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Objective

Analysis of time series of cross-sectional distributions such as

I individual earnings

I global temperatures

I household income and consumption

and time series of intra-period distributions such as

I daily distributions of high frequency US/UK exchange rates

I monthly distributions of high frequency S&P 500 returns

and many others.
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Cross-sectional Distributions of Individual Earnings
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Global Temperature Distributions
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Cross-sectional Distributions of Household Income
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Cross-sectional Distributions of Consumption Expenditures
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Monthly Distributions of High Frequency S&P 500 Returns
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Objectives

We propose a framework and methodology to analyze the time
series of state densities, which may represent either cross-sectional
or intra-period distributions. Each state density is regarded as a
realization of Hilbertian random variable, and a functional time
series model is used to fit a given time series of state variables.

We identify and extract the nonstationarity in time series of state
distributions. The stationary and nonstationary components of
state densities are decomposed and used to model the shortrun
and longrun relationships respectively. The nonstationary portions
in the moments of state densities are also obtained.
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Hilbert-Valued Random Variables

A Hilbert-valued random variable w is defined as

w : Ω→ H,

where H is a Hilbert space.

Hilbert-valued random variables include

I real random variables: H = R
I vector-valued random variables: H = RN

I function-valued random variables: H = L2(R)

as special cases.
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Mean

The mean µ of a H-valued random variable w is defined as a
vector in H satisfying

E〈v, w〉 = 〈v, µ〉

for all v ∈ H, which exists if E‖w‖ <∞. We write

µ = Ew

following the usual convention.
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Variance Operator

The variance operator Σ of a H-valued random variable w is
defined as an operator on H satisfying

E〈vi, w − Ew〉〈vj , w − Ew〉 = 〈vi,Σvj〉

for all vi, vj ∈ H, which exists if E‖w‖2 <∞. We write

Σ = E
(

(w − Ew)⊗ (w − Ew)
)
,

which reduces to Σ = E
(

(w − Ew)(w − Ew)′
)

if H is

finite-dimensional.
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Functional AR Model

Let (wt) be a time series of random functions. The functional
AR(1) model for (wt) is given by

wt = Awt−1 + εt,

where A is a linear operator transforming a function into another
function, and (εt) is an iid sequence of random functions. We may
write

wt = εt +Aεt−1 +A2εt−2 + · · ·

by recursive substitution.
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Mean Reversion in Functional AR Model

The mean reversion of (wt) is determined by the norm ‖A‖ of A.

It is stationary if ‖A‖ < 1, i.e., ‖Av‖ < ‖v‖ for all v. Mean
reversion in all directions. Deviates from mean only temporarily,
and randomly fluctuates around the mean in all directions.

It has a unit root in the direction of v if ‖Av‖ = ‖v‖. Persistent,
and non mean reverting due to the presence a stochastic trend
with no mean reversion in the direction of v.

It is explosive in the direction of v if ‖Av‖ > ‖v‖. No mean
reversion in the direction of v.
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Coordinate Process

We assume that there exists an orthonormal basis (vi) of H, so
that we may write

wt =

∞∑
i=1

〈vi, wt〉vi,

and define
〈vi, wt〉

to be the i-th coordinate process for i = 1, 2, . . .. Each coordinate
process may be stationary, have a unit root, or be explosive.
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Cross-Sectional Moment

Let
ικ(s) = sκ

for κ = 1, 2, . . .. For a time series (ft) of probability densities, we
have

〈ικ, ft〉 =

∫
K
ικ(s)ft(s)ds,

which we call the κ-th cross-sectional moment of ft for
κ = 1, 2, . . .. For κ = 1, in particular, we have the cross-sectional
mean 〈ικ, ft〉 of ft, which is in contrast with the mean Eft of ft.
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Distributional AR(1) Model

The distributional AR(1) model for the time series (ft) of
probability densities is given by

ft = µ+Aft−1 + εt,

where (εt) is an iid random functions with mean zero and finite
variance operator. We may write the model more compactly as

wt = Awt−1 + εt,

where wt = ft − Eft is the centered density function for all
t = 1, 2, . . .. Note that

∫
K wt(s)ds = 0, where K ⊂ R is the

support of (ft).
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Ill-Posed Inverse Problem

We may easily deduce the functional Yule-Walker equation

E(wt ⊗ wt−1) = AE(wt−1 ⊗ wt−1),

which we may write as N = AM . However, we cannot define

A = NM−1.

