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1 Introduction

Many cross-sectional observations are available over time for economic analysis. Though

some of them are made over time for the same set of individuals, for many others cross-

sectional observations are collected for different groups of individuals as time changes. The

former are called genuine panels, while the latter are often referred to as pseudo panels. For

most panel studies in economics, genuine panels have been used. The use of pseudo panels

has been rather limited. The studies relying on genuine panels typically use the data sets

that include large dimensional cross-section observations with relatively much smaller time

series dimensions. If we need to analyze observations over a long span, which is necessary

to study persistent changes in any economic relationships over time, only pseudo panels are

available in most cases. True, pseudo panels do not contain as much information as genuine

panels. Obviously, however, they include much more information to be exploited than their

cross-sectional aggregates used in the conventional time series analysis.

In the paper, we develop a new framework to analyze the longrun relationships between

two time series of cross-sectional distributions, which have some persistent features. The

persistent features of individual time series of cross-sectional distributions are character-

ized by distributional unit roots, and the longrun relationships between two time series

of cross-sectional distributions having distributional unit roots are modeled as distribu-

tional cointegration. Our framework requires only pseudo panels, and therefore, it is widely

applicable in practice. In our approach, we consider time series of probability densities

representing cross-sectional distributions. The densities for cross-sectional distributions are

estimated from cross-sectional observations, and we analyze them as time series of func-

tional observations. Our analysis relies on the statistical theory that has been developed

earlier by several authors including Bosq (2000), Park and Qian (2012) and Chang et al.

(2012), among others.

The monograph by Bosq (2000) presents a basic idea and methodology on how to analyze

the stationary time series of functional data. Park and Qian (2012) proposes a framework

to analyze the time series of probability densities representing cross-sectional distributions

and develops the relevant statistical theory, assuming the stationarity of the underlying

probability densities over time. More recently, their framework has been extended by Chang

et al. (2012) to allow for the unit root type nonstationarity. They demonstrate that time

series of cross-sectional distributions such as the time series of income distributions may

be nonstationary and have distributional unit roots, and develop the methodology to draw

inference on the nonstationarity in time series of cross-sectional distributions. In the paper,

we further extend their approach to multiple nonstationary time series of cross-sectional
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distributions individually having unit roots, and create a new framework to accommodate

the presence of common stochastic trends in their time series that we call the distributional

cointegration in the paper.

Our approach makes it possible to decompose the time series of cross-sectional distri-

butions into stationary and nonstationary components. Accordingly, we may separately

identify the shortrun and longrun relationships between two time series of cross-sectional

distributions. The distributional cointegration between them provides their longrun rela-

tionships. Their shortrun relationships are specified and estimated by the stationary distri-

butional regression of their stationary components. The longrun and shortrun relationships

are measured and interpreted using what we define in the paper respectively as the longrun

and shortrun response functions. Roughly speaking, response functions show how the other

distribution is affected by one distribution at each of its different levels. If the response

function of one distribution to the other has a peak at a certain level, it implies that the

effect of a change in one distribution on the other is maximized if the change occurs in one

distribution at that level.

Our new framework and methodology are applied to analyze the distributional cointe-

gration between the time series of cross-sectional income and consumption distributions,

using the U.S. households monthly income and consumption data from the Consumer ex-

penditure (CE) survey series during the period from October 1979 to February 2013. We

demonstrate that both the time series of income and consumption distributions have unit

roots: The time series of income distributions has two unit roots, whereas the time series

of consumption distributions has only one unit root. Furthermore, we find the presence

of cointegration between the time series of income and consumption distributions: There

is one cointegrating relationship between them. We slao obtain the longrun and shortrun

response functions of income to consumption. They show how consumption is responded in

the longrun and in the shortrun to income changes at each income level. Consumption is

responded most in the longrun to changes in income of households with monthly earnings

approximately $2,000, but in the shortrun changes in income of household with monthly

earnings approximately $1,000 entails the biggest impact on consumption changes.

The rest of the paper is organized as follows. Section 2 presents the model and method-

ology. Time series of cross-sectional distributions are formally introduced with the basic

framework to analyze their stationary and nonstationary relationships. In particular, the

concepts of distributional unit roots and cointegration and the methodology to characterize

them are developed. In Section 3, we present all statistical procedures required to do in-

ference on our model. The methods of inference on both the stationary and nonstationary

components of the model are provided. An empirical application on the study of interac-
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tive income-consumption dynamics follows in Section 4. The section summarizes all our

findings on the characteristics of the time series of income and consumption, and on their

interactions in the shortrun and in the longrun. Especially, we present the longrun and

shortrun responses of consumption distributions to the changes in income distributions at

each income level. Section 5 concludes the paper, and followed by Appendix that includes

mathematical proofs.

2 Model and Methodology

In this section, we introduce a new framework to analyze the time series of densities rep-

resenting cross-sectional distributions of some economic variables. We allow for the unit

root type nonstationarity, possibly having some common stochastic trends, in the time se-

ries of distributions. Therefore, the notions of unit roots and cointegration in distributions

naturally arise. Under such a general setup, we provide a methodology that is very useful

to learn and interpret the longrun and shortrun relationships between two time series of

cross-sectional distributions.

2.1 Distributional Time Series

Let (ft) and (gt) be two time series of densities representing cross-sectional distributions of

some economic variables, which we call distributional time series for short. We regard the

densities (ft) and (gt) as random elements taking values on the Hilbert space H of square

integrable functions on R. As usual, we define the inner product 〈v,w〉 =
∫

v(s)w(s)ds for

any v,w ∈ H. For the main application in the paper, we designate (ft) and (gt) respec-

tively to be the monthly time series of densities for income and consumption distributions.

