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Introduction

I Regression with endogeneity is at the core of econometrics. IV
is the standard approach. The expression “instrumental
variables” is due to Reiersøl (1941, 1945). Theil (1953)
developed “repeated least squares”, pioneering more
instruments than regressors.

I LIML estimation was introduced by Anderson and Rubin
(1949, 1950). Its qualities over IV got appreciated soon but
applied researchers stayed away. Interest was revived by
Angrist and Krueger (1991) by their work on weak and many
instruments. Bekker (1994) inspired new theoretical work.

I LIML is not the only alternative to IV: split-sample IV
(Angrist and Krueger, 1995), which is related to two-sample
IV, jackknife IV (Angrist, Imbens, and Krueger, 1999), and
symmetrically normalized IV (Arellano and Alonso-Borrego,
1999). LIML and alternatives are now a lively research area
(Bekker and Wansbeek, 2014).



Panel data

I As to panel data, LIML-like estimators have been developed
by e.g. Alvarez and Arellano (2003), Akashi and Kunitomo
(2011), and Moral-Benito (2011), for the dynamic model.
Their estimators are Least Variance Ratio (LVR) estimators,
not “true” LIML obtained from maximizing the likelihood
function; there seems to be gap in the literature.

I The objective of our study is to fill this gap by deriving the
LIML estimator for the linear panel data model and
investigating its properties.

I Since the LIML literature is often complicated, beginning with
the derivation of the LIML estimator, we try to keep things as
simple as possible.



LIML in the cross-sectional case

In general, the LIML estimator is the ML estimator of β in

y = X1β1 + X2β2 + u = Xβ + u,

X1 (N × g1) endogenous, X2 (N × g2) exogenous, and

X1 = X2Π2 + X3Π3 + V = ZΠ + V ,

V (N × g1) orthogonal to Z ; (un, v
′
n)′ i.i.d. normal.



The LIML estimator

Throughout, PA denotes projection on A and MA denotes
projection orthogonal to A, for any A. Let

SP ≡ (y ,X )′PZ (y ,X )

SM ≡ (y ,X )′MZ (y ,X ).

Anderson and Rubin (1949) showed that the LIML estimator
follows from the first-order condition

(SP − λ̂SM)

(
1

−β̂

)
= 0,

with λ̂ the smallest value for which SP − λ̂SM is singular.



Why LIML?

LIML offers a better inferential context than IV. This follows from
what the model implies (with X2 = 0 for non-essential simplicity):

y = Xβ + u

X = ZΠ + V ,

so, with g the number of regressors,

(y ,X ) = (Xβ + u,X )

= ZΠ(β, Ig ) + (u + Vβ,V )

≡ ZΠ(β, Ig ) + W .

So E(Z ′W ) = 0. Each row of W is i.i.d. (0,Ψ), say.



Why LIML? (cont.)

Let h be the number of IVs (columns of Z ). Then

ΣP ≡ E(SP) = (β, Ig )′Π′Z ′ZΠ(β, Ig ) + hΨ
ΣM ≡ E(SM) = (N − h)Ψ,

so, eliminating Ψ,

ΣP = (β, Ig )′Π′Z ′ZΠ(β, Ig ) + λΣM , with

λ ≡ h

N − h
.

Rearranging and postmultiplication by

(
1
−β

)
gives

(
ΣP − λΣM

)( 1
−β

)
= 0;

λ is the smallest value for which ΣP − λΣM is singular yet ≥ 0.



Why LIML? (cont.)

Summarizing, the model implies, for smallest λ,

(
ΣP − λΣM

)( 1
−β

)
= 0,

and the LIML estimator satisfies, for smallest λ̂,

(SP − λ̂SM)

(
1

−β̂

)
= 0.

So the LIML estimator satisfies a relation that is the sample analog
of a model implication; it stays “close to the data”. This “sales
pitch” is from Wansbeek and Meijer (2000), based on Bekker
(1994) and van der Ploeg (1997).



Comparing with IV

Even more, the LIML estimator stays “closer to the data” than the
IV estimator. Take again the model implication

(
ΣP − λΣM

)( 1
−β

)
= 0.

The IV estmator

β̂IV = (X ′PZX )−1X ′PZy

has model counterpart β = Σ−1P·22σP·21, which corresponds with

(
ΣP − µ e1e

′
1

)( 1
−β

)
= 0,

at variance with the model; better performance of LIML over IV.