The operator M is self-adjoint, positive and infinite-dimensional,
so we have

M =

∞∑
i=1

λi(vi ⊗ vi)

by the spectral representation theorem, where the spectrum (λi),
λi > 0, has 0 as its limit point. Therefore, M necessarily has an
ill-posed inverse problem.
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Estimation of Distributional AR(1) Model

We define

NT =

T∑
t=2

(ft − f̄T )⊗ (ft−1 − f̄T ), MT =

T∑
t=1

(ft − f̄T )⊗ (ft − f̄T )

with f̄T =
∑T

t=1 ft/T , and let

M+
T =

m∑
i=1

1

λTi
(vTi ⊗ vTi ),

where (λTi , v
T
i ) is eigenvalue and eigenvector pair of MT , and m is

an appropriately chosen truncation number. Then we may estimate
A by AT = NTM

+
T .
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Density Prediction

Once an estimator AT of A is obtained, we may readily predict the
density fT+1 at time T + 1 as

fT+1 − f̄T = AT
(
fT − f̄T

)
,

which may be useful in many different contexts.
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Testing for Moment Dynamics

We may test for moment dynamics such as ARCH-M. For instance,
it follows directly from the distributional AR(1) model that

〈ι1, ft〉 = 〈ι1, µ〉+ 〈ι1, Aft−1〉+ 〈ι1, εt〉
= 〈ι1, µ〉+ 〈A∗ι1, ft−1〉+ 〈ι1, εt〉,

where A∗ is the adjoint of A. The variance in the previous period
does not affect the mean in the current period if in particular ι2 is
orthogonal to A∗ι1.
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Unit Root in Distribution

We assume that there exists an orthonormal basis (vi) of H such
that the i-th coordinate process

〈vi, wt〉

has a unit root for i = 1, . . . , n, while it is stationary for all
i ≥ n+ 1.

By convention, we set n = 0 if all the coordinate processes are
stationary.
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Unit Root and Stationarity Subspaces

Using the symbol
∨

to denote span, we let

HN =

n∨
i=1

vi and HS =

∞∨
i=n+1

vi

so that H = HN ⊕HS . In what follows, HN and HS will
respectively be referred to as the unit root and stationarity
subspaces of H.

Accordingly, we let ΠN and ΠS be the projections on HN and HS ,
respectively. Moreover, we define

wNt = ΠNwt and wSt = ΠSwt.

Note that
wt = wNt + wSt ,

since ΠN + ΠS = 1.
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Functional Principal Component Analysis

Our procedure to estimate HN and test for its dimension M is
based on the FPCA on the unnormalized sample variance operator
of (wt)

MT =

T∑
t=1

wt ⊗ wt

where T is the sample size.

Denote the pairs of eigenvalues and eigenvectors of MT by

(λTi , v
T
i ), i = 1, . . . , T

and order (λTi ) so that λT1 ≥ · · · ≥ λTT .
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Sample Unit Root and Stationarity Subspaces

Assuming T > n, we define sample unit root space as the subspace

HT
N =

n∨
i=1

vTi

spanned by the eigenvectors corresponding to n largest eigenvalues
of MT . Denote by ΠT

N the projection on HT
N .

