor are time series of
densities for cross-sectional distributions, µ and A are respectively
function and operator parameters, and (et) is a function-valued error
process.

The operator A generalizes the regression coefficient in
finite-dimensional regression, and may be called the regression
operator.

We allow for nonstationarity in both (ft) and (gt). In particular, we
let some of their coordinate processes (〈v, ft〉) and (〈w, gt〉) have unit
roots and cointegration, which will be referred to as the distributional
unit roots and cointegration.

We assume that (et) is stationary and mean zero, i.e., Eet = 0 for all
t = 1, . . . , T , and impose some exogeneity condition for (ft) .
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Coordinate Regression

The coordinate regression of (gt) in any direction w ∈ H can be
readily obtained from our distributional regression as

〈w, gt〉 = 〈w, µ〉+ 〈w,Aft〉+ 〈w, et〉
= 〈w, µ〉+ 〈A∗w, ft〉+ 〈w, et〉

for any w ∈ H, where A∗ is the adjoint operator of A and
t = 1, . . . , T .

A coordinate regression represents a relationship between particular
coordinate processes of (gt) and (ft).

Clearly, the coordinate regression may be interpreted as the usual
bivariate regression of the coordinate process (〈w, gt〉) of (gt) on the
coordinate process (〈v, ft〉) of (ft) with v = A∗w for any w ∈ H.

The regression reveals the effect of the distribution represented by
(ft) on the coordinate process (〈w, gt〉) for w ∈ H.
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More on Coordinate Regression

The coordinate regression of (gt) in any direction w ∈ H is given as

〈w, gt〉 = 〈w, µ〉+ 〈A∗w, ft〉+ 〈w, et〉

The effect of the distribution represented by (ft) on the coordinate
process (〈w, gt〉) is summarized by the corresponding
v = A∗w = A∗ικ, which we call the response function of (ft) to the
coordinate process (〈w, gt〉).

If we set w = ικ, the coordinate regression reveals how the κ-th
cross-sectional moment of (gt) is affected by the distribution
represented by (ft), and the response function v = A∗w = A∗ικ
measures the effect of (ft) on the cross-sectional moments of (gt).

In the paper, we analyze the coordinate regression separately for
stationary and nonstationary components of (ft) and (gt).
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Regression in a Demeaned Form

We may also consider the distributional regression in a demeaned
form as

yt = Axt + εt,

where

xt = ft −
1

T

T∑
t=1

ft, yt = gt −
1

T

T∑
t=1

gt

and εt = et − T−1
∑T

t=1 et for t = 1, . . . , T .

Note that εt ≈ et − Eet = et for large T , since we assume that (et) is
stationary and has mean zero.

However, in general, (xt) and (yt) do not behave the same as
(ft − Eft) and (gt − Egt) even asymptotically, since (ft) and (gt) are
nonstationary.

We mainly deal with the demeaned densities (xt) and (yt) in our
statistical analysis.
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Demeaned Densities and Moment Functions

We assume that the densities (ft) and (gt) all have supports included
in a compact subset K of R, for t = 1, . . . , T .

Then the demeaned densities (xt) and (yt) take values in

L2
0(K) =

{
w ∈ H

∣∣∣∣∫
K
w(s)ds = 0,

∫
K
w2(s)ds <∞

}
,

which is a subspace of the Hilbert space L2(R) of square integrable
functions on R endowed with the usual inner product.

The moment functions ικ are redefined as

ικ(s) = sκ − 1

|K|

∫
K
sκds,

where |K| denotes the length of K, so that they belong to L2
0(K).

For all our actual computations, we use an approximate one-to-one
correspondence between L2

0(K) and RM for some large M using a
Wavelet basis in L2

0(K).
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Stationarity and Nonstationarity Subspaces

We allow for nonstationarity in (ft) and (gt). More precisely, we
assume that in the directions of some v and w for v, w ∈ H, the
coordinate processes (〈v, ft〉) and (〈w, gt〉) have unit roots.
We define the subspaces FS and GS of H as

FS =
{
v ∈ H

∣∣∣〈v, ft〉 is stationary
}

GS =
{
w ∈ H

∣∣∣〈w, gt〉 is stationary
}
,

which are called respectively the stationary subspaces of (ft) and (gt).
Nonstationary subspaces FN and GN of (ft) and (gt) are defined as
orthogonal complements of FS and GS , so that
H = FN ⊕ FS = GN ⊕GS .
We only consider the unit root type nonstationarity in (ft) and (gt),
and therefore the time series (〈v, ft〉) and (〈w, gt〉) are unit root
processes for all v ∈ FN and w ∈ GN .
Nonstationarity subspaces FN and GN are assumed to be finite
dimensional.
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Estimation of Nonstationarity Subspace

We show how we may consistently estimate the nonstationary
subspaces FN and GN respectively from (ft) and (gt).