They are of course not directly observable and should be estimated using cross-sectional

observations on household income and consumption. However, to present our framework

and methodology more effectively, we tentatively assume that they are observable. In fact,

the errors incurred in estimating cross-sectional densities are expected to be negligible and

vanish asymptotically for many practical applications with much larger cross-sectional di-

mensions relative to their time series dimensions.1

For the time series of densities (ft) and (gt), we define

(

〈v, ft〉
)

and
(

〈w, gt〉
)

1This is because the estimation errors for cross-sectional densities decrease uniformly over any compact
interval as the number of cross-sectional observations increases.
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to be the coordinate processes of (ft) and (gt) respectively in the directions of v and w for

any v,w ∈ H. The coordinate processes of (ft) and (gt) in the direction of ικ, where

ικ(s) = sκ, (1)

are particularly importance, since we have

〈ικ, ft〉 =

∫

sκft(s)ds and 〈ικ, gt〉 =

∫

sκgt(s)ds,

which represent the κ-th moments of the distributions represented by ft and gt for each

t = 1, . . . , T . They will also be referred subsequently to as the κ-th cross-sectional moments

of (ft) and (gt) respectively.

In what follows, we often consider, though not exclusively, the distributional regression

gt = µ+Aft + et (2)

for t = 1, . . . , T , where the regressand and regressor are time series of densities for cross-

sectional distributions, µ and A are respectively function and operator parameters, and (et)

is a function-valued error process. The operator A generalizes the regression coefficient in

finite-dimensional regression, and may be called the regression operator. In the distribu-

tional regression (2), we allow for nonstationarity in both (ft) and (gt). In particular, we let

some of their coordinate processes (〈v, ft〉) and (〈w, gt〉) have unit roots and cointegration,

which will be referred to as the distributional unit roots and cointegration. They will be

discussed in detail and fully analyzed in the next subsections. Typically, we assume that

the error process (et) is stationary and mean zero, i.e., Eet = 0 for all t = 1, . . . , T . Fur-

thermore, for some of our subsequent results, we need to impose some exogeneity condition

for (ft) and this will be introduced later.

The coordinate regression of (gt) in any direction w ∈ H can be readily obtained from

our distributional regression. In fact, it follows directly from (2) that

〈w, gt〉 = 〈w,µ〉 + 〈w,Aft〉+ 〈w, et〉

= 〈w,µ〉 + 〈A∗w, ft〉+ 〈w, et〉 (3)

for any w ∈ H, where A∗ is the adjoint operator of A and t = 1, . . . , T . A coordinate

regression represents a relationship between particular coordinate processes of (gt) and (ft).

Clearly, the coordinate regression (3) may be interpreted as the usual bivariate regression

of the coordinate process (〈w, gt〉) of (gt) on the coordinate process (〈v, ft〉) of (ft) with
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v = A∗w for any w ∈ H. The regression reveals the effect of the distribution represented

by (ft) on the coordinate process (〈w, gt〉) for w ∈ H. The effect is summarized by the

corresponding v = A∗w = A∗ικ, which we call the response function of (ft) to the coordinate

process (〈w, gt〉). If we set w = ικ, the coordinate regression (3) reveals how the κ-th cross-

sectional moment of (gt) is affected by the distribution represented by (ft), and the response

function v = A∗w = A∗ικ measures the effect of (ft) on the cross-sectional moments of

(gt). In the paper, we analyze the coordinate regression (3) separately for stationary and

nonstationary components of (ft) and (gt).

We may also consider the distributional regression (2) in a demeaned form as

yt = Axt + εt, (4)

where

xt = ft −
1

T

T
∑

t=1

ft, yt = gt −
1

T

T
∑

t=1

gt (5)

and εt = et − T−1
∑T

t=1
et for t = 1, . . . , T . Of course, our definitions of (xt), (yt) and (εt)

are all dependent upon T , and should be denoted more appropriately as, say, (xTt ), (y
T
t )

and (εTt ) with the superscript T . However, for the sake of simplicity in our notation, we

suppress the superscript T in our subsequent discussions. Note that εt ≈ et − Eet = et for

large T , since we assume that (et) is stationary and has mean zero. However, in general,

(xt) and (yt) do not behave the same as (ft−Eft) and (gt−Egt) even asymptotically, since

(ft) and (gt) are nonstationary.

In our statistical analysis, we mainly deal with the demeaned densities (xt) and (yt)

defined in (5). To implement our methodology, we assume that the densities (ft) and

(gt) all have supports included in a compact subset K of R, for t = 1, . . . , T . Under the

assumption, the demeaned densities (xt) and (yt) take values in

L2
0(K) =

{

w ∈ H

∣

∣

∣

∣

∫

K

w(s)ds = 0,

∫

K

w2(s)ds < ∞

}

, (6)

which is a subspace of the Hilbert space L2(R) of square integrable functions on R endowed

with the usual inner product. The moment functions ικ are redefined as

ικ(s) = sκ −
1

|K|

∫

K

sκds,

where |K| denotes the length of K, so that they belong to L2
0(K). As is well known, the

Hilbert space L2
0(K) is separable and has a countable basis. For all our actual computations,
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we use an approximate one-to-one correspondence between L2
0(K) and R

M for some large

M using a Wavelet basis in L2
0(K).2

2.2 Distributional Unit Root and Cointegration

As discussed, we allow for nonstationarity in (ft) and (gt). More precisely, we assume

that, in the directions of some v and w for v,w ∈ H, the coordinate processes (〈v, ft〉) and

(〈w, gt〉) have unit roots. Following Chang et al. (2012), we define the subspaces FS and

