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Abstract

The Dantzig selector is traditionally used for point estimation by least squares when the
number of parameters exceeds the number of observations. This paper uses it to obtain smaller
standard errors in a sieve maximum likelihood estimation in a panel setting. We assume correctly
specified likelihood-based models for each cross section and the Bernstein polynomial serves as
a copula sieve capturing dependence between them. This estimator has smaller standard errors
asymptotically than the conventional QMLE but, in finite samples, the number of parameters
in the sieve is close to the sample size and may exceed it. At the same time, most of the sieve
parameters are close to zero. We propose an estimator that uses the Dantzig selector to find
the sparsest vector of the sieve parameters satisfying the first order conditions of the MLE up
to a given tolerance level. We show in simulations that our estimator produces a sparse sieve
MLE with finite-sample properties very similar to the non-sparse alternative, and substantially
better the QMLE. Thus the sparsity imposed by the Dantzig selector is innocuous with respect
to the non-asymptotic behavior of the sieve MLE; it also permits a substantial increase in
computational efficiency compared to the unrestricted sieve MLE. As a theoretical motivation
for the good performance of sparse SMLE, we provide an oracle inequality relating the risk of the
sparse estimator with that of an infeasible estimation where an oracle tells us which coefficients
are insignificant. We also study the parameter path behavior for various tolerance levels and
consider a version of a double Dantzig selector which resolves the arbitrariness in choosing the
tolerance level.
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1 Introduction

The Dantzig selector (DS) was recently introduced to deal with linear regressions in which the

number of parameters is very large, possibly larger than the number of observations, but some

parameters are believed to be zero – a setting known as a sparsity scenario (Candes and Tao,

2007). DS is attractive because of its property – known as the oracle inequality – to achieve a loss

very similar to what we would get if we were told (by an oracle) which elements of the true parameter

vector are zero (see, e.g., Koltchinskii, 2009). Unlike the LASSO estimator, which shares similar

oracle properties, DS gives parameter estimates with the smallest l1 norm and is computationally

simpler because it reduces to a linear programming problem (see, e.g., Bickel, Ritov, and Tsybakov,

2009).

In this paper we consider using DS in a semiparametric sieve maximum likelihood estimation

(SMLE) under a sparsity scenario. Basically, we employ DS in an adaptive nonparametric copula

density estimation where the number of sieve parameters is potentially larger than the sample

size but the sieve parameter space is sparse. Therefore, this work is related to the sparse density

estimation via l1 penalization (SPADES) of Bunea, Tsybakov, Wegkamp, and Barbu (2010), who

consider a LASSO-type penalized objective function. Instead, we use the DS approach, minimizing

the l1 norm of the parameter vector directly.

The goal is to use the nonasymptotic nature of the oracle inequalities to achieve in finite

samples what SMLE achieves only asymptotically – an estimator that dominates the conventional,

independence-based QMLE. In other words, the primary purpose of using DS here is relative

efficiency and improved finite sample properties, not model selection.

2 Copula-Based SMLE of Parameters in Marginals

2.1 SMLE and QMLE

Consider the setting of a panel with T time periods and N individuals. Assume T is fixed and

N →∞. We will fix T = 2 for simplicity. Suppose that for each cross section, we have a correctly

specified parametric likelihood-based model and we can estimate this model consistently using only

the cross sectional data. However, it is usually possible to use the entire panel to obtain more

efficient estimators (see, e.g., Prokhorov and Schmidt, 2009; Amsler, Prokhorov, and Schmidt,

2013).
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The estimator we consider is the sieve MLE (SMLE) (see Chen, 2007, for a review). In essence,

this is a maximum likelihood estimator which uses a sieve approximator to the true joint log density.

Specifically we follow Panchenko and Prokhorov (2013) and consider a sieve approximator of the

copula corresponding to the joint density. In this setting, the SMLE attempts to use information

contained in the dependence structure between cross sections.