When can you neglect this?

Evidently, the difference between IV and LIML is small when

λ =
h

N − h
≈ 0,

so when N is large, or when

ΣM ≈ c · e1e ′1,

that is, E(vnv
′
n) ≈ 0, so the instruments are not weak and do a

good job in explaining the regressors. If you cannot neglect this,
there are implications for the investigation of the asymptotic
behavior of the estimators.



Alternative asymptotics

I An asymptotic distribution is based on parameter sequences.
Their choice should be motivated by the quality of the
approximation that the asymptotic distribution provides to the
exact distribution of the estimators.

I The parameter sequence should be such that it generates
acceptable approximations of known distributional properties
of related statistics. This suggests studying asymptotic
behavior under alternative asymptotics that stays close to the
model.

I Anderson (1976) first described such alternative asymptotics,
now usually called “many-instruments asymptotics”. Bekker
(1994) introduced a consistent estimator of the alternative
asymptotic variance, in his words, “a remarkable result with
practical implications”. The result is often known as “Bekker
standard errors” (not his words).



Inconsistency of IV

Under such asymptotics, one implication of the model is

Σ−1P·22σP·21 = β +
λ

λ+ 1
Σ−1P·22

(
ψ21 −Ψ22β

)
.

The LHS is the population counterpart of the IV estimator. The
RHS equals β plus a term that vanishes under the traditional
asymptotics but not under many-instruments asymptotics. Under
the latter, which arguably gives a better approximation of the
exact distribution, IV is inconsistent.



Now, the panel data model

We consider the case of a single regressor since this captures
essential elements, and the notation can be kept simple. Then

yn = β · xn + un

xn = Π′zn + vn,

where xn, yn, un, vn are T × 1, and zn is h × 1. For the error terms:

fn ≡
(
un
vn

)
∼ N(0,Ω), Ω =

(
Ωuu Ωuv

Ωvu Ωvv

)
,

i.i.d.The model is “limited-information” as we do not impose a
structure on Π (and not on Ω), unlike the very simple specification
xn = π · zn + en, when Π = π · IT or the case of instruments per
wave, xt = Ztπt + et , when Π = diag(π′1, . . . , π

′
T ).



Likelihood

Adaptation for the panel case (plus some simplification) from
Wansbeek and Meijer (2000). Let Sf ≡

∑
n fnf

′
n/N. The joint

density of the fn is

L ≡ log |Ω|+ tr(Ω−1Sf ),

appart from constants. Substitution of yn − xnβ for un and
xn − Π′zn for vn gives the loglikelihood as the Jacobian is unity.

First, concentrate out Ω. Because ∂L/∂Ω = Ω−1 − Ω−1Sf Ω−1,
the optimal value for Ω is Sf , and the concentrated likelihood can
be simplified to L = |Sf |. This simplification is only possible when
Ω is not restricted.



Likelihood (cont.)

With X ,Y ,U and V (N ×T ) and Z (N × h), the model for all n is

Y = β · X + U

X = ZΠ + V ,

The key to a succinct derivation is through the definition
R ≡ (U,Z ), interpretation elusive as yet. Then

V = X − ZΠ = MRX + (PRX − ZΠ) ≡ MRX + V∗, so

MUV∗ = MU

(
(U,Z )(R ′R)−1R ′X − ZΠ

)
= MUZ

(
(0, Ih)(R ′R)−1R ′X − Π

)
≡ MUZ (Π̂− Π),

leading to
V ′∗MUV∗ = (Π̂− Π)′Z ′MUZ (Π̂− Π).



Likelihood (cont.)

We can now further elaborate the likelihood, with V = MRX + V∗:

L = |(U,V )′(U,V )|
= |(U,MRX + V∗)

′(U,MRX + V∗)|

=

∣∣∣∣ U ′U U ′V∗
V ′∗U X ′MRX + V ′∗V∗

∣∣∣∣
= |U ′U| |X ′MRX + V ′∗MUV∗|
= |U ′U| |X ′MRX + (Π̂− Π)′Z ′MUZ (Π̂− Π)|
= |U ′U| |X ′MRX |

in the optimum. Now, L depends on β only. This simplification is
only possible when Π is not restricted.