GS of H as

FS =
{

v ∈ H
∣

∣

∣
〈v, ft〉 is stationary

}

GS =
{

w ∈ H
∣

∣

∣
〈w, gt〉 is stationary

}

,

which are called respectively the stationary subspaces of (ft) and (gt), and let FN and GN be

the orthogonal complements of FS and GS , called respectively the nonstationary subspaces

of (ft) and (gt), so that H = FN ⊕ FS = GN ⊕ GS . We only consider the unit root type

nonstationarity in (ft) and (gt), and therefore, it follows that the time series (〈v, ft〉) and

(〈w, gt〉) are unit root processes for all v ∈ FN and w ∈ GN . Throughout the paper, we

assume that the nonstationarity subspaces FN and GN are finite-dimensional. Needless

to say, the stationary subspaces FS and GS are infinite-dimensional. In what follows, we

denote by PN and QN the projections on the nonstationary subspaces FN and GN of (ft)

and (gt), and similarly by PS and QS the projections on the stationary subspaces FS and

GS of (ft) and (gt), respectively.

Chang et al. (2012) show how we may consistently estimate the nonstationary subspaces

FN and GN respectively from (ft) and (gt). For a given time series of densities, they

propose to determine the dimension of its nonstationary subspace by recursively testing

for the number of unit roots and estimate the nonstationary subspace itself, based on the

functional principle component analysis. They also convincingly demonstrate that the time

series of income distributions are nonstationary and have unit roots. The reader is referred

to their paper for more details.

If (ft) and (gt) have the unit root type nonstationarity, it is natural to consider the

possibility that some of their coordinate processes are cointegrated. That is, for some

2Wemay of course possibly use other bases such as trigonometric functions. However, we find that Wavelet
bases work much better than other choices including trigonometric functions in dealing with demeaned
densities.
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v ∈ FN and w ∈ GN , we may have

〈w, gt〉 = δ + 〈v, ft〉+ ut (7)

with some constant δ, where (ut) is a general stationary process with mean zero. The

relationship in (7) will be referred to as the distributional cointegration in the paper.

Now we assume more explicitly that FN and GN are p- and q-dimensional and there

are p- and q-unit roots in (ft) and (gt), respectively. Therefore, we have v1, . . . , vp and

w1, . . . , wq, which are linearly independent and span FN and GN , such that 〈vi, ft〉 and

〈wj , gt〉 are unit root processes for i = 1, . . . , p and j = 1, . . . , q.3 If the (p+ q)-dimensional

process (zt) defined as

zt =
(

〈v1, ft〉, . . . , 〈vp, ft〉, 〈w1, gt〉, . . . , 〈wq, gt〉
)′

(8)

is cointegrated with the cointegrating vector

c = (−a1, . . . ,−ap, b1, . . . , bq)
′ , (9)

then the distributional cointegration in (7) holds with

v = a1v1 + · · ·+ apvp and w = b1w1 + · · ·+ bqwq. (10)

In the paper, we call the pair of functions v and w defined in (10) the distributional coin-

tegrating functions of two time series (ft) and (gt) of densities, and denote them by pair of

functions vC and wC .

The distributional cointegrating function (vC , wC) of (ft) and (gt) measures the longrun

response vC of the time series of cross-sectional distribution represented by (ft) on the time

series (〈wC , gt〉). In particular, we define vC to be the longrun response function of (ft) on

(〈wC , gt〉), which we may interpret as summarizing the longrun effect of (ft) on the longrun

movement of (gt) in the direction of wC .

Clearly, there are at most r-number of linearly independent distributional cointegrat-

ing relationships, r ≤ min(p, q), between (ft) and (gt). This is because otherwise we

would have a cointegrating vector c in (9) of the form c = (−a1, . . . ,−ap, 0, . . . , 0)
′ or

c = (0, . . . , 0, b1, . . . , bq)
′, which implies that there is a linear combination of v1, . . . , vp or

w1, . . . , wq whose inner product with (ft) or (gt) becomes stationary, contradicting the as-

3Of course, they are not uniquely defined. However, our subsequent analysis does not require the indi-
vidual identification of v1, . . . , vp and w1, . . . , wq, and becomes invariant with respect to their choices as long
as they span FN and GN respectively.
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sumption that v1, . . . , vp and w1, . . . , wq are linearly independent functions that span FN

and GN respectively. In case r > 1, we use the notations (vCk , w
C
k ), k = 1, . . . , r, for the

distributional cointegrating functions of (ft) and (gt). However, in this case, the distribu-

tional cointegrating functions (vCk , w
C
k ), k = 1, . . . , r, of (ft) and (gt) are not individually

identified, unless we impose some specific restrictions on their normalization. The subspaces

of FN ×GN spanned by them are nevertheless well identified, which we denote by FC ×GC

and call the distributional cointegrating subspaces of (ft) and (gt).

The distributional cointegration does not presume any distributional regression relation-

ship like (2). However, for two time series of densities (ft) and (gt) that are given by the

distributional regression model (2), we may easily deduce that

Lemma 2.1 Let (ft) and (gt) be given by the distributional regression model (2) with

some stationary (et). Then for any w ∈ GN we have A∗w /∈ FS and the distributional

cointegration (7) holds with v = PNA∗w.

If (ft) and (gt) are given by the distributional regression (2), then we have

GC = GN and r = q ≤ p,

due to Lemma 2.1. Note that we still have FC ⊂ FN in general. In this case, it follows that

there exists a distributional cointegrating (vC , wC) function of (ft) and (gt) having

wC = QN ικ.