Let f(yit;β), t = 1, 2, denote the marginal densities for each cross section, indexed by parameter

β. Let h(yi1, yi2;β) denote the joint density of (yi1,, yi2) and let c(u1, u2) denote the copula density,

corresponding to h(yi1,, yi2;β). We are interested in estimation of β – a parameter vector that

collects all unknown parameters from the likelihood-based models for the cross sections. By a well

known result due to Sklar (1959),

lnh(yi1,, yi2;β) = ln f(yi1;β) + ln f(yi2;β) + ln c(F (yi1;β), F (yi2;β)), (1)

where F (yit;β) denotes the corresponding marginal cdf’s. They may be distinct but we will put

this aside for the moment.

The SMLE replaces the last term in (1) with a truncated infinite series representation (a sieve) of

the copula log density and then carries out the usual optimization over both β and the parameters

of that representation. This produces the sieve MLE estamator β̂. Panchenko and Prokhorov

(2013) derive the semiparametric efficiency bound for estimation of β and show that β̂ achieves it.

Denote the vector of sieve parameters by γ and the sieve approximator by ln cγ . Then, the

SMLE maximizes the approximate joint log likelihood

lnLγ(β) =
N∑
i=1

[ln f(yi1;β) + ln f(yi2;β) + ln cγ(F (yi1;β), F (yi2;β))] (2)

The fundamental logic of the sieve estimation is that when the space of functions to be approximated

is not too complex and the approximation error goes to zero sufficiently fast we obtain a
√
N -

consistent estimator of β (see, e.g., Shen and Wong, 1994; Shen, 1997).

As an alternative we consider the conventional QML estimator which maximizes the quasi-log-

likelihood

lnLQ(β) =

N∑
i=1

[ln f(yi1) + ln f(yi2;β)]

– identicial to the joint log-likelihood under the assumption of independence between yi1 and yi2.

It is now well understood that the QMLE is consistent for β but the robust, or “sandwich”, version
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of the variance matrix should be used if there is dependence between the cross sections.

The last term in lnLγ(β) is what distinguishes SMLE from QMLE. We have assumed that the

marginals are correctly specified so the marginal score function – the derivative of ln f(yit, β) with

respect to β – is zero mean for both cross sections. Correspondingly, the estimator that maximizes

lnLγ(β) requires that the copula score is mean zero while the QMLE requires that it is exactly

zero, or equvalently, that the copula is the indepedence copula c(u, v) = 1. That is, unlike QMLE,

the SMLE implies that the following first-order condition holds:

N∑
i=1

∇(β,γ) ln cγ (F (yi1;β), F (yi2;β)) = 0

We will use this condition in constructing our new estimator.

2.2 Bernstein Polynomial Sieve

Let [0, 1]2 denote the unit cube in R2. For a distribution function Pc : [0, 1]2 → R, a bivariate

Bernstein polynomial of order k = (k1, k2) associated with Pc is defined as

Bk,Pc(u) =

k1∑
j1=0

k2∑
j2=0

Pc

(
j1
k1
,
j2
k2

)
qj1k1(u1)qj2k2(u2) (3)

where u = (u1, u2) ∈ [0, 1]2, qjsks(us) =
(
ks
js

)
ujss (1 − us)

ks−js . The polynomial is dense in the

space of distribution functions on [0, 1]2 and its order k controls the smoothness of Bk,Pc , with a

smaller ks associated with a smoother function along dimension s. Moreover, with the conditions

Pc(0, 1) = Pc(1, 0) = 0 and Pc(1, 1) = 1, Bk,Pc(u) is a copula function and is referred to as the

Bernstein copula associated with Pc. As min{k} → ∞, Bk,Pc(u) converges to Pc at each continuity

point of Pc and if Pc is continuous then the convergence is uniform on the unit cube [0, 1]2 (Sancetta

and Satchell, 2004; Zheng, 2011).