Likelihood (cont.)
For

W ≡
∣∣∣∣ X ′MZX X ′MZU
U ′MZX U ′MZU

∣∣∣∣ ,
|W | = |X ′MZX | |U ′MZU − U ′MZX (X ′MZX )−1X ′MZU|

= |X ′MZX | |U ′M(X ,Z)U|.

Interchanging X and U does not affect the determinant, so

|X ′MZX | |U ′M(X ,Z)U| = |U ′MZU| |X ′M(U,Z)X |.

Since X ′MZX and U ′M(X ,Z)U (= Y ′M(X ,Z)Y ) do not depend on

β and (U,Z ) = R, the likelihood L = |U ′U| |X ′MRX | becomes

L =
|U ′U|
|U ′MZU|

.

The determinants constitute “generalized variances”.



The LIML estimator

Using the general result, for H > 0 and θ a scalar parameter,

∂ln |H|
∂θ

= tr

(
H−1

∂H

∂θ

)
,

the derivative w.r.t. β is obtained. Setting it equal to zero gives

β̂ =
tr
{

(Û ′Û)−1Y ′X − (Û ′MZ Û)−1Y ′MZX
}

tr
{

(Û ′Û)−1X ′X − (Û ′MZ Û)−1X ′MZX
} .

This equation is non-linear in β̂ as Û = Y − β̂ · X . Solving it for β
is numerically easy by substitution of an initial estimator of β, like
the instrumental variables estimator, in Û ′Û and Û ′MZ Û, and
iteration, “continuous updating”, generalizing the eigenvalue.



Many-instruments asymptotics

We consider its properties under many-instruments asymptotics,

N →∞, h

N
→ α,

1

N
Π′Z ′ZΠ→ Q ≥ 0.

So the instruments behave well in the limit even though their
number increases with N. We indicate many-instruments
asymptotics by an asterisk to distinguish it from the usual
asymptotics with N →∞ only. E.g., under the latter there holds

E
(
X ′MZU

)
= E

(
V ′MZU

)
=
∑
n

(MZ )nnΩvu = (N − h)Ωvu,

so plimN→∞ X ′MZU/N = Ωvu.Under many-instruments
asymptotics, (N − h)/N → 1− α, so

plim∗
1

N
X ′MZU = (1− α) Ωvu.



Auxiliary results

Along these lines,

1

N

(
U ′

X ′

)
(U,X )

p∗−→
(

Ωuu Ωuv

Ωvu Ωvv

)
+

(
0 0
0 Q

)
1

N

(
U ′

X ′

)
MZ (U,X )

p∗−→ (1− α)

(
Ωuu Ωuv

Ωvu Ωvv

)
.

This directly yields

A ≡ (U ′U)−1U ′X − (U ′MZU)−1U ′MZX
p∗−→ 0

B ≡ (U ′U)−1X ′X − (U ′MZU)−1X ′MZX
p∗−→ Ω−1uu Q.

We write Â and B̂ for A and B when we have Û ≡ Y − β̂ · X
instead of U; same plims.



Consistency

The panel LIML estimator solves the equation

β̂ − β =
tr
{
Â
}

tr
{
B̂
} ,

or briefly f (β̂) = 0. Since f (β̂) = 0, trivially, plim∗f (β̂) = 0. Now
consider f (β). It satisfies

f (β) =
tr {A}
tr {B}

p∗−→ 0.

Since plim∗ f (β) = plim∗ f (β̂) = 0, applying the continuous
mapping theorem twice yields plim∗ β̂ = plim∗ f −1(0) = β,
establishing the consistency of the panel LIML estimator under
many-instruments asymptotics.



Inconsistency of IV

Now consider the IV estimator β̂IV,

β̂IV =
tr(X ′PZY )

tr(X ′PZX )
= β +

tr(X ′PZU)

tr(X ′PZX )
.

Since

plim∗ 1
NX
′PZU = α Ωvu

plim∗ 1
NX
′PZX = Q + α Ωvv ,

we have under many-instruments asymptotics

plim∗ β̂IV = β +
α tr(Ωvu)

tr(Q) + α tr(Ωvv )
6= β.

Under the usual asymptotics, α = 0, and the bias disappears.



Asymptotic variance
Consider the (infeasible) estimator

β̃ =
tr
{

(U ′U)−1Y ′X − (U ′MZU)−1Y ′MZX
}

tr
{

(U ′U)−1X ′X − (U ′MZU)−1X ′MZX
} =

tr {A}
tr {B}

.