However, if we let gNt = QNgt, then it follows that

〈wC , gt〉 = 〈QN ικ, gt〉 = 〈ικ, QNgt〉 = 〈ικ, g
N
t 〉,

and therefore, we may interpret the corresponding vC as the longrun response function of

(ft) to the κ-th cross-sectional moment of (gNt ), or the κ-th longrun cross-sectional moment

of (gt).
4 Recall that (gNt ) is the nonstationary component of (gt).

4It follows from Lemma 2.1 that vC is given more explicitly as vC = PNA∗QN ικ. However, we do not
need to know A∗ to find vC . We may simply write wC as a linear combination wC = b1w1 + · · ·+ bqwq and
obtain the corresponding vC = a1v1 + · · ·+ apvp, once we estimate the cointegrating subspaces of (ft) and
(gt) as in (10).
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2.3 Stationary Distributional Regression

We let fS
t = PSft and gSt = QSgt, t = 1, . . . , T , so that (fS

t ) and (gSt ) are the stationary

components of (ft) and (gt). Consider the stationary distributional regression

gSt = ν +BfS
t + et, (11)

where ν is the constant parameter function and B is the regression operator, and (et) is a

function-valued stationary error process with mean zero. To identify the regression operator

B, we assume that (et) is uncorrelated with (fS
t ), i.e., EfS

t ⊗ et = 0, in the stationary

distributional regression (11).5

If (ft) and (gt) are given by the distributional regression model (2) with some stationary

(et), it follows immediately that the stationary distributional regression (11) holds for (fS
t )

and (gSt ). In fact, we have

Lemma 2.2 Let (ft) and (gt) be given by the distributional regression model (2) with

some stationary (et). Then we have QSAPN = 0 and the stationary distributional regression

(11) holds with the regression operator B = QSA.

We may deduce from the stationary distributional regression (11) that

〈w, gSt 〉 = 〈w, ν〉+ 〈w,BfS
t 〉+ 〈w, et〉

= 〈w, ν〉+ 〈B∗w, fS
t 〉+ 〈w, et〉, (12)

where B∗ is the adjoint operator of B. If, in particular, we set w = ικ, then B∗w =

B∗ικ measures the response of the stationary component of (ft) to the κ-th cross-sectional

moment of the stationary component of (gt), which we will simply refer to as the shortrun

response function of (ft) to the κ-th cross-sectional moment of (gt).

In parallel with (4), we may write

ySt = BxSt + εt (13)

in demeaned form, where (xSt ) and (ySt ) are defined from (fS
t ) and (gSt ) exactly as (xt)

and (yt) are defined from (ft) and (gt). As we will explain later, we use the demeaned

stationary distributional regression (13) to estimate B. For the consistent estimation of

regression operator B and its asymptotic theory, the reader is referred to Park and Qian

5For random elements x and y taking values in a Hilbert space H , we define their covariance as E(x −

Ex)⊗ (y − Ey), which is an operator in H .
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(2012). Clearly, under the assumption that (ft) and (gt) have supports contained in a

compact subset K of R, (xSt ) and (ySt ) belong to the Hilbert space L2
0(K), and therefore,

can be represented as large dimensional vectors using a Wavelet basis in L2
0(K).

3 Statistical Procedure

In this section, we introduce the statistical procedures used to analyze our model and draw

inferences on its various implications. It is shown how to interpret the distributional unit

roots and cointegration, as well as how to estimate and test for them. We also demonstrate

how to estimate and do inference on the stationary component of our model.

3.1 Inference on Distributional Unit Roots and Cointegration

Throughout this subsection, we let (wt) = (xt) or (yt), and denote HN = FN or GN and

HS = FS or GS , and ΠN = PN or QN and ΠS = PS or QS , depending upon whether (wt)

is defined as (wt) = (xt) or (wt) = (yt).

Our test for unit roots in (wt) is based on the sample variance operator

MT =

T
∑

t=1

wt ⊗ wt, (14)

whose quadratic form is given by

〈v,MT v〉 =

T
∑

t=1

〈v,wt〉
2 (15)

for v ∈ H. The asymptotic behavior of the quadratic form (15) depends crucially on whether

v is in HN or in HS . For v ∈ HS , the coordinate process (〈v,wt〉) becomes stationary and

we expect that

T−1

T
∑

t=1

〈v,wt〉
2 →p E〈v,wt〉

2 (16)

as long as the expectation exists. On the other hand, if v ∈ HN and the coordinate process

(〈v,wt〉) is integrated, it follows under a very mild condition that

T−2

T
∑

t=1

〈v,wt〉
2 →d

∫

1

0

V (r)2dr −

(
∫

1

0

V (r)dr

)2

, (17)

where V is a Brownian motion. This is well expected. Therefore, the quadratic form
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has different orders of magnitude, i.e., Op(T ) and Op(T
2), depending upon whether the

coordinate process (〈v,wt〉) is stationary or integrated.

We let HN be n-dimensional and denote by vT1 , v
T
2 , . . . the orthonormal eigenvectors of

the sample variance operator MT in (14). It is shown in Chang et al. (2012) that we have

vTi →p vi (18)

for i = 1, 2, . . ., as T → ∞, and

HN =
n
∨

i=1

vi and HS =
∞
∨

i=n+1

vi,

where the symbol
∨

denotes span. However, if we define λT
1 ≥ λT

2 ≥ · · · to be the eigenvalues

of MT associated with the eigenvectors vT1 , v
T
2 , . . ., then we have

λT
i = 〈vTi ,M

T vTi 〉 =
T
∑

t=1

〈vTi , wt〉
2

for i = 1, 2, . . .. Therefore, it follows that

λT
i =

{

Op(T
2) for i = 1, . . . , n

Op(T ) for i = n+ 1, . . .
,

due to (16), (17) and (18).