The derivative of (3) is the bivariate Bernstein density function

bk,Pc(u) =
∂2

∂u1∂u2
Bk,Pc(u)

=

k1∑
j1=1

k2∑
j2=1

wk(j)

2∏
s=1

β(us; js, ks − js + 1) (4)

where, for j = (j1, j2), wk(j) = ∆Pc

(
j1−1
k1

, j2−1k2

)
are weights derived using the forward differ-
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ence operator ∆, and β(·; γ, δ) denotes the probability density function of the β-distribution with

parameters γ and δ.

In order to give a mixing interpretation to wk, let Cube(j,k) denote a cube given by ((j1 −

1)/k1, j1/k1] × ((j2 − 1)/k2, j2/k2] with the convention that if js = 0 then the interval ((js −

1)/ks, js/ks] is replaced by the point {0}. Then, the mixing weights wk(j) are the probabilities of

Cube(j,k) under Pc. The Bernstein density function bk,Pc(u) can thus be viewed as a mixture of

beta densities, and if Pc is a copula, bk,Pc(u) is itself a copula density.

Alternatively, if we interpret Pc as an empirical copula on
[

1
k1
, 2
k1
, ..., k1k1

]
×
[

1
k2
, 2
k2
, ..., k2k2

]
then

bk,Pc(u) can be viewed as a smoothed copula histogram using β-densities as smoothing functions.

The Bernstein copula density has several attractive properties as a sieve for the space of copula

densities, which makes it preferrable to other types of sieve. Being a mixture of (a produce of)

β-densities, it assigns no weights outside [0, 1]2 and it easily extends to dimensions higher than two.

Other sieves known to approximate well smooth functions and densities on R are often subject to

the boundary problem and do not extend easily to multivariate settings (see, e.g., Chen, 2007;

Bouezmarni and Rombouts, 2010). The Bernstein sieve is a copula density by construction; at the

same time, it does not impose symmetry, contrary to other conventional kernels used in mixture

models such as multivariate Gaussian (see, e.g., Burda and Prokhorov, 2013).

Most importantly, as a density corresponding to Bk,Pc(u), bk,Pc(u) converges, as min{k} → ∞,

to pc(u) ≡ ∂2

∂u1∂u2
Pc(u) at every point on [0, 1]2 where pc(u) exists, and if pc is continuous and

bounded then the convergence is uniform (Lorentz, 1986). Uniform approximation results for the

univariate and bivariate Bernstein density estimator can be found in Vitale (1975) and Tenbusch

(1994).

In what follows we will assume Pc(u) to be a continuous copula. As a result, we will omit

subscript Pc and let bk(u) simply denote the Bernstein copula density with weights wj , where

j = 1, . . . , J, indexes the set {j1, j2}. Consequently, we can write the copula density as follows

bk(u) =
J∑
j

wjgj(u),

where gj(u) =
∏2
s=1 β(us; js, ks − js + 1).
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2.3 SMLE with Dantzig Selector

In practice, the SMLE involves a truncation of the Bernstein polynomial approximation at some

large values kN ≡ (k∗1, k
∗
2) . This means there is a large but finite number – possibly different in

each coordinate – of the mixing weights wj in the Bernstein copula density. Let γN contain all such

mixing weights. Then, J = dim{γN} = k∗1k
∗
2 and it will grow exponentially as we add dimensions.

An important issue in adaptive estimation of such models is how to reduce the dimension of γN .

2.3.1 Dantzig Selector

The Dantzig selector is an “automatic” mechanism for selecting non-zero parameters in highly

parameterized problems. It is “automatic” because we do not need to even set the maximum

number of non-zero parameters. So long as there are zero and non-zero elements in the parameter

vector, that is, so long as a sparsity scenario applies, the method will pick the non-zero parameters

correctly.

The initial application of the Dantzig selector was in linear regressions with more regressors

than observations. Suppose we have the following regression model y = Xθ + u, where θ ∈ Rp,

u ∼ N(0, σ2I) and X is a N×p data matrix with possibly fewer rows than columns, i.e. with N < p.