It has the same asymptotic variance as β̂, so

V (β̂) = plim∗ N(β̃ − β)2 =
plim∗ N {tr(A)}2

{plim∗ tr(B)}2
.

As to A,

A = (U ′U)−1U ′X − (U ′MZU)−1U ′MZX

= (U ′U)−1U ′ZΠ + (U ′U)−1U ′V − (U ′MZU)−1U ′MZV

= (U ′U)−1U ′ZΠ + (U ′U)−1U ′Ṽ − (U ′MZU)−1U ′MZ Ṽ

for any Ṽ and Γ with Ṽ = V + UΓ.We choose Γ = −Ω−1uu Ωuv , cf.
Nagar (1959), which makes U and Ṽ independent. There holds

1

N
E(Ṽ ′Ṽ ) = Ωvv ·u ≡ Ωvv − ΩvuΩ−1uu Ωuv .



Asymptotic variance (cont.)

In order to elaborate tr(A), let u ≡ vec(U) so E(uu′) = Ωuu ⊗ IN ,

q ≡

 vec(U ′U)−1

vec(U ′U)−1

vec(U ′MZU)−1

 , and d ≡

 (IT ⊗ Π′Z ′)u

(IT ⊗ Ṽ ′)u

−(IT ⊗ Ṽ ′MZ )u

 .

Then tr(A) = q′d and plim∗ N {tr(A)}2 = plim∗ N q′E(dd ′)q;

E(dd ′) = Ωuu⊗

 Π′Z ′ZΠ 0 0
0 N Ωvv ·u −(N − h) Ωvv ·u
0 −(N − h) Ωvv ·u (N − h) Ωvv ·u

 .

The independence of U and Ṽ has simplified things essentially.



Asymptotic variance (cont.)

Collecting all the terms gives

q′E(dd ′)q = tr
{

(U ′U)−1Ωuu(U ′U)−1Π′Z ′ZΠ
}

+tr
{

(U ′U)−1Ωuu(U ′U)−1Ωvv ·u
}
· N

+tr
{

(U ′MZU)−1Ωuu(U ′MZU)−1Ωvv ·u
}
· (N − h)

−2tr
{

(U ′MZU)−1Ωuu(U ′U)−1Ωvv ·u
}
· (N − h)

and plim∗ N {tr(A)}2 follows readily.We already had obtained
plim∗B = Ω−1uu Q, so the asymptotic variance of β̂ is

V (β̂) =
tr
{

Ω−1uu (Q + α
1−αΩvv ·u)

}
{

tr(Ω−1uu Q)
}2 ,

generalizing Newey (2004). In order to obtain Bekker standard
errors, it remains to find a consistent estimator V̂ (β̂) of V (β̂).



Bekker standard errors
Bekker standard errors can have various forms. With α̂ = h/N,

H ≡ (1− α̂) PZ − α̂ MZ

W ≡ (1− α̂)2PZ + α̂2MZ − α̂(1− α̂)P
Û
.

one form is

V̂ (β̂) = tr
{

(Û ′Û)−1X ′WX
}
/
{

tr((Û ′Û)−1X ′HX )
}2
.

By taking ∗ limits, the consistency of V̂ (β̂) follows immediately.
An alternative is to replace the scalar factors α̂ and (1− α̂) by
matrix factors Â and (IT − Â) outside the terms X ′ · · ·X , where

Â = Û ′PZ Û(Û ′Û)−1
p∗−→ α IT

(IT − Â) = Û ′MZ Û(Û ′Û)−1
p∗−→ (1− α) IT .

These constructions are a bit ad hoc; Bekker and Wansbeek
(2014) may offer better alternative.



Simulation design

We extend to T = 2 the design of Bekker and Wansbeek (2014),(
yn1
yn2

)
=

(
xn1
xn2

)
β +

(
εn1
εn2

)
(

xn1
xn2

)
= Π′zn + ω

(
εn1
εn2

)
+

(
ṽn1
ṽn2

)
;

Π is h × 2,N = 500, all variables have mean zero. Further, β = 0
and

Π =

(
π 0 · · · 0
π 0 · · · 0

)′
;

(εn1, εn2)′ and (ṽn1, ṽn2)′ are i.i.d. N(0,
( 1 ρ
ρ 1

)
). The elements of zn

are i.i.d. N(0, 1).