To determine the number of unit roots in (wt), we consider the test of the null hypothesis

H0 : dim (HN ) = n (19)

against the alternative hypothesis

H1 : dim (HN ) ≤ n− 1 (20)

successively. More precisely, we start testing the null hypothesis (19) against the alterna-

tive hypothesis (20) with n = nmax, where nmax is large enough so that surely we have

dim (HN ) ≤ nmax, and continue with n = nmax − 1 if the null hypothesis (19) is rejected in

favor of the alternative hypothesis (20). Clearly, if, for any n, dim (HN ) ≤ n and the null

hypothesis (19) is not rejected, then we may conclude that dim (HN ) = n. Therefore, we

may estimate the number of unit roots in (wt) by the smallest value of n for which we fail

to reject the null hypothesis (19) in favor of the alternative hypothesis (20).
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n 1 2 3 4 5

1% 0.0274 0.0175 0.0118 0.0103 0.0085
5% 0.0385 0.0223 0.0154 0.0127 0.0101
10% 0.0478 0.0267 0.0175 0.0139 0.0111

Table 1: Critical Values for the Test Statistic τT
n
.

We expect that the eigenvalue λT
n would have a discriminatory power for the test of

null hypothesis (19) against the alternative hypothesis (20), since it has different orders

of stochastic magnitudes under the null and alternative hypothese. However, it cannot be

used directly as a test statistic, since its limit distribution is dependent upon nuisance pa-

rameters. Therefore, we need to modify it appropriately to get rid of its nuisance parameter

dependency problem.

To introduce our test, we let (zt) be given by

zTt = (〈vT1 , wt〉, . . . , 〈v
T
n , wt〉)

′ (21)

for t = 1, . . . , T . Moreover, we define the product sample moment MT
n =

∑T
t=1

zTt z
T ′
t , and

the long-run variance estimator ΩT
n =

∑

|k|≤ℓ̟ℓ(k)ΓT (k) of (zTt ), where ̟ℓ is the weight

function with bandwidth parameter ℓ and ΓT is the sample autocovariance function defined

as ΓT (k) = T−1
∑

t∆zTt ∆zT ′
t−k.

6 Our test statistic is defined as

τTn = T−2λmin

(

MT
n ,Ω

T
n

)

, (22)

where λmin

(

MT
n ,ΩT

n

)

is the smallest generalized eigenvalue of MT
n with respect to ΩT

n .

Under very general conditions, Chang et al. (2012) show that if the null hypothesis (19)

holds, then we have

τTn →d λmin

(
∫

1

0

Wn(r)Wn(r)
′dr −

∫

1

0

Wn(r)dr

∫

1

0

Wn(r)
′dr

)

(23)

as T → ∞, whereWn is n-dimensional standard vector Brownian motion and λmin(·) denotes

the smallest eigenvalue of its matrix argument. On the other hand, we have τTn →p 0 under

the alternative hypothesis (20) as T → ∞. Therefore, we reject the null hypothesis (19) in

favor of the alternative hypothesis (20) if the test statistic τTn takes small values. The critical

values are obtained by Chang et al. (2012) and presented in Table 1 for easy reference.

6See, e.g., Andrews (1991) for more discussions on the estimation of longrun variances.
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Once we determine n, we may estimate HN by

HT
N =

n
∨

i=1

vTi ,

i.e., the span of the n orthonormal eigenvectors of MT associated with n largest eigenvalues

of MT in (14). Chang et al. (2012) establish the consistency of HT
N for HN .

As will be explained below, we may now find how much nonstationarity proportion

exists in each cross-sectional moments. In what follows, we redefine ικ introduced in (1) as

ικ −
∫

K
ικ(s)ds, so that we may regard it as an element in L2

0(K). We may decompose ικ

as ικ = ΠN ικ +ΠSικ, from which it follows that

‖ικ‖
2 = ‖ΠN ικ‖

2 + ‖ΠSικ‖
2 =

n
∑

i=1

〈ικ, vi〉
2 +

∞
∑

i=n+1

〈ικ, vi〉
2,

where (vi), i = 1, 2, . . ., is an orthonormal basis of L2
0(K) such that (vi)1≤i≤n and (vi)i≥n+1

span HN and HS, respectively.

To measure the proportion of the component of ικ lying in HN , we define

πκ =
‖ΠN ικ‖

‖ικ‖
=

√

√

√

√

√

√

√

√

√

n
∑

i=1

〈ικ, vi〉
2

∞
∑

i=1

〈ικ, vi〉
2

. (24)

We have πκ = 1 and πκ = 0, respectively, if ικ is entirely in HN and HS. Therefore, we may

use πκ to represent the proportion of nonstationary component in the κ-th cross-sectional

moment of (wt). The κ-th cross-sectional moment of (wt) has more dominant unit root

component as πκ tends to unity, whereas it becomes more stationary as πκ approaches to

zero. Clearly, the κ-th cross-sectional moment of (wt) becomes more difficult to predict if

πκ is closer to unity, and easier to predict if πκ is small. Following Chang et al. (2012), πκ

is referred to as the nonstationarity proportion of the κ-th cross-sectional moment of (wt).

The nonstationarity proportion πκ of the κ-th cross-sectional moment defined in (24) is

of course not directly applicable, since HN and HS are unknown. However, we may use its

13



sample version

πT
κ =

√

√

√

√

√

√

√

√

√

n
∑

i=1

〈ικ, v
T
i 〉

2

T
∑

i=1

〈ικ, v
T
i 〉

2

. (25)

The sample version πT
κ in (25) of πκ in (24) will be referred to as the sample nonstationarity

proportion of the κ-th cross-sectional moment of (wt). Chang et al. (2012) show that the

sample nonstationarity proportion πT
κ is a consistent estimator for the original nonstation-

arity proportion πκ.