Then, the Dantzig selector of Candes and Tao (2007) is the solution to the following problem

min
θ
||θ||l1 subject to ||X ′(y −Xθ)||l∞ ≤ λp σ, (5)

where ||θ||l1 =
∑p

j=1 |θj | is the l1-norm of θ, ||Z||l∞ = max{|Z1|, . . . , |Zp|} is the l∞-norm of any

vector Z ∈ Rp, and λp is a positive number – a function of p only. Compared to the usual OLS,

the Dantzig selector searches for a θ which has the smallest l1-norm and, within a fixed tolerance

level λ, satisfies the normal equations. Beacuse it produces sparse coefficient estimates, it can be

used for model selection. For λ = 0, it reduces to standard OLS.

It is well known (see, e.g., Bickel, Ritov, and Tsybakov, 2009) that this problem can be viewed

as a penalized LS problem, written as follows

min
θ

SSE(θ) + 2λpσ

p∑
j=1

|θj |

 , (6)

where SSE(θ) = 1
N

∑N
i=1(yi −Xiθ)

2 and the penalty term grows with complexity of θ as measured

by the l1-norm. So the Dantzig selector solves this problem for a vector having the smallest l1-norm.
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The most attractive theoretical property of the Dantzig selector is that there is a nonasymptotic

bound on the error in the estimator of θ that is within a factor of log p of the error achieved if the

true predictors are assumed known. To see this, let θ̂ denote the solution. Candes and Tao (2007)

show that under certain conditions on X and under a sparsity scenario (which roughly amounts to

an identification condition in this model), the following holds with a large probability,

||θ̂ − θ||2l2 ≤ const · λ2p ·

σ2 +

p∑
j=1

min
{
θ2j , σ

2
} , (7)

where ||θ||l2 =
√
θ′θ and λ2p is of order O(log p).

Now consider a standard LS estimator in the situation when we know (from an oracle) which

θj ’s are significant (i.e., larger than the noise, |θj | > σ). In this case, we can set equal to zero all

the elements of θ that are smaller than σ in magnitude and let the OLS estimate the significant

elements. If, for simplicity, X is assumed to be the identity matrix, then the MSE of the LS

estimate of θ will contain terms equal to σ2 for each significant θj and terms equal to θ2j ’s for each

insignificant θj ’s (i.e., for the coordinates within the noise level). That is, the MSE of this infeasible

estimator can be written as follows

MSEOLS =

p∑
i=1

min{θj , σ2}

When we relax the assumption that X is identity but still allow the oracle to tell us which

subset of θj ’s is right to use in the OLS, the MSE will be different. However, Candes and Tao

(2007) show that, under certain assumptions on X, MSEOLS can still be viewed as a proxy for the

MSE in the more general setting, which has the following natural interpretation

p∑
i=1

min{θj , σ2} = min
S⊂{1,...,p}

||θ − θS ||2l2 + |S|σ2,

where S indexes the set of significant θj ’s, θS contains θj ’s if j is in S and 0’s otherwise and |S|

denotes the number of non-zero elements in S. Of course, the first term of this representation is

the squared bias of the ideal estimator and the second is its variance

So the DS nearly achieves the MSE of the ideal estimation, in which an oracle tells us the
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composition of S. Specifically, the MSE of DS in (7) can be written as follows

MSEDS ≤ const · λ2p · (σ2 + MSEOLS).

In other words, even though no knowledge of the sparsity scenario was used in estimating θ̂, the

estimation error is proportional to log p times the error rate achieved if the significant X’s were

known. So the price we pay for choosing the true predictors by DS is quite small as log p is not a

fast rate. This feature is known as the oracle property of DS.

2.3.2 Dantzig Selector for Copula Score

It is not difficult to see that under Gaussian errors the constraint in (7) is a constraint on the score

function of the underlying likelihood. So the DS can be equivalently interpreted as looking for a

sparse θ close to the peak of the normal likelihood. This observation motivates the estimator we

propose.