The sample stationarity subspace is defined by ΠT
S = 1−ΠT

N , so
that we have ΠT

N + ΠT
S = 1 analogously as the relationship

ΠN + ΠS = 1.
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Asymptotics for Sample Projections

Under very general regularity conditions, we have

ΠT
N = ΠN +Op(T

−1)

ΠT
S = ΠS +Op(T

−1)

for all large T .
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Decomposition of Sample Variance Operator

To develop our asymptotics, we decompose MT as

MT = T 2MT
NN + TMT

NS + TMT
SN + TMT

SS ,

where

MT
NN =

1

T 2
ΠN

(
T∑

t=1

wt ⊗ wt

)
ΠN =

1

T 2

T∑
t=1

wN
t ⊗ wN

t

MT
NS =

1

T
ΠN

(
T∑

t=1

wt ⊗ wt

)
ΠS =

1

T

T∑
t=1

wN
t ⊗ wS

t

MT
SS =

1

T
ΠS

(
T∑

t=1

wt ⊗ wt

)
ΠS =

1

T

T∑
t=1

wS
t ⊗ wS

t

and MT
SN is the adjoint of MT

NS , i.e., MT
SN = MT∗

NS .
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Asymptotics for Sample Variance Operators

Under some regularity conditions, we have

MT
NN →d MNN =

∫ 1

0
(W ⊗W )(r)dr,

where W is Brownian motion on HN . Also, it follows that

MT
SS →p MSS .

Moreover, we have

MT
NS ,M

T
SN = Op(1)

for all large T .
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Asymptotics for Eigenvalues and Eigenvectors

In unit root subspace HN , eigenvectors and appropriately
normalized eigenvalues of sample variance operator MT of (wt)
converge in distribution, and their distributional limits are given by
the distributions of eigenvalues and eigenvectors of random
operator MNN , i.e.,(

T−2λTi , v
T
i

)
→d (λi(MNN ), vi(MNN ))

jointly for i = 1, . . . , n, under some regularity conditions.

In stationarity subspace HS , eigenvectors and appropriately
normalized eigenvalues of sample variance operator MT of (wt)
converge in probability to their population counterparts, i.e.,(

T−1λTn+i, v
T
n+i

)
→p (λi, vi)

for i = 1, 2, . . ., under very general regularity conditions.
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Testing for Distributional Unit Roots

To determine the number of unit roots in (wt), we consider the
test of the null hypothesis

H0 : dim (HN ) = n

against the alternative hypothesis

H1 : dim (HN ) ≤ n− 1

successively downward. We estimate the number of unit roots in
(wt) by the smallest value of n for which we fail to reject the null
hypothesis H0.
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Intuitive but Infeasible Test

We expect that the eigenvalue λTn would have a discriminatory
power for the test of null against the alternative, since it has
different orders of stochastic magnitudes under the null and
alternative hypotheses.

However, it cannot be used directly as a test statistic, since its
limit distribution is dependent upon nuisance parameters.

Therefore, we need to modify it appropriately to get rid of its
nuisance parameter dependency problem.
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A Feasible Test for Unit Root Dimension

We let
zTt = (〈vT1 , wt〉, . . . , 〈vTn , wt〉)′

for t = 1, . . . , T , and define the product sample moment
MT
n =

∑T
t=1 z

T
t z

T ′
t , and the long-run variance estimator

ΩT
n =

∑
|k|≤`$`(k)ΓT (k) of (zTt ), where $` is the weight function

with bandwidth parameter ` and ΓT is the sample autocovariance
function defined as ΓT (k) = T−1

∑
t ∆zTt ∆zT ′t−k.

Our test statistic is defined as

τTn = T−2λmin

(
MT
n ,Ω

T
n

)
,

where λmin

(
MT
n ,Ω

T
n

)
is the smallest generalized eigenvalue of MT

n

with respect to ΩT
n .
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Asymptotics for Distributional Unit Root Test

Under very general conditions, we show that

τTn →d λmin

(∫ 1

0
Wn(r)Wn(r)′dr −

∫ 1

0
Wn(r)dr

∫ 1

0
Wn(r)′dr

)
under the null, as T →∞, where Wn is n-dimensional standard
vector Brownian motion and λmin(·) denotes the smallest
eigenvalue of its matrix argument.

