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Abstract

We consider the static linear panel data model with a single regressor. For this model we derive the
LIML estimator. We study the asymptotic behavior of this estimator under many-instruments asymp-
totics, by proving its consistency, deriving its asymptotic variance, and by presenting an estimator of
the asymptotic variance that is consistent under many-instruments asymptotics. We briefly indicate
the extension to the static panel data model with multiple regression.

1 Introduction

Regression with endogeneity is at the core of econometrics. Instrumental variables is the standard ap-
proach. The expression “instrumental variables” is due to Reiersøl (1941). Theil (1953) developed
“repeated least squares”, pioneering more instruments than regressors. This later on became known as
two-stage least squares (2SLS), which has come to dominate the practice of econometric estimation.

Just before the onset of 2SLS, Anderson and Rubin (1949, 1950) introduced the limited-information
maximum likelihood (LIML) estimator as a way to deal with endogeneity. Its small-sample qualities vis-
à-vis 2SLS got appreciated in the fifties in the development of k-class estimators like LIML, but applied
researchers showed little eagerness and LIML vanished from sight.

A revival of LIML had to wait till the development of an appropriate framework relevant for studying
the asymptotic distribution of the LIML estimator, with the following considerations. An asymptotic
distribution is based on parameter sequences. Their choice should be motivated by the quality of the
approximation that the asymptotic distribution provides to the exact distribution of the estimators. The
parameter sequence should be such that it generates acceptable approximations of known distributional
properties of related statistics. This suggests studying asymptotic behavior under alternative asymptotics
that stays close to the model. When there are many instruments h relative to the number of observations
N, or when the instruments are weak, the usual asymptotics with h fixed and N → ∞ may lead to poor
approximations, and an alternative is called for.

Anderson (1976) was the first to describe such alternative asymptotics, now usually called “many-
instruments asymptotics”. This result had a theoretical relevance only, until Bekker (1994) introduced
a consistent estimator of the alternative asymptotic variance. He thus made the alternative asymptotics
useful for empirical work, by offering an inference procedure with often much better coverage rates than
2SLS. In his words, this was “a remarkable result with practical implications”. The result is often known
as “Bekker standard errors” (not his words).

To the best of our knowledge, LIML estimators have not yet been developed for panel data models, at
least not in the sense of estimators obtained from maximizing the likelihood. LIML-like estimators have
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been developed by e.g. Alvarez and Arellano (2003) and Akashi and Kunitomo (2012), for the dynamic
panel data model, but these are least variance ratio estimators and not “true” LIML estimators obtained
from maximizing a likelihood function. So, there appears to be a gap in the literature. The objective
of our study is to fill this gap by deriving the LIML estimator for the static linear panel data model and
investigating its properties. We do so in a framework of many-instruments asymptotics since the raison
d’être of LIML lies there.

The paper is organized as follows. We formulate our model in section 2. We indicate what we mean
by “limited information”. The loglikelihood is formulated and maximized over the parameter space. This
yields the panel LIML estimator. In section 3 we define many-instruments asymptotics, and show that
our estimator is consistent under such asymptotics. We derive the asymptotic variance, and present an
estimator of this variance that is consistent under many-instruments asymptotics, leading to the so-called
“Bekker standard errors”. Section 4 deals with the static panel data model with multiple regressors,
which appears to be relatively straightforward. In section 5 we present some Monte Carlo results on the
coverage rate of the panel LIML estimator relative to the 2SLS estimator. Section 6 concludes. In an
appendix we argue the relevance of many-instruments asymptotics.

2 LIML in the panel data model

In this section we consider the case of a single regressor since this captures the essential elements, and
the notation can be kept simple. The extension to the the static panel data model with multiple regressors
is dealt with in section 4. We first formulate the model and derive the loglikelihood. We next maximize
the loglikelihood to arrive at the panel LIML estimator.