Elements of interest

In our simulations we are interested in the effect of the following:

I The number of instruments. We let h = 10 and h = 30. With
N = 500, this means α = 0.02 and α = 0.06, respectively.

I The degree of endogeneity, driven by ω; ω = 0 corresponds
with absence of endogeneity. We let ω = 0.5 and ω = 2.

I The strength of the instruments, as measured by the F of the
regression of x on z . We let F = 3,F = 5,F = 10, obtained
by appropriate choices of π; for the regression of x on z :

R2 =
π2

π2 + ω2 + 1
.

The way π drives F then follows directly from
F = (N − h)R2/h(1− R2).

I The coherence in the panel. This is driven by ρ. We consider
ρ = 0, ρ = 0.3, ρ = 0.8.



Simulation results, LIML and 2SLS, N = 500, ρ = 0

10 instruments 30 instruments
ω = 0.5 ω = 2 ω = 0.5 ω = 2

abs. median bias×1000

F = 3 104 144 40 119 55 154 28 121
F = 5 31 70 48 111 37 113 12 61
F = 10 35 68 47 76 16 26 3 23

95% coverage rate

F = 3 96 82 95 52 95 60 95 9
F = 5 95 87 95 64 95 72 95 23
F = 10 95 90 95 78 95 82 95 48



Simulation results, LIML and 2SLS, N = 500, ρ = 0.3

10 instruments 30 instruments
ω = 0.5 ω = 2 ω = 0.5 ω = 2

abs. median bias×1000

F = 3 170 197 34 129 79 165 45 120
F = 5 148 74 48 4 45 77 0 63
F = 10 31 58 25 18 13 43 6 32

95% coverage rate

F = 3 96 84 95 58 95 66 95 15
F = 5 96 88 95 69 95 76 95 33
F = 10 95 91 95 81 95 85 95 57



Simulation results, LIML and 2SLS, N = 500, ρ = 0.8

10 instruments 30 instruments
ω = 0.5 ω = 2 ω = 0.5 ω = 2

abs. median bias×1000

F = 3 12 143 94 36 123 231 9 72
F = 5 32 9 44 105 7 60 54 104
F = 10 5 2 41 14 15 39 3 4

95% coverage rate

F = 3 96 85 94 65 95 71 95 26
F = 5 96 88 95 74 95 79 95 44
F = 10 95 92 95 83 95 87 95 66



More regressors

With more regressors, all related to the same set of instruments:

yn = x1nβ1 + . . .+ xknβk + un

x1n = Π′1zn + v1n,
...

xkn = Π′kzn + vkn.

With β ≡ (β1, . . . , βk)′,X ≡ (X1, . . . ,Xk),E ≡ (E1, . . . ,Ek),Π ≡
(Π1, . . . ,Πk),V ≡ (V1, . . . ,Vk) we get for all n

Y = X (β ⊗ IT ) + U

X = ZΠ + V .

The notion of limited information is stretched as, for each n, all
elements of X and all elements of Z are related, over regressors
and over time.



LIML estimation

The derivation of the LIML estimator for this extended case carries
through as before, again leading to L = |U ′U|/|U ′MZU|. The
LIML estimator is the solution of

β̂ = Ĥ−1ĥ,

where

(Ĥ)ij ≡ tr
{

(Û ′Û)−1X ′i Xj − (Û ′MZ Û)−1X ′iMZXj

}
(ĥ)i ≡ tr

{
(Û ′Û)−1Y ′Xj − (Û ′MZ Û)−1Y ′MZXj

}
,

for i , j = 1, . . . , k . The generalization carries through in a
straightforward way all the way to Bekker standard errors, as long
as there are no exclusion restrictions on Π.



Concluding remarks

I We have derived the LIML estimator for the simplest panel
data model, thus filling an apparent gap in the literature.
Results are much like the T = 1 case, with a lot of “tr”
added. We presented all derivations for (panel) LIML
estimator and its variance under many-instruments
asymptotics, and they are overall (fairly) simple.

I In simulations LIML has excellent coverage rate, also in the
cases where 2SLS is (highly) off the mark.

I Further research questions include: Why is the gain in median
bias of LIML over 2SLS in a panel less than in a cross-section?
How can the link be made between T and h? What is the
effect of heteroskedasticity? How does Hausman-Taylor (and
its many-instruments extensions) fit into a LIML framework?
In which cases should applied researchers really turn to LIML?