For a given time series of densities, they propose to determine the
dimension of its nonstationary subspace by recursively testing for the
number of unit roots and estimate the nonstationary subspace itself,
based on the functional principle component analysis.
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Distributional Cointegration

If (ft) and (gt) have the unit root type nonstationarity, it is natural to
consider the possibility that some of their coordinate processes are
cointegrated.

That is, for some v ∈ FN and w ∈ GN , we may have

〈w, gt〉 = π + 〈v, ft〉+ ut

with some constant π, where (ut) is a general stationary process with
mean zero.
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Distributional Cointegrating Function

Assume more explicitly that FN and GN are p- and q-dimensional
and there are p- and q-unit roots in (ft) and (gt), respectively.
Therefore, we have v1, . . . , vp and w1, . . . , wq, which are linearly
independent and span FN and GN , such that 〈vi, ft〉 and 〈wj , gt〉 are
unit root processes for i = 1, . . . , p and j = 1, . . . , q. If the
(p+ q)-dimensional process (zt) defined as

zt =
(
〈v1, ft〉, . . . , 〈vp, ft〉, 〈w1, gt〉, . . . , 〈wq, gt〉

)′
is cointegrated with the cointegrating vector

c = (−a1, . . . ,−ap, b1, . . . , bq)′ ,

then the distributional cointegration holds with

v = a1v1 + · · ·+ apvp and w = b1w1 + · · ·+ bqwq.

The pair of functions v and w are called the distributional
cointegrating functions of two time series (ft) and (gt) of densities,
and denote them by pair of functions vC and wC .
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Longrun Response Function

The distributional cointegrating function (vC , wC) of (ft) and (gt)
measures the longrun response vC of the time series of cross-sectional
distribution represented by (ft) on the time series (〈wC , gt〉).

In particular, we define vC to be the longrun response function of (ft)
on (〈wC , gt〉), which we may interpret as summarizing the longrun
effect of (ft) on the longrun movement of (gt) in the direction of wC .
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Possible Number of Cointegrating Relations

Clearly, there are at most r-number of linearly independent
distributional cointegrating relationships, r ≤ min(p, q), between (ft)
and (gt).

Otherwise we would have a cointegrating vector c of the form
c = (−a1, . . . ,−ap, 0, . . . , 0)′ or c = (0, . . . , 0, b1, . . . , bq)

′, which
implies that there is a linear combination of v1, . . . , vp or w1, . . . , wq
whose inner product with (ft) or (gt) becomes stationary.

This contradicts the assumption that v1, . . . , vp and w1, . . . , wq are
linearly independent functions that span FN and GN respectively.
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Distributional Cointegration

The distributional cointegration does not presume any distributional
regression relationship like gt = µ+Aft + et. However, for two time
series of densities (ft) and (gt) that are given by the above
distributional regression model, we may easily deduce that

We have

Lemma Let (ft) and (gt) be given by the distributional regression
model gt = µ+Aft + et with some stationary (et). Then for any
w ∈ GN we have A∗w /∈ FS and the distributional cointegration

〈w, gt〉 = π + 〈v, ft〉+ ut

holds with v = PNA
∗w.
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Longrun Response Function to Cross-sectional Moments

If (ft) and (gt) are given by the distributional regression
gt = µ+Aft + et, then we have

GC = GN and r = q ≤ p,

Note that we still have FC ⊂ FN in general. In this case, it follows
that there exists a distributional cointegrating (vC , wC) function of
(ft) and (gt) having

wC = QN ικ.

However, if we let gNt = QNgt, then it follows that

〈wC , gt〉 = 〈QN ικ, gt〉 = 〈ικ, QNgt〉 = 〈ικ, gNt 〉,

and therefore, we may interpret the corresponding vC as the longrun
response function of (ft) to the κ-th cross-sectional moment of (gNt ),
or the κ-th longrun cross-sectional moment of (gt). Recall that (gNt )
is the nonstationary component of (gt).
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Test for Distributional Cointegration

Assume that we find p and q, the numbers of unit roots in (ft) and
(gt), and obtain consistent estimates (vTi ) of (vi) and (wTj ) of (wj),
i = 1, . . . , p and j = 1, . . . , q, which span the nonstationary subspaces
FN and GN of (ft) and (gt).