2.1 The model and the loglikelihood

Like in the case of a single cross-section, the model is given by two equations, one containing the struc-
tural relation under study and the second one relating the endogenous regressor to exogenous instruments:

yn = β xn + un (1)

xn = Π′zn + vn, (2)

for n = 1, . . . ,N, where xn, yn, un and vn are T -vectors and zn is an h-vector; Π is of order h × T . The
error terms satisfy

en ≡

(
un
vn

)
i.i.d.
∼ N(0,Ω), Ω =

(
Ωuu Ωuv
Ωvu Ωvv

)
.

The estimation method is limited-information in the sense that we do not exploit any structure that may
be present in Π (e.g. due to wave-specific instruments) or on Ω (e.g. due to a random effects). When
a specification with fixed-effects is deemed appropriate, we assume that they have been eliminated by
an appropriate data transformation like taking first differences or the within-transformation, where one
wave of the panel has to be discarded to avoid singularity of Ω.

We now turn to inference in this model. Let Se ≡
∑

n ene′n/N. The logarithm of the joint density of
the en is, apart from constants,

log f ≡ log |Ω| + tr(Ω−1Se).

Substitution of yn−βxn for un and xn−Π′zn for vn turns this into the loglikelihood, logL, as the Jacobian
of the transformation from un and vn to yn and xn is 1. We maximize the loglikelihood in a few steps,
using a single symbol (logL) throughout and neglecting constants. The derivation is an adaptation to the
panel data case of the relatively succinct derivation given by Wansbeek and Meijer (2000) for the case of
a single cross-section.
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By way of notational convention, we write, for generic C of full column rank, MA = I −C(C′C)−1C′

and PA = C(C′C)−1C′.

2.2 Maximizing the loglikelihood

First, we concentrate out Ω. As ∂logL/∂Ω = Ω−1−Ω−1SeΩ
−1, the optimal value for Ω is Ω̂ = Se, and the

concentrated loglikelihood can be simplified to logL = |Se|. This simplification is only possible when Ω

is not restricted.
The next step is to concentrate out Π. To this end we first write the model in matrix form. With

X,Y,U and V (N × T ) and Z (N × h), the model for all n is

Y = β X + U

X = ZΠ + V.

Let R ≡ (U,Z) and V
∗
≡ PRX − ZΠ. Then

V = X − ZΠ

= MRX + PRX − ZΠ

= MRX + V
∗
,

and

MUV
∗

= MU

(
(U,Z)(R′R)−1R′X − ZΠ

)
= MUZ

(
(0, Ih)(R′R)−1R′X − Π

)
≡ MUZ(Π̂ − Π),

with Π̂ implicitly defined. This implies the useful auxiliary result

V ′
∗
MUV

∗
= (Π̂ − Π)′Z′MUZ(Π̂ − Π) ≥ 0, (3)

with equality if Π̂ = Π. Substituting MRX + V
∗

for V in the loglikelihood gives

logL = |(U,V)′(U,V)|

= |(U,MRX + V
∗
)′(U,MRX + V

∗
)|

=

∣∣∣∣∣∣ U′U U′V
∗

V ′
∗
U X′MRX + V ′

∗
V
∗

∣∣∣∣∣∣
= |U′U | |X′MRX + V ′

∗
MUV

∗
|

= |U′U | |X′MRX|,

where the last step holds in the optimum on taking Π = Π̂, cf. (3). This is only possible when Π is not
restricted. After concentrating out Ω first and then Π, the loglikelihood depends on β only. Let

W ≡

∣∣∣∣∣∣ X′MZX X′MZU
U′MZX U′MZU

∣∣∣∣∣∣ .
Then

|W | = |X′MZX| |U′MZU − U′MZX(X′MZX)−1X′MZU |

= |X′MZX| |U′M(X,Z)U |.

3



Interchanging X and U does not affect the determinant, so

|X′MZX| |U′M(X,Z)U | = |U
′MZU | |X′M(U,Z)X|.

We notice that X′MZX does not depend on β. Neither does U′M(X,Z)U as it is equal to Y ′M(X,Z)Y . Since
R = (U,Z), X′M(U,Z)X = X′MRX. So the loglikelihood logL = |U′U | |X′MRX| can be rewritten as

logL =
|U′U |
|U′MZU |

.