On the other hand, we have τTn →p 0 under the alternative
hypothesis as T →∞. Therefore, we reject the null in favor of the
alternative if the test statistic τTn takes small values.

37 / 57 Joon Y. Park Time Series of Cross-Sectional Distributions



Technical Background
Distributional Autoregression

Distributional Unit Root
Distributional Cointegration

Critical Values for Distributional Unit Root Test

Critical values of the test τTn are calculated and tabulated as

n 1 2 3 4 5

1% 0.0274 0.0175 0.0118 0.0103 0.0085
5% 0.0385 0.0223 0.0154 0.0127 0.0101
10% 0.0478 0.0267 0.0175 0.0139 0.0111

for n = 1, . . . , 5.
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Estimation of Nonstationarity Subspace

Once we determine the number of unit roots n in (wt), we may
estimate the nonstationarity subspace HN by

HT
N =

n∨
i=1

vTi ,

i.e., the span of the n orthonormal eigenvectors of MT associated
with n largest eigenvalues of MT .

Under general regularity conditions, we have

HT
N →p HN

as T →∞. Recall that λTi does not converge in probability to λi
individually for i = 1, . . . , n.
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Cross-sectional Distributions of Income
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Cross-sectional Distributions of Global Temperature
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Cross-sectional Distributions of Household Income
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Cross-sectional Distributions of Consumption Expenditures
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Degree of Persistency in Cross-sectional Moments

We may now find how much nonstationarity proportion exists in
each cross-sectional moments. By convention, we assume that ικ
is redefined as ικ −

∫
K ικ(s)ds, so that we may consider it with

(wt) in the same Hilbert space H.

We decompose ικ as ικ = ΠN ικ + ΠSικ, from which it follows that

‖ικ‖2 = ‖ΠN ικ‖2 + ‖ΠSικ‖2 =

n∑
i=1

〈ικ, vi〉2 +

∞∑
i=n+1

〈ικ, vi〉2,

where (vi), i = 1, 2, . . ., is an orthonormal basis of H such that
(vi)1≤i≤n and (vi)i≥n+1 span HN and HS , respectively.
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Nonstationarity Proportion of Cross-sectional Moments

To measure the proportion of ικ lying in HN , we define

πκ =
‖ΠN ικ‖
‖ικ‖

=

√√√√√√√√√
n∑
i=1

〈ικ, vi〉2

∞∑
i=1

〈ικ, vi〉2
.

Note that we have πκ = 1 and πκ = 0, respectively, if ικ is entirely
in HN and HS .

We use πκ to represent the proportion of unit root component in
the κ-th cross-sectional moment of (wt). Clearly, it has more
dominant unit root component as πκ tends to unity, whereas it
becomes more stationary as πκ approaches to zero.
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Sample Nonstationarity Proportion

Obviously, we may use the sample unit root proportion

πTκ =

√√√√√√√√√
n∑
i=1

〈ικ, vTi 〉2

T∑
i=1

〈ικ, vTi 〉2

to measure the unit root proportion of the κ-th cross-sectional
moment of (wt). As is well expected, the sample version πTκ is a
consistent estimator for the original πκ, under very general
conditions.
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Two Cross-Sectional Distributions with Unit Roots

Let (ft) and (gt) be two time series of densities representing
cross-sectional distributions of some economic variables. Assume
that they have distributional unit roots, and denote respectively by
HN (f) and HN (g) the nonstationary subspaces of H for (ft) and
(gt).

By definition, the coordinate processes

〈v, ft〉 and 〈w, gt〉

have unit roots for all v ∈ HN (f) and w ∈ HN (g).
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Distributional Cointegration

Given that the coordinate processes 〈v, ft〉 and 〈w, gt〉 are
integrated for all v ∈ HN (f) and w ∈ HN (g), it is natural to
consider the possibility that some of their coordinate processes are
cointegrated.