To test for distributional cointegration, we let (zTt ) be defined as

zTt =
(
〈vT1 , xt〉, . . . , 〈vTp , xt〉, 〈wT1 , yt〉, . . . , 〈wTq , yt〉

)′
,

Clearly, the test τTn to determine the number of distributional unit
roots may be used to test for the number of unit roots in (zt),
zt =

(
〈v1, xt〉, . . . , 〈vp, xt〉, 〈w1, yt〉, . . . , 〈wq, yt〉

)′
.

The maximum number of unit roots for (zt) is of course given by
p+ q (no distributional cointegration in (ft) and (gt)).

n-number of unit roots for (zt) implies r-number of cointegrating
relationships with r = (p+ q)− n.
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IV. Stationary Distributional Regression



Stationary Distributional Regression

Let fSt = PSft and gSt = QSgt, t = 1, . . . , T , so that (fSt ) and (gSt )
are the stationary components of (ft) and (gt).

Consider the stationary distributional regression

gSt = ν +BfSt + et,

where ν is the constant parameter function and B is the regression
operator, and (et) is a function-valued stationary error process with
mean zero.

To identify the regression operator B, we assume that (et) is
uncorrelated with (fSt ), i.e., EfSt ⊗ et = 0.

Yoosoon Chang (Indiana) Distributional Cointegration 10 July 2014



Stationary Distributional Regression

If (ft) and (gt) are given by the distributional regression model
gt = µ+Aft + et with some stationary (et), it follows immediately
that the stationary distributional regression holds for (fSt ) and (gSt ).

In fact, we have

Lemma Let (ft) and (gt) be given by the distributional regression
model with some stationary (et). Then we have the stationary
distributional regression

gSt = ν +BfSt + et

with the regression operator B = QSA.
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Shortrun Response Function

We may deduce from the stationary distributional regression that

〈w, gSt 〉 = 〈w, ν〉+ 〈w,BfSt 〉+ 〈w, et〉
= 〈w, ν〉+ 〈B∗w, fSt 〉+ 〈w, et〉,

where B∗ is the adjoint operator of B.

If, in particular, we set w = ικ, then B∗w = B∗ικ measures the
response of the stationary component of (ft) to the κ-th
cross-sectional moment of the stationary component of (gt).

We will simply refer it as the shortrun response function of (ft) to the
κ-th cross-sectional moment of (gt).
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Demeaned Stationary Distributional Regression

In parallel, we may write the stationary distributional regression

ySt = BxSt + εt

in demeaned form, where (xSt ) and (ySt ) are defined from (fSt ) and
(gSt ) exactly as (xt) and (yt) are defined from (ft) and (gt).

We use the demeaned stationary distributional regression to estimate
B. For the consistent estimation of regression operator B and its
asymptotic theory, see Park and Qian (2011).

(xSt ) and (ySt ) belong to the Hilbert space L2
0(K), and therefore, can

be represented as large dimensional vectors using a Wavelet basis in
L2
0(K), under the assumption that (ft) and (gt) have supports

contained in a compact subset K of R.
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Inference on Stationary Distributional Regression

Now we explain how to consistently estimate the regression operator
B on FS in the stationary distributional regression. Let

MS = E
[
(fSt − EfSt )⊗ (fSt − EfSt )

]
NS = E

[
(gSt − EgSt )⊗ (fSt − EfSt )

]
.

Then it follows from the orthogonality condition EfSt ⊗ et = 0 that

NS = BMS ,

which we may use to estimate B.

Unfortunately, however, it is generally impossible to use the
relationship and define the regression operator B as B = NSM

−1
S .

This will be explained below.
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Ill-posed Inverse Problem

We assume that MS is a compact operator. Being compact and
self-adjoint, MS allows for the spectral representation

MS =

∞∑
i=1

λi(vi ⊗ vi),

where (λi, vi) are the pairs of eigenvalue and eigenvector of MS .

Even in the case λi 6= 0 for all i so that M−1S is well defined and
given by M−1S =

∑∞
i=1 λ

−1
i (vi ⊗ vi), M−1S is not defined on the entire

domain of MS . In fact, its domain is restricted to a proper subset of
the domain of MS given by

{
w
∣∣∑∞

i=1〈vi, w〉2/λ2i <∞
}

.