Using the general result, for Ψ > 0 and θ a scalar parameter,

∂ln |Ψ|
∂θ

= tr
(
Ψ−1 ∂Ψ

∂θ

)
,

we can differentiate logL with respect to β and set the result equal to zero. This gives

β̂ =
tr[(Û′Û)−1Y ′X − (Û′MZÛ)−1Y ′MZX]

tr[(Û′Û)−1X′X − (Û′MZÛ)−1X′MZX]
, (4)

with Û ≡ Y − Xβ̂; hence this equation is non-linear in β̂. Solving it is numerically easy by substitution
of the 2SLS estimator of β in Û,

β̂
2SLS

=
tr[Y ′PZX]
tr[X′PZX]

,

yielding a new value of β̂, and iteration until convergence. In the simulations below, iteration to the
correct value always took but a few steps. Notice that the panel LIML estimator is not the solution to an
eigenequation, unlike in the case of a single cross-section, T = 1.

3 Asymptotic properties

In this section we study the asymptotic properties of the panel LIML estimator. The interesting and
relevant case is the one of many-instruments asymptotics. We first indicate what we mean by that,
and present the simple calculus implied. We next prove the consistency of the panel LIML estimator
under many-instruments asymptotics. We conclude this section by deriving the asymptotic variance, and
present a consistent estimator of this variance. Derivations for the cross-sectional multiple regression
case have been given by Bekker (1994) and Newey (2004).

3.1 Many-instruments asymptotics

We will consider the properties of the panel LIML estimator under asymptotics characterized by

N → ∞,
h
N
→ α,

1
N

Π′Z′ZΠ→ Q ≥ 0.

This means that the instruments behave well in the limit even though their number increases with N. We
indicate many-instruments asymptotics by an asterisk to distinguish it from the usual asymptotics with
N → ∞ only. By way of example, under the latter there holds

E
(
X′MZU

)
= E

(
V ′MZU

)
= E

∑
n

vn(MZ)nnu′n =
∑

n

(MZ)nnΩvu = tr(MZ)Ωvu = (N − h)Ωvu,

so plimN→∞ X′MZU/N = Ωvu. By contrast, under many-instruments asymptotics we have tr(MZ)/N =

1 − h/N → 1 − α, so

plim∗
1
N

X′MZU = (1 − α) Ωvu.
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Along these lines,

1
N

(
U′

X′

)
(U, X)

p∗
−→

(
Ωuu Ωuv
Ωvu Ωvv

)
+

(
0 0
0 Q

)
(5)

1
N

(
U′

X′

)
MZ(U, X)

p∗
−→ (1 − α)

(
Ωuu Ωuv
Ωvu Ωvv

)
. (6)

This directly yields

A ≡ (U′U)−1U′X − (U′MZU)−1U′MZX
p∗
−→ 0 (7)

B ≡ (U′U)−1X′X − (U′MZU)−1X′MZX
p∗
−→ Ω−1

uu Q. (8)

We are now in a position to study the asymptotic properties of the panel LIML estimator.

3.2 Consistency

Rewriting (4), the panel LIML estimator solves the equation

β̂ −
tr

[
(Û′Û)−1Y ′X − (Û′MZÛ)−1Y ′MZX

]
tr

[
(Û′Û)−1X′X − (Û′MZÛ)−1X′MZX

] = 0,

where Û = Û(β̂) ≡ Y − β̂ X. This equation can be written as f (β̂) = 0, with f (·) implicitly defined; f (·)
is continuous in β̂, since it is a composite function of continuous transformations of β̂. Since f (β̂) = 0,
trivially, plim∗ f (β̂) = 0. Now consider f (β), and note that Û(β) = U, so

f (β) = β −
tr

[
(U′U)−1Y ′X − (U′MZU)−1Y ′MZX

]
tr

[
(U′U)−1X′X − (U′MZU)−1X′MZX

] =
tr(A)
tr(B)

p∗
−→ 0

because of (7) and (8). Since plim∗ f (β) = plim∗ f (β̂) = 0, applying the continuous mapping theorem
twice yields plim∗ β̂ = plim∗ f −1(0) = β, establishing the consistency of the panel LIML estimator under
many-instruments asymptotics.