Now we assume that we find p and q, the numbers of unit roots in (ft) and (gt), and

obtain consistent estimates (vTi ) of (vi) and (wT
j ) of (wj), i = 1, . . . , p and j = 1, . . . , q, which

span the nonstationary subspaces FN and GN of (ft) and (gt). To test for distributional

cointegration, we let (zTt ) be defined as

zTt =
(

〈vT1 , xt〉, . . . , 〈v
T
p , xt〉, 〈w

T
1 , yt〉, . . . , 〈w

T
q , yt〉

)′
, (26)

in place of (zTt ) introduced in (21), and subsequently redefine τTn in (22) from (zTt ) in (26),

exactly as it is defined from (zTt ) in (21). Clearly, the newly defined statistic τTn may be used

to test for the number of unit roots in (zt), zt =
(

〈v1, xt〉, . . . , 〈vp, xt〉, 〈w1, yt〉, . . . , 〈wq, yt〉
)′
,

in (8). The critical values in Table 1 are applicable also for the newly defined statistic τTn .

The maximum number of unit roots for (zt) in (8) is of course given by p+ q, in which case

we have no distributional cointegration in (ft) and (gt). If we find n-number of unit roots

for (zt) in (8), then it implies that we have r-number of cointegrating relationships with

r = (p+ q)− n. As discussed, we should have r ≤ min(p, q).

3.2 Inference on Stationary Distributional Regression

Now we explain how to consistently estimate the regression operator B on FS in the sta-

tionary distributional regression (11). Let

MS = E
[

(fS
t − EfS

t )⊗ (fS
t − EfS

t )
]

NS = E
[

(gSt − EgSt )⊗ (fS
t − EfS

t )
]

.

Then it follows from the orthogonality condition EfS
t ⊗ et = 0 that

NS = BMS, (27)
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which we may use to estimate B. Unfortunately, however, it is generally impossible to use

the relationship in (27) and define the regression operator B as B = NSM
−1

S . This will be

explained below.

We assume that MS is a compact operator. Being compact and self-adjoint, MS allows

for the spectral representation

MS =

∞
∑

i=1

λi(vi ⊗ vi), (28)

where (λi, vi) are the pairs of eigenvalue and eigenvector of MS . Even in the case λi 6= 0 for

all i so that M−1

S is well defined and given by M−1

S =
∑∞

i=1
λ−1

i (vi⊗vi), M
−1

S is not defined

on the entire domain of MS. In fact, its domain is restricted to a proper subset of the

domain of MS given by
{

w
∣

∣

∑∞
i=1

〈vi, w〉
2/λ2

i < ∞
}

. Therefore, we have B = NSM
−1

S only

on the restricted domain. This problem is often referred to an ill-posed inverse problem.

The usual method to deal with this problem is to restrict the definition of MS in a

finite subset of its domain. Assuming λ1 > λ2 > · · · > 0, we let FSm be the span of the

m-eigenvectors v1, . . . , vm associated with the m-largest eigenvalues λ1, . . . , λm. Moreover,

we denote by PSm the projection on FSm , and define MSm = PSmMSPSm and

M+

Sm
=

m
∑

i=1

1

λi

(vi ⊗ vi), (29)

i.e., the inverse of MS on FSm . Subsequently, we let

Bm = NSM
+

Sm
, (30)

which is the regression operator B restricted to the subspace FSm of FS . Since (λi) decreases

down to zero, we may well expect that Bm approximates B well if the dimension m of FSm

increases. The reader is referred to Bosq (1998) for more detailed discussions.

The restricted regression operator Bm in (30) can be consistently estimated by its sample

analogue. We define

MT
S =

1

T

T
∑

t=1

xSt ⊗ xSt and NT
S =

1

T

T
∑

t=1

ySt ⊗ xSt ,

which are the sample analogue estimators of the operators MS and NS respectively, and

denote by (λT
i , v

T
i ) the pairs of eigenvalues and eigenvectors ofMT

S such that λT
1 > λT

2 > · · · .
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Then we define

MT+

Sm
=

m
∑

i=1

1

λT
i

(vTi ⊗ vTi ),

i.e., the sample analogue estimator of the operator M+

Sm
in (29), and subsequently,

BT
m = NT

S M
T+

Sm
, (31)

which we use as an estimator for the regression operator B in (11). Park and Qian (2012)

show that the estimator BT
m is consistent for B under a very general set of conditions if we

let m → ∞ as T∞ at a controlled rate.

4 Interactive Income-Consumption Dynamics

As an application of our model and methodology, we analyze the interactions between the

income and consumption dynamics. For our analysis, we apply our theory developed thus

far with (ft) and (gt) representing respectively the time series of household income and

consumption distributions.

4.1 Data

We obtain the time-series of cross-sectional distributions of income and consumption using

the U.S. households monthly income and consumption data from the Consumer expenditure

(CE) survey series7, which provides continuous flow of information on buying habits of the

US customers. The survey is carried out by the U.S. Census Bureau under contract with

the Bureau of Labor Statistics. We obtain the monthly data on income and consumption

during the period from October 1979 to February 2013. During this sample period, each

household included in the survey at most five times, and therefore the CE survey provides

a pseudo panel data.

In order to construct monthly household income and consumption, we follow the defi-

nitions of income and consumption given by Krueger and Perri (2006), and aggregate the

monthly values provided in Universal Classification Code (UCC) level for each month and

year. See Krueger and Perri (2006) for detailed information. We then deflated the nominal

income and consumption values by monthly CPI for all urban households with using a base

year which varies among 1982, 1983 and 1984. The CPI used in here is provided by the

Bureau of Labor Statistics.