The Dantzig Selector SMLE (DS-SMLE) we propose is the solution to the following minimiza-

tion problem

min
β,γN
||γN ||l1 subject to

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
i=1

∇(β,γ) ln cγN (F (yi1;β), F (yi2;β))

∣∣∣∣∣
∣∣∣∣∣
l∞

≤ r (8)

and
1

N

N∑
i=1

∇β ln f(yit;β) = 0, t = 1, 2

where cγ(u) = bk(u) is the Bernstein copula density, and ∇(β,γ) denotes the derivative with respect

to (β, γ).

The mean zero conditions on the marginal scores correspond to the assumption of correct

specification of the marginals, which is our basic supposition. The copula score with respect to β

and γ corresponds to the additional terms in the joint log-likelihood. In the fully parametric setting

with a correctly-specified (up to a finite dimensional parameter γ) copula family, this score would

be zero mean. In our setting, γ represents a function and dim{γ} is potentially greater than the

sample size. Essentially, our estimator looks for such a vector (β′, γ′) for which γ has the smallest

l1-norm and the first order conditions characterizing the MLE solution hold within a fixed tolerance

level.

This problem is an example of l1-norm minimization subject to nonlinear constraints. There

8



are equivalent convex formulations for such problems (see, e.g., Candes, 2006). We can rewrite (8)

as follows

min
β,γN ,x

dim γN∑
j=1

xi subject to −x � γN � x (9)

−r1 � 1
N

∑N
i=1∇(β,γ) ln cγN (F (yi1;β), F (yi2;β)) � r1

1
N

∑N
i=1∇β ln f(yit;β) = 0, t = 1, 2

where x = {xi}dim γN
i=1 , 1 denotes a conforming vector of ones and “�” represents coordinate-wise

comparison of vectors. This will be the preferred formulation in practice because standard convex

optimization procedures and fast algorithms are available to compute the solution, which includes

β̂ (see, e.g., Birge and Massart, 1997; Devroye and Lugosi, 2000).

In order to see the relationship between this estimator and the penalized LS problem (6), note

that DS-SMLE can be viewed as a solution to the following penalized MLE problem:

min
β,γ

− 1

N
lnLγ(β) + r

dim{γ}∑
j=1

|γj |

 , (10)

where lnLγ(β) is the copula-based log-likelihood given in (2), in which the marginals are assumed

to be correctly specified. This is, of course, the penalized LS criterion from (6), with SSE replaced

by lnL, and the logic of our estimator is in essence the same as that of the conventional Dantzig

selector – we are choosing the sparsest vector satisfying the Dantzig constraint implied by the

penalized problem.

The choice of 1
N lnLγ(β) in (10) is natural if we view our problem as a minimization of the

Kullback-Leibler distance between the true density h(y1, y2) and the sieve-based density hγ(y1, y2;β),

where hγ(y1, y2;β) = f(y1;β) · f(y2;β) · cγ(F (y1;β), F (y2;β)). Let KL(f, g) denote the Kullback-

Leibler distance between arbitrary densities f and g. Then,

arg min
β,γ

KL(h, hγ) = arg min
β,γ

E ln
h(y1, y2)

hγ(y1, y2;β)
= arg min

β,γ
[−E lnhγ(y1, y2;β)] .

The expectation we minimize depends on the unknown h, so instead, we approximate it by its

empirical counterpart − 1
N lnLγ(β). From this perspective, the problem in (10) can be viewed as a

minimization of penalized Kullback-Leibler divergence.
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2.3.3 Oracle Inequality

In this section we provide an oracle property of our estimator. We compare its risk with that of an

infeasible procedure in which an oracle tells us which components of γ are insignificant. We start

with a result for the copula parameter γ.