It is of some interest to compare this with the behavior of the 2SLS estimator,

β̃ =
tr(X′PZY)
tr(X′PZX)

= β +
tr(X′PZU)
tr(X′PZX)

.

From (5) and (6) we obtain

plim∗
1
N

X′PZU = α Ωvu

plim∗
1
N

X′PZX = Q + α Ωvv.

So under many-instruments asymptotics the 2SLS estimator is inconsistent,

plim∗ β̃ = β +
α tr(Ωvu)

tr(Q) + α tr(Ωvv)
, β.

Under the usual asymptotics, α = 0, and the 2SLS estimator is consistent as yet.
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3.3 Asymptotic variance

Consider the (infeasible) estimator

β̃ =
tr

{
(U′U)−1Y ′X − (U′MZU)−1Y ′MZX

}
tr

{
(U′U)−1X′X − (U′MZU)−1X′MZX

} =
tr {A}
tr {B}

.

It has the same asymptotic variance as β̂, so

V(β̂) = plim∗ N(β̃ − β)2 =
plim∗ N {tr(A)}2{

plim∗ tr(B)
}2 . (9)

As to A,

A = (U′U)−1U′X − (U′MZU)−1U′MZX

= (U′U)−1U′ZΠ + (U′U)−1U′V − (U′MZU)−1U′MZV

= (U′U)−1U′ZΠ + (U′U)−1U′Ṽ − (U′MZU)−1U′MZṼ

for any Ṽ and Γ with Ṽ = V + UΓ. We choose Γ = −Ω−1
uu Ωuv, cf. Nagar (1959), which makes U and Ṽ

independent. There holds
1
N

E(Ṽ ′Ṽ) = Ωvv·u ≡ Ωvv −ΩvuΩ−1
uu Ωuv.

Next, let

q ≡ N


vec(Û′Û)−1

vec(Û′Û)−1

vec(Û′MZÛ)−1

 p∗
−→


1
1
1

1−α

 ⊗ vec(Ω−1
uu )

u ≡ vec(U′)

d ≡


Π′Z′ ⊗ IT
Ṽ ′ ⊗ IT
−Ṽ ′MZ ⊗ IT

 u.

Then E(uu′) = IN ⊗Ωuu and

lim∗
1
N

E(dd′) =


Q 0 0
0 Ωvv·u −(1 − α) Ωvv·u
0 −(1 − α) Ωvv·u (1 − α) Ωvv·u

 ⊗Ωuu.

Using

(1, 1
1−α )

(
1 −(1 − α)

−(1 − α) 1 − α

) (
1
1

1−α

)
= α

1−α ,

we obtain, since tr(Â) = 1
N q′d,

plim∗ N
[
tr(Â)

]2
= (plim∗ q)′

{
lim∗

1
N

E(dd′)
}

(plim∗ q)

= tr [Ω−1
uu (Q + α

1−αΩvv·u)]. (10)

So the asymptotic variance of β̂ is given by (9), with (8) and (10) inserted, generalizing Newey (2004).
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3.4 Bekker standard errors

In order to make this formula operational and obtain Bekker standard errors, it remains to find an esti-
mator V̂(β̂) of V(β̂) that is consistent under many-instruments asymptotics. With α̂ = h/N and

H ≡ (1 − α̂) PZ − α̂ MZ

W ≡ (1 − α̂)2 PZ + α̂2 MZ − α̂(1 − α̂) PÛ ,

one such expression is

V̂(β̂) =
tr[(Û′Û)−1X′WX]

[tr((Û′Û)−1X′HX)]2
. (11)

The consistency of this expression under many-instruments asymptotics follows from

1
N

X′PZX
p∗
−→ Q + α Ωvv

1
N

X′MZX
p∗
−→ (1 − α) Ωvv

1
N

X′PÛ X
p∗
−→ ΩvuΩ−1

uu Ωuv.