7It is formerly called the Survey of Consumer Expenditures
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Figure 1: Time Series of Income and Consumption Distributions

Notes: Time series of income and consumption distributions are presented at the upper and lower
panels, without demeaning and with demeaning at the left and right panels, respectively.

The survey uses topcoding to change the values when the original data exceeds some

prescribed critical values. The critical values may change annually and be applied at a

different starting point. In our analysis we drop all top-coded values of household income

and consumption. We correct the expenditure on food and impute services from vehicle and

from primary residence, according to the regressions specified in Krueger and Perri (2006).

Also, following the sample selection criteria given in Krueger and Perri (2006), we exclude

observations with possible measurement error or inconsistency problem.

Figure 1 presents the time series of cross-sectional distributions for income and con-

sumption with and without demeaning. Both the income and consumption distributions

show some sign of nonstationary fluctuations evolving over time. In particular, it seems

evident that the time series of their cross-sectional distributions do not randomly fluctuate
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around some fixed mean functions. This suggests the presence of nonstationarity in their

time series.

4.2 Nonstationarity in Income Dynamics

To determine the unit root dimension p in the time series of cross-sectional distributions

of household incomes, use the test τTn to test the null hypothesis H0 : p = n against the

alternative hypothesis H1 : p ≤ n− 1 with n = 1, . . . , 5. The test results are given below.

n 1 2 3 4 5

τTn 0.1077 0.0248 0.0101 0.0096 0.0083

Our test, strongly and unambiguously, rejects H0 against H1 successively for n = 5, 4, 3.

Clearly, however, the test cannot reject H0 in favor of H1 for n = 2. Therefore, we conclude

that there exists two-dimensional unit root, and set p = 2. Figure 2 shows that the leading

principal component dominates all others, including the second principal component. How-

ever, it turns out that the second principal component is significantly larger than all other

smaller components.

Figure 2: Scree Plot for Time Series of Income Distributions
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Notes: Plotted are the five largest eigenvalues from the principal component analysis for the time
series of income distributions.

We also compute the unit root portion estimates πT
κ for the κ-th cross-sectional moments

of household income distributions for κ = 1, 2, 3 and 4, as shown below.

The unit root proportions for the first four cross-sectional moments of household income

distributions are all substantially large. In particular, the unit root proportions for the
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πT
1 πT

2 πT
3 πT

4

0.6064 0.4137 0.2909 0.2154

first two cross-sectional moments are quite substantial. Needless to say, nonstationarity in

the cross-sectional moments of household income would certainly make changes in the time

series of income distributions more persistent.

4.3 Nonstationarity in Consumption Dynamics

To test for existence of unit root in time series of cross-sectional distributions of household

consumptions, we also use the statistic τTn to test the null hypothesis H0 : q = n against the

alternative hypothesis H1 : q ≤ n− 1 with n = 1, . . . , 5. The test results are given below.

n 1 2 3 4 5

τTn 0.0392 0.0143 0.0137 0.0074 0.0071

Our test successively rejects H0 against H1 for n = 5, 4, 3, 2. However, at 5% level, the test

cannot reject H0 in favor of H1 for n = 1. Therefore, our test result implies q = 1. The scree

plot for the time series of household consumption distributions is presented in Figure 3. As

shown, there is one leading principal component, which supports our conclusion on the

presence of unit root in the time series of consumption distributions. The second and third

principal components are larger than other principal components of lower orders. However,

the difference between them is tested to be insignificant.

Similarly as before, we compute the estimates πT
κ of the unit root proportions πκ for the

first four cross-sectional moments of household consumption, assuming q = 1.

πT
1 πT

2 πT
3 πT

4

0.097 0.028 0.012 0.007

The unit root proportions are small for all of the first four moments, implying the nonsta-

tionarity in the cross-sectional distributions of household consumptions is not concentrated

in the first four moments. However, the nonstationarity is relatively more concentrated in

the first and the second moments, with the unit root proportion of the first moment being

the largest.
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Figure 3: Scree Plot for Time Series of Consumption Distributions
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Notes: Plotted are the five largest eigenvalues from the principal component analysis for the time
series of consumption distributions.

4.4 Interactive Dynamics of Income and Consumption

If the time series of income and consumption distributions have p- and q-number of unit

roots and if they have r-number of cointegrating relationships, we would have
(

(p+ q)− r
)

-

number of unit roots in their time series combined together. As discussed, we may use the

test τTn also in this case to find the number of unit roots in the combined time series of

income and consumption distributions by testing the null hypothesis H0 : (p + q) − r = n

against the alternative hypothesis H1 : (p + q) − r ≤ n − 1. Given p = 2 and q = 1, we

may have up to three unit roots in the time series of income and consumption distributions

together. Therefore, we consider only n = 1, 2 and 3. The test results are summarized

below.

n 1 2 3

τTn 0.1362 0.0248 0.0116

Our test rejects H0 against H1 for n = 3. However, the test cannot reject H0 in favor of

H1 for n = 2, giving (p + q) − r = 2. This implies r = 1, i.e., the presence of a single

cointegrating relationship between household income and consumption distributions, since

we have p = 2 and q = 1.