In fact, for some v ∈ HN (f) and w ∈ HN (g), we may have

〈v, ft〉+ 〈w, gt〉 = π + ut

with some constant π, where (ut) is a general stationary process
with mean zero, in which case we say that (ft) and (gt) are
distributionally cointegrated.
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More Precise Formulation

Let (ft) and (gt) have p- and q-unit roots, and HN (f) and HN (g)
be p- and q-dimensional, respectively. Moreover, define

HN (f) =

p∨
i=1

vi and HN (g) =

q∨
j=1

wj ,

so that 〈vi, ft〉 and 〈wj , gt〉 are unit root processes for i = 1, . . . , p
and j = 1, . . . , q.
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Distributional Cointegrating Functions

If the (p+ q)-dimensional process (zt) defined as

zt =
(
〈v1, ft〉, . . . , 〈vp, ft〉, 〈w1, gt〉, . . . , 〈wq, gt〉

)′
is cointegrated with the cointegrating vector

c = (α1, . . . , αp, β1, . . . , βq)
′ ,

then the distributional cointegration holds with

v = α1v1 + · · ·+ αpvp and w = β1w1 + · · ·+ βqwq.

The functions v and w are called the distributional cointegrating
functions of (ft) and (gt).
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Remark

There are at most r-number of linearly independent distributional
cointegrating relationships,

r ≤ min(p, q).

Otherwise we would have a cointegrating vector c of the form
c = (α1, . . . , αp, 0, . . . , 0)′ or c = (0, . . . , 0, β1, . . . , βq)

′, which
implies that there is a linear combination of v1, . . . , vp or
w1, . . . , wq whose inner product with (ft) or (gt) becomes
stationary, contradicting the assumption that v1, . . . , vp and
w1, . . . , wq are linearly independent functions that span HN (f)
and HN (g) respectively.
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Distributional Cointegrating Subspace

If r > 1, we use the notations (vCk ) and (wCk ), k = 1, . . . , r, for the
distributional cointegrating functions of (ft) and (gt). However, in
this case, the distributional cointegrating functions (vCk ) and (wCk ),
k = 1, . . . , r, of (ft) and (gt) are not individually identified, unless
we impose some specific restrictions on their normalization.

The subspaces of HN (f) and HN (g) spanned by them are
nevertheless well identified, which we denote by HC(f) and HC(g)
and call the distributional cointegrating subspaces of (ft) and (gt),
respectively.
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Testing for Distributional Cointegration

We let
xt = ft − f̄T and yt = gt − ḡT

and define

zTt = (〈vT1 , xt〉, . . . , 〈vTp , xt〉, 〈wT1 , yt〉, . . . , 〈wTq , yt〉)′

for t = 1, . . . , T , where vT1 , . . . , v
T
p and wT1 , . . . , w

T
q are estimated

eigenvectos spanning the unit root subspaces HN (f) and HN (g)
of (ft) and (gt). We may simply use our statistic for distributional
unit root with the redefined (zt) as above and find the
distributional cointegration between (ft) and (gt).
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An Example

In our empirical study, we consider household income (ft) and
consumption expenditure (gt). We find two unit roots in (ft) and
one unit root in (gt), and one cointegrating relationship between
them. Therefore, we have three unit root coordinate processes, say,

〈v1, ft〉, 〈v2, ft〉 and 〈w, gt〉,

and one cointegrating relationship

〈w, gt〉 = π + α1〈v1, ft〉+ α2〈v2, ft〉+ ut,

where we assume without loss of generality that the coefficient of
〈wC , gt〉 is unity.
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Interpretation

In our example, 〈w, gt〉 represents the unique longrun component
of household consumption expenditure and its coordinate process is
given by 〈w, gt〉. On the other hand, household income has two
longrun components, whose coordinate processes are given by
〈v1, ft〉 and 〈v2, ft〉.

We have a stochastic common trend in

〈wC , gt〉 and 〈vC , ft〉,

where wC = w and vC = α1v1 + α2v2. Moreover, we define vC to
be the longrun response of income to consumption expenditure.
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Unit Root Coordinate Processes and Common Trend
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