On substitution this readily gives

1
N

X′HX
p∗
−→ (1 − α) (Q + α Ωvv) − α(1 − α) Ωvv

= (1 − α) Q
1
N

X′WX
p∗
−→ (1 − α)2 (Q + α Ωvv) + α2(1 − α) Ωvv − α(1 − α) ΩvuΩ−1

uu Ωuv

= (1 − α)2
{
Q + α Ωvv + α2

1−α Ωvv −
α

1−α ΩvuΩ−1
uu Ωuv

}
= (1 − α)2

{
Q + α

1−α Ωvv·u

}
,

from which the many-instruments consistency of V̂(β̂) in (11) follows directly.

4 Multiple regression

Up till now we considered the case of a single regressor. We presently turn to the case where there are K
regressors, all related to the same set of instruments. Model (1)–(2) then generalizes to

yn = x1nβ1 + . . . + xKnβK + un

x1n = Π′1zn + v1n,

...

xKn = Π′Kzn + vKn.

With β ≡ (β1, . . . , βK)′, X ≡ (X1, . . . , XK), E ≡ (E1, . . . , EK),Π ≡ (Π1, . . . ,ΠK),V ≡ (V1, . . . ,VK) we get
for all n

Y = X(β ⊗ IT ) + U

X = ZΠ + V.

The notion of limited information is stretched as, for each n, all elements of X and all elements of Z are
related, over regressors and over time.
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It appears that the derivation of the panel LIML estimator for the case of the static panel data model
with multiple regressors is not essentially different from the case with a single regressor. Also now we
obtain as the loglikelihood logL = |U′U |/|U′MZU |, but with an adapted U of course. The panel LIML
estimator is the solution of

β̂ = Ĥ−1ĥ,

where

(Ĥ)k` ≡ tr[(Û′Û)−1X′kX` − (Û′MZÛ)−1X′kMZX`]

(ĥ)k ≡ tr[(Û′Û)−1Y ′Xk − (Û′MZÛ)−1Y ′MZXk],

for k, ` = 1, . . . ,K. The generalization carries through in a straightforward way all the way to Bekker
standard errors.

5 A Monte Carlo study

In this section we examine by means of Monte Carlo experiments the quality of asymptotic inference
based on LIML with Bekker standard errors. We first describe the design used, and next report the
results.

5.1 Design

In the simulations, we consider model (1)–(2), with T = 2, and let unt and vnt be AR(1) with autocorrela-
tion parameters ρ and η, respectively, and standard normal innovations. We take all elements of Π (h×2)
identical, equal to π, and let the instruments znh all be i.i.d. standard normal. As to parameter choices, we
let N = 100 and β = 1. We let α and π run from 0.05 to 0.5. Hence the number of instruments h = α N
runs from 5 to 50.

For each parameter combination 10,000 simulations are performed, where in each repetition the
coverage rate of a 95% confidence interval of LIML with Bekker standard errors is compared with the
coverage rate of a 95% confidence interval of 2SLS with classical standard errors. The Bekker standard
errors are based on (11). This expression does not guarantee nonnegativity. In the very rare cases where
the expression produced a negative number, we took the absolute value, a continuous transformation
which does not affect consistency.

5.2 Results

Figures 1, 2, and 3 depict the difference between the 95% coverage rates of 2SLS with classical standard
errors and LIML with Bekker standard errors, for given values of η and ρ.