Let v1 and v2 be orthonormal functions that span the nonstationary subspace FN of the

time series (ft) of income distributions, and let w be the normalized function generating

20



Figure 4: Scree Plot for Time Series of Income and Consumption Distributions
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Notes: Plotted are the three eigenvalues from the principal component analysis for the time series
of income and consumption distributions.

the nonstationary subspace GN of the time series (gt) of consumption distribution. We find

the presence of cointegration in the time series of income and consumption distributions,

and therefore, there exists constants a1, a2 and b such that

b〈w, gt〉 = δ + a1〈v1, ft〉+ a2〈v2, ft〉+ ut

with some constant function δ and general stationary process with mean zero. In this case,

we have

vC = a1v1 + a2v2 and wC = bw, (32)

where (vC , wC) is the cointegrating function of (ft) and (gt).
8

Using the procedures we introduce in the previous section, we may readily obtain esti-

mates of vC and wC in (32), which we define as

vTC = aT1 v
T
1 + aT2 v

T
2 and wC = bTwT , (33)

from our estimates vT1 , v
T
2 and wT of v1, v2 and w, and aT1 , a

T
2 and bT of a1, a2 and b. We get

the estimates vT1 , v
T
2 and wT from our testing procedure for distributional unit roots, and

the estimates aT1 , a
T
2 and bT from our testing procedure for distributional cointegration, re-

spectively in and between household income and consumption distributions. The estimated

longrun response function of income distribution to consumption distribution is given by

8Obviously, we may set b = 1 without loss of generality and redefine a1 and a2 accordingly.
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Figure 5: Longrun Income Response Function to Consumption
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Notes: Presented is the longrun response function of income distribution to consumption distribu-
tion.

vTC defined in (33), and presented in Figure 5.

Our estimated longrun income response function to consumption reveals some interesting

fact. For instance, it shows that the longrun trend in consumption is most affected by the

income group with monthly earnings slightly over $2,000. Roughly, all households with

monthly earnings between $1,000 and $4,000 seem to play important roles in determining

the persistent stochastic trend in consumption. As the level of monthly earning decreases

below $1,000, the longrun component of household’s income has very little impact on the

longrun consumption. The longrun component of household’s income for the rich also does

not have any major effect on the longrun consumption, though the magnitude of their effect

decreases at a slower rate as their income increases than the rate it decreases as the income

decreases for the poor. The income response to consumption is estimated to be negative

for the household with monthly earnings less than approximately $600, which we believe to

be just an evidence of insignificant response.9

To analyze the shortrun response of income distribution to consumption, we compute

and plot the shortrun response function of income distribution to the κ-th cross-sectional

moments of consumption distribution, which is introduced in (12), for κ = 1, . . . , 4. It is

given by

BT∗
m ικ,

9Observations for households with monthly earnings below approximately $500 are scarce and irregular,
so we do not expect to have any reliable results over very low income levels.
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Figure 6: Shortrun Income Response Function to Consumption
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Notes: Presented is the shortrun response function of income distribution to consumption distribu-
tion.

where BT∗
m is the adjoint operator of BT

m defined in (31). The estimated shortrun response

function of income distribution to the cross-sectional moments of consumption distribution

is given in Figure 6.

Our estimated shortrun income response functions to consumption moments appear to

provide some important clues on the shortrun relationship between income and consump-

tion. All moments of consumption yield very similar income response functions. Except

for the income group with monthly earnings less than approximately $600, whose responses

are negative and irregular, the income responses seem to be coherent and meaningful at all

levels. As mentioned in our discussions on the longrun income response to consumption, we

believe that our estimates for extreme low income levels are unreliable and ignorable. The

shortrun income responses are maximized around the level a little below $1,000 of monthly

earnings for all moments of consumption. Needless to say, this means that the shortrun con-

sumption is most affected by the transitory income of low income households. The shortrun

income response decreases sharply as the level of income increases, at a much faster rate

than the rate at which the longrun income response decreases, and becomes almost entirely

negligible once the income level exceeds $2,000 in monthly earnings.

5 Conclusion

This paper develops a new framework and methodology to analyze the relationships be-

tween two time series of cross-sectional distributions in the presence of distributional unit

23



roots and cointegration. Their relationships, both in the longrun and in the shortrun, are

revealed and summarized by what we call the response functions in the paper. Our anal-

ysis makes it possible to identify and estimate some important relationships between two

time series of cross-sectional distributions, which we can never observe using the time series

analysis relying on the aggregates. This is because the response functions provide us with

the information about how one distribution affects the other distribution at each level of

one distribution. Such information will never be revealed by the conventional time series

analysis. We apply our approach to study the income and consumption dynamics, and find

some interesting and important facts on the longrun and shortrun responses of consumption

to income changes. Our findings have an immediate policy implication.

Mathematical Proofs

Proof of Lemma 2.1 If (gt) and (ft) are given by the distributional regression model (2),

then it follows directly from the coordinate regression (3) that A∗w /∈ FS for any w ∈ GN .

To see this, suppose on the contrary that there exists w ∈ GN such that A∗w ∈ FS . Then

for such w the time series (〈A∗w, ft〉) becomes stationary, while the time series (〈w, gt〉) is

nonstationary. Clearly, this is a contradiction given that the error process (et) is stationary

and the time series (〈w, et〉) is stationary for any w ∈ H.

We may easily deduce from (2) that

QNgt = QNµ+QNAft +QNet

= QNµ+QNAPNft +QNAPSft +QNet.

For any w ∈ GN , it follows that

〈w,QNgt〉 = 〈QNw, gt〉 = 〈w, gt〉,

and

〈w,QNAPNft〉 = 〈PNA∗QNw, ft〉 = 〈PNA∗w, ft〉.

On the other hand, we have

〈w,QNAPSft〉 = 〈A∗QNw,PSft〉 = 〈A∗w,PSft〉,

which is stationary. Clearly, the time series (〈w,QNet〉) = (〈QNw, et〉) = (〈w, et〉) for any

w ∈ GN is stationary. The proof is therefore complete. �
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Proof of Lemma 2.2 We have

QSgt = QSµ+QSAft +QSet

= QSµ+QSAPSft +QSAPNft +QSet,

from which the stated results follow immediately. �
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