Therefore, we have B = NSM
−1
S only on the restricted domain. This

problem is often referred to an ill-posed inverse problem.
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Restriction on Regression Operator

The usual method to deal with this problem is to restrict the definition
of MS in a finite subset of its domain. Assuming λ1 > λ2 > · · · > 0,
we let FSm be the span of the m-eigenvectors v1, . . . , vm associated
with the m-largest eigenvalues λ1, . . . , λm. Moreover, we denote by
PSm the projection on FSm , and define MSm = PSmMSPSm and

M+
Sm

=

m∑
i=1

1

λi
(vi ⊗ vi),

i.e., the inverse of MS on FSm .

We let
Bm = NSM

+
Sm
,

which is B restricted to FSm of FS .
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Estimation of Restricted Regression Operator

The restricted regression operator Bm can be consistently estimated
by its sample analogue.

We define

MT
S =

1

T

T∑
t=1

xSt ⊗ xSt and NT
S =

1

T

T∑
t=1

ySt ⊗ xSt ,

which are the sample analogue estimators of the operators MS and
NS respectively, and denote by (λTi , v

T
i ) the pairs of eigenvalues and

eigenvectors of MT
S such that λT1 > λT2 > · · · .
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Estimation of Restricted Regression Operator

Then we define

MT+
Sm

=

m∑
i=1

1

λTi
(vTi ⊗ vTi ),

i.e., the sample analogue estimator of the operator M+
Sm

, and
subsequently,

BT
m = NT

SM
T+
Sm

,

which we use as an estimator for the regression operator B.

We show that the estimator BT
m is consistent for B under very

general conditions if we let m→∞ as T∞ at a controlled rate.
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Empirical IllustrationsInteractive

Income-Consumption Dynamics



Interactive Income-Consumption Dynamics

As an application of our model and methodology, we analyze the
interactions between the income and consumption dynamics.

For our analysis, we apply our theory developed thus far with (ft) and
(gt) representing respectively the time series of household income and
consumption distributions.
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Data

We obtain the time-series of cross-sectional distributions of income
and consumption using the U.S. households monthly income and
consumption data from the Consumer expenditure (CE) survey series,
which provides continuous flow of information on buying habits of the
US customers.

The survey is carried out by the U.S. Census Bureau under contract
with the Bureau of Labor Statistics (BLS).

We obtain the monthly data on income and consumption during the
period from October 1979 to February 2013.

During this sample period, each household included in the survey at
most five times, and therefore the CE survey provides a pseudo panel
data.
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Data

To construct monthly household income and consumption, we follow
the definitions of income and consumption given by Krueger and Perri
(2006), and aggregate the monthly values provided in Universal
Classification Code (UCC) level.

We deflate the nominal income and consumption values by the
monthly CPI provided by BLS for all urban households with using a
base year which varies among 1982, 1983 and 1984.

The survey uses topcoding to change the values when the original
data exceeds some prescribed critical values, which may change
annually and be applied at a different starting point. We drop all
top-coded values of household income and consumption.

We correct the expenditure on food and impute services from vehicle
and from primary residence, according to the regressions specified in
Krueger and Perri (2006). We also exclude obs with possible
measurement error or inconsistency problem.
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Cross-sectional Distributions of Household Income
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Densities of Cross-sectional Distributions of Household
Consumptions
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Interactive Dynamics of Income and Consumption

If

the time series of income distributions has p unit roots

the time series of consumption distributions has q unit roots

there are r cointegrating relationships between them

Then, there are (p+ q)− r unit roots in their time series combined
together.
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Test for Distributional Cointegration

We may use the test τTn also in this case to find the number of unit
roots in the combined time series of income and consumption
distributions by testing the null hypothesis H0 : (p+ q)− r = n
against the alternative hypothesis H1 : (p+ q)− r ≤ n− 1. Given
p = 2 and q = 1, we may have up to three unit roots in the time
series of income and consumption distributions together. Therefore,
we consider only n = 1, 2 and 3.

n 1 2 3

τTn 0.1362 0.0248 0.0116

Our test rejects H0 against H1 for n = 3. However, the test cannot
reject H0 in favor of H1 for n = 2, giving (p+ q)− r = 2.