Suppose the marginal distributions are known. Then, the DS problem in (8) reduces to looking

for the sparsest vector γ such that
∣∣∣∣∣∣ 1N ∑N

i=1∇γ ln cγ (ui1, ui2)
∣∣∣∣∣∣
l∞
≤ r, where uij = F (yij), j = 1, 2,

are obtained using the known marginals. Let γ̂ denote this solution. The first result gives a bound

on the KL divergence of the γ̂-based copula.

Proposition 1 Let cγ(u) be the Bernstein copula sieve, i.e. cγ(u) = γ′g(u), where g(u) =

(g1(u), . . . , gJ(u))′ and gj(u) =
∏2
s=1 β(us; js, ks − js + 1), j = 1, . . . , J. Let Mj ≡ ||gj(u)||l∞,

j = 1, . . . , J . Then, with probability close to one, for all γ ∈ RJ

KL(c, cγ̂)− 2r

J∑
j=1

|γ̂j − γj | ≤ KL(c, cγ) (11)

Sketch of proof. Let lγi ≡ ln cγ(u1i, u2i) and let J ≡ dim{γ}. By definition of γ̂,

− 1

N

N∑
i=1

lγ̂i + r
J∑
j=1

|γ̂j | ≤ −
1

N

N∑
i=1

lγi + r
J∑
j=1

|γj |,

for any γ ∈ RJ . Thus,

KL(c, cγ̂) ≤ KL(c, cγ) +
1

N

N∑
i=1

(lγ̂i − lγi)− E(lγ̂i − lγi) + r
J∑
j=1

|γj | − r
J∑
j=1

|γ̂j |

Define ξj(ui) =
gj(ui)
cγ(ui)

and letDj = 1
N

∑N
i=1{ξj(ui)−Eξj(ui)}. Define the even Ω =

⋂J
j=1{|Dj | ≤

r}. By concavity of the log-function,

1

N

N∑
i=1

(lγ̂i − lγi)− E(lγ̂i − lγi) ≤
1

N

N∑
i=1

1

cγ(ui)
[cγ̂(ui)− cγ(ui)]− E

1

cγ(ui)
[cγ̂(ui)− cγ(ui)]

=
J∑
j=1

(
1

N

N∑
i=1

gj(ui)

cγ(ui)
− E

gj(ui)

cγ(ui)

)
[γ̂j − γj ]
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Therefore,

KL(c, cγ̂) ≤ KL(c, cγ) +
J∑
j=1

(
1

N

N∑
i=1

ξj(ui)− Eξj(ui)

)
[γ̂j − γj ] + r

J∑
j=1

|γj | − r
J∑
j=1

|γ̂j |

Hence, on the event Ω,

KL(c, cγ̂) ≤ KL(c, cγ) + r

J∑
j=1

|γ̂j − γj |+ r

J∑
j=1

|γj | − r
J∑
j=1

|γ̂j |

≤ 2r
J∑
j=1

|γ̂j − γoj | ,

where the last inequality follows by the triangle inequality.

Now by the Hoeffding inequality,

P(Ω) ≤
J∑
j=1

P(|Dj | < r) ≤
J∑
j=1

exp(nr2/(16M2
j )) = δ.

3 Simulations

In this section we study the finite sample behavior of DS-SMLE as well as discuss issues arising

when simulating from the Bernstein copula. Our goal is to compare the behavior of DS-SMLE

with QMLE and SMLE, where the QMLE is the conventional estimator based on the independence

assumption and the SMLE is the unpenalized SMLE based on the Bernstein copula. The DS-SMLE

reduces to SMLE when r = 0.

Numerically, the fundamental difference between SMLE and DS-SMLE is that the SMLE esti-

mates the entire vector γN for some large value of JN , while DS-SMLE shrinks the elements of γN

toward zero and estimates only the non-zero elements.