The figures are rather similar for different values of N (not reported here) but depend heavily on the
relation between U and V . In figure 1, for example, improvements vary from 1.8% for α = 0.05 and
π = 0.5 to 84% for α = 0.5 and π = 0.05. In figure 3, both the smallest and the largest improvement
are achieved at π = 0.5, the smallest at α = 0.05 (23%) and the largest at α = 0.5 (94%). When
η increases, then the coverage rates decrease, but less for LIML than for 2SLS. Especially with many
and/or weak instruments, 2SLS coverage rates closely tend to 0, whereas LIML coverage rates (based on
Bekker standard errors) remain substantially larger, even in the configuration of figure 3. In this extreme
setting, the largest 2SLS coverage rate is 64% (α = 0.05, π = 0.5), whereas all LIML coverage rates for
π > 0.3 are larger than this and some even still closely resemble 95%. In the more ideal setting of figure
1, all LIML coverage rates are larger than 85%, whereas for more than half of the (α, π)-loci the 2SLS
coverage rates are below 75%.
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Furthermore, these figures show that the locus of largest improvement depends on the relation be-
tween U and V . If this relation is weak, LIML attains the largest improvement for large α and small π.
That is, for many and weak instruments. However, when η increases, the point with the largest difference
in coverage rate moves gradually towards the configuration with strong instruments. An explanation is
that, when η increases, the LIML coverage rates decrease. Both LIML and 2SLS are most precise when
π is large. Hence, in the situation where η is small, both estimators perform well and LIML attains the
largest improvement in the well-studied situation with many and weak instruments but, when η increases,
LIML also loses efficiency (but at a slower rate than 2SLS), mostly in the regions where α and π are low
since there the relative efficiency gain was largest. Therefore, the point where LIML outperforms 2SLS
most shifts gradually.

Note, however, that in all cases studied LIML coverage rates are larger than 2SLS coverage rates,
such that inference using LIML is uniformly preferred over inference with 2SLS. Coverage rates of
the latter are generally substantially lower than their theoretical values, which may lead to misleading
conclusions in hypothesis testing. Of all cases depicted in figures 1, 2, and 3, the average increase in
coverage rate is 48% for a 95% confidence interval.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

6 Concluding remarks

We have derived the LIML estimator for the simplest static linear panel data model, thus filling an
apparent gap in the literature. We presented all derivations for the panel LIML estimator and its variance
under many-instruments asymptotics.

There are various topics for further research. One such topic would be to develop a LIML version of
the Hausman-Taylor estimator (Hausman and Taylor, 1981). This is not only a widely used, instruments-
based panel data estimator, but also one where there are variants with many instruments, becoming
available when the time dimension of the data is exploited (Amemiya and MaCurdy, 1986, and Breusch,
Mizon, and Schmidt, 1989).

Another topic concerns heteroskedasticity. In the case of a single cross-section, heteroskedasticity
has recently been the focus of LIML research, e.g. Hausman, Newey, Woutersen, Chao, and Swanson
(2012).

A third and final challenge is to see how far the material of this paper, in particular on many-
instruments asymptotics, remains relevant when the model is dynamic. We already referred to Alvarez
and Arellano (2003) and Akashi and Kunitomo (2012). Another starting point could be to adapt the
maximum likelihood analysis of the linear panel data model by Hsiao, Pesaran, and Tahmiscioglu (2002)
for many-instruments asymptotics.

Appendix: The case for many-instruments asymptotics

In this appendix, based on Wansbeek and Meijer (2000), section 6.6, we give the core of the argument to
motivate many-instruments asymptotics in the cross-sectional case. In that case, the LIML estimator is
the ML estimator of β in

y = Xβ + u

X = ZΠ + V,
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with Z of order N × h exogenous instruments. The errors are i.i.d. normal. Let

S P ≡ (y, X)′PZ(y, X)

S M ≡ (y, X)′MZ(y, X).

The LIML estimator β̂ follows from the first-order condition

(S P − λ̂S M)
(

1
−β̂

)
= 0,

with λ̂ the smallest value for which S P − λ̂S M is singular.
Let ΣP ≡ E(S P) and ΣM ≡ E(S M), and let ` ≡ h/(N − h). After some algebraic manipulations, it

appears that a direct implication of the model is

(
ΣP − λΣM

) ( 1
−β

)
= 0;

So the LIML estimator satisfies a relation that is the sample analog of a model implication; it stays “close
to the data”.