This implies r = 1, i.e., the presence of a single cointegrating
relationship between household income and consumption
distributions, since we have p = 2 and q = 1.
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Scree Plot for Time Series of Income and Consumption
Distributions
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Cointegrating Function

Let v1 and v2 be orthonormal functions that span the nonstationary
subspace FN of the time series (ft) of income distributions, and let w
be the normalized function generating the nonstationary subspace GN
of the time series (gt) of consumption distribution.

We find the presence of cointegration in the time series of income and
consumption distributions, and therefore, there exists constants a1, a2
and b such that

b〈w, gt〉 = δ + a1〈v1, ft〉+ a2〈v2, ft〉+ ut

with some constant function δ and general stationary process with
mean zero.

In this case, we have

vC = a1v1 + a2v2 and wC = bw,

where (vC , wC) is the cointegrating function of (ft) and (gt).
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Integrated Coordinate Processes of Income and
Consumption Distributions
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Common Trends in Income and Consumption Distributions
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Longrun Response Function of Income to Consumption

Using the procedures we introduce in the previous section, we may
readily obtain estimates of vC and wC , which we define as

vTC = aT1 v
T
1 + aT2 v

T
2 and wC = bTwT ,

from our estimates vT1 , v
T
2 and wT of v1, v2 and w, and aT1 , a

T
2 and bT

of a1, a2 and b.

The estimates vT1 , v
T
2 and wT are obtained from our testing procedure

for distributional unit roots, and the estimates aT1 , a
T
2 and bT from

our testing procedure for distributional cointegration, respectively in
and between household income and consumption distributions.

The estimated longrun response function of income distribution to
consumption distribution is given by vTC .
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Longrun Response Function of Income to Consumption
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Longrun Response Function of Income to Consumption

Our estimated longrun income response function to consumption
reveals some interesting fact.

For instance, it shows that the longrun trend in consumption is most
affected by the income group with monthly earnings slightly over
$2,000. Roughly, all households with monthly earnings between
$1,000 and $4,000 seem to play important roles in determining the
persistent stochastic trend in consumption. As the level of monthly
earning decreases below $1,000, the longrun component of
household’s income has very little impact on the longrun consumption.

The longrun component of household’s income for the rich also does
not have any major effect on the longrun consumption, though the
magnitude of their effect decreases at a slower rate as their income
increases than the rate it decreases as the income decreases for the
poor.
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Note

The income response to consumption is estimated to be negative for
the household with monthly earnings less than approximately $600,
which we believe to be just an evidence of insignificant response.

Observations for households with monthly earnings below
approximately $500 are scarce and irregular, so we do not expect to
have any reliable results over very low income levels.
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Shortrun Response of Income Distribution to Consumption

To analyze the shortrun response of income distribution to
consumption, we compute and plot the shortrun response function of
income distribution to the κ-th cross-sectional moments of
consumption distribution, which is introduced in (??), for
κ = 1, . . . , 4. It is given by

BT∗
m ικ,

where BT∗
m is the adjoint operator of BT

m defined in (??).

The estimated shortrun response function of income distribution to
the cross-sectional moments of consumption distribution is given in
the next slide.
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Shortrun Income Response Function to Consumption
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Shortrun Response of Income Distribution to Consumption

Our estimated shortrun income response functions to consumption
moments appear to provide some important clues on the shortrun
relationship between income and consumption.

All moments of consumption yield very similar income response
functions. Except for the income group with monthly earnings less
than approximately $600, whose responses are negative and irregular,
the income responses seem to be coherent and meaningful at all
levels.

The shortrun income responses are maximized around the level a little
below $1,000 of monthly earnings for all moments of consumption.
Needless to say, this means that the shortrun consumption is most
affected by the transitory income of low income households.

The shortrun income response decreases sharply as income increases,
and becomes almost entirely negligible once the income level exceeds
$2,000 in monthly earnings.
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Summary

We develop a new framework and methodology to analyze the
relationships between two time series of cross-sectional distributions
in the presence of distributional unit roots and cointegration.

Their relationships, both in the longrun and in the shortrun, are
revealed and summarized by what we call the response functions,
which provide the information about how one distribution affects the
other.

Our analysis makes it possible to identify and estimate some
important relationships between two time series of cross-sectional
distributions, which we can never observe using the time series
analysis relying on the aggregates.

Such information will never be revealed by the conventional time
series analysis. We apply our approach to study the income and
consumption dynamics, and find some interesting and important facts
on the longrun and shortrun responses of consumption to income
changes. Our findings have an immediate policy implication.
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