3.1 Simulating from Bernstein copula

A key issue in simulations is how to generate data from the Bernstein copula. The problem is that

the standard way of generating observations from an arbitrary copula, known as the conditional

cdf method, is too expensive in the settings of the Bernstein copula. The reason for this is that γ

is obtained as the first order difference of parameters in the Bernstein copula cdf. As a result, γ

basically contains ∆Pc(
j1
k1
, j2k2 ) and we have to solve a large system of equations to obtain Pc(

j1
k1
, j2k2 ),
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where

∆Pc

(
j1
k1
,
j2
k2

)
= Pc

(
j1 + 1

k1
,
j2 + 1

k2

)
− Pc

(
j1 + 1

k1
,
j2
k2

)
− Pc

(
j1
k1
,
j2 + 1

k2

)
+ Pc

(
j1
k1
,
j2
k2

)

As an alternative, we use the accept-reject approach (see, e.g., Pfeifer, Strassburger, and

Philipps, 2009). To introduce the method, suppose we want to generate data from a distribu-

tion F with a pdf f(x), which is a complicated distribution and we do not know how to simulate

from it directly. The basic idea of the method is to find another distribution G with a pdf g(y),

for which we already have an efficient algorithm to generate data. The key is that this distribution

should also be very close to f(x). Specifically, the ratio f(x)/g(x) should be bounded by a positive

constant M , i.e. supx{f(x)/g(x)} ≤M . The we can apply the following procedure:

1. Generate y from g(y)

2. Independently generate u from uniform on [0,1]

3. If u ≤ f(y)
Mg(y) , then set x = y and use x as a sample from f(x). Otherwise, go back to Step 1.

It can be easily shown that P (Y ≤ y|U ≤ f(y)
cg(y)) = F (y). Also, note that the expected number of

steps required to generate one observation from f(x) is M .

We wish to apply the accept-reject method to the Bernstein copula. We use a multivariate

uniform distribution as the reference distribution G(.) with the density function g(.) = 1. In this

case, M = supu{bk(u)/g(u)} = maxu∈[0,1]d{bk(u)}. The simulation algorithm is as follows:

1. Generate (u1, . . . , ud) from the multivariate uniform distribution. Here d denotes the number

of cross-sections.

2. Independently generate ud+1 from uniform on [0,1].

3. if ud+1 ≤ bk(u)
M , then use (u1, . . . , ud) as an observation from the Bernstein copula. Otherwise,

go back to step 1.

It is clear that due to the reference distribution G being uniform, we can actually combine Step 1

and 2 into one step.

3.2 Sparse parameter path

The tuning parameter r is key to the amount of shrinkage done by the DS. As a first step of the

simulation exersice we study the behavior of our estimator of γ over all r.
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Our data generating process has exponential marginals with µ1 = µ2 = 0.5 and the Bernstein

copula with J = 25 (five parameters in each dimension), so in total, there are 27 parameters.

However, the γ has only five elements out 25 that are nonzero as shown in the following matrix



0 0 0 0 0.228

0 0 0 0.141 0

0 0 0.262 0 0

0 0.141 0 0 0

0.228 0 0 0 0


.

This corresponds to a copula with a high negative dependence. The number of observations is 1000.

Figure 1 shows the estimated parameter paths for the non-zero elements of γ (colored solid

lines) and the insignificant elements (dashed red lines). There are two important observations.

First, the DSSMLE can correctly identify the non-zero elements in γ. Second, in the region where

the zero γj ’s are actually estimated to be close to zero (the region with small l1), the non-zero γj ’s

are estimate to be smaller than the true values. This suggests that the DS-SMLE over-shrinks γ.

The over-shrinkage result is not uncommon in the DS literature and James and Radchenko

(2009) propose a two-step procedure called double Dantzig to overcome this issue. We follow

James and Radchenko (2009) and implement the following two-step procedure in our simulations:

1. Run the DS-SMLE using a large value of the tuning parameter. Select the non-zero elements

γj . Denote the selected set by γ∗.

2. Run the unrestricted SMLE over γ∗ and β.

So in effect we run two DS-SMLE where in the second step we set the tuning parameter equal to be

zero. A similar procedure called the gaussian Dantzig selector was proposed by (Candes and Tao,

2