This observation has an implication when studying the asymptotic distribution, and in particular the
asymptotic variance, of the LIML estimator. In general, an asymptotic distribution is based on parameter
sequences. Their choice should be motivated by the quality of the approximation that the asymptotic
distribution provides to the exact distribution of the estimators. This suggests to study an asymptotic
sequence where ` does not vanish, i.e. where the number of instruments grows along with the number of
observations, thus staying close to the data. This motivates “many-instruments asymptotics.”

Another implication is that the LIML estimator stays closer to the data than the IV or 2SLS estimator,

β̃ = (X′PZX)−1X′PZy.

This estimator has model counterpart β = Σ−1
P·22σP·21; with e1 the first unit vector, this corresponds with

(
ΣP − µ e1e′1

) ( 1
−β

)
= 0.

This is at variance with the model, and suggests a better performance of LIML over IV. Evidently,
the difference between IV and LIML is small when ` ≈ 0, so when N is large relative to the number of
instruments, or when ΣM ≈ c· e1e′1, so when the instruments are not weak and explain the regressors well.
But when there are many instruments or when the instruments are weak, the LIML is to be preferred,
with standard errors based on many-instruments asymptotics.

References

Akashi, K. and N. Kunitomo (2012), “Some properties of the LIML estimator in a dynamic panel struc-
tural equation”, Journal of Econometrics, 166, 167–183.

Alvarez, J. and M. Arellano (2003), “The time series and cross-section asymptotics of dynamic panel
data estimators”, Econometrica, 71, 1121–1159.

Amemiya, T. and T.E. MaCurdy (1986), “Instrumental-variable estimation of an error components model”,
Econometrica, 54, 869–881.

Anderson, T.W. (1976), “Estimation of linear functional relationships: approximate distributions and
connections with simultaneous equations in econometrics”, Journal of the Royal Statistical Society B,
38, 1–36.

10



Anderson, T.W. and H. Rubin (1949), “Estimator of the parameters of a single equation in a complete
system of stochastic equations”, Annals of Mathematical Statistics, 20, 46–63.

Anderson, T.W. and H. Rubin (1950), “The asymptotic properties of estimates of the parameters of a
single equation in a complete system of stochastic equations”, Annals of Mathematical Statistics, 21,
570–582.

Bekker, P.A. (1994), “Alternative approximations to the distributions of instrumental variable estima-
tors”, Econometrica, 62, 657–681.

Breusch, T.S., G.E. Mizon, and P. Schmidt (1989), “Efficient estimation using panel data”, Econometrica,
57, 695–700.

Hausman, J.A., W.K. Newey, T. Woutersen, J. Chao, and N.R. Swanson (2012), “Instrumental variable
estimation with heteroskedasticity and many instruments”, Quantitative Economics, 3, 211–255.

Hausman, J.A. and W.E. Taylor (1981), “Panel data and unobservable individual effects”, Econometrica,
49, 1377–1398.

Hsiao, C., M.H. Pesaran, and A.K. Tahmiscioglu (2002), “Maximum likelihood estimation of fixed ef-
fects dynamic panel data models covering short time periods”, Journal of Econometrics, 109, 107–
150.

Nagar, A.L. (1959), “The bias and moment matrix of the general k− class estimators of the parameters
in simultaneous equations”, Econometrica, 27, 575–595.

Reiersøl, O. (1941), “Confluence analysis by means of lag moments and other methods of confluence
analysis”, Econometrica, 9, 1–24.

Theil, H. (1953), Repeated least squares applied to complete equation systems, Central Planning Bureau,
The Hague.

Wansbeek, T.J. and E. Meijer (2000), Measurement error and latent variables in econometrics, North-
Holland.

11



List of Figures

1 N = 100, ρ = 0.4, η = 0.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 N = 100, ρ = 0.8, η = 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 N = 100, ρ = 0.3, η = 3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

12



Figure 1: N = 100, ρ = 0.4, η = 0.6
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Figure 2: N = 100, ρ = 0.8, η = 1.2
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Figure 3: N = 100, ρ = 0.3, η = 3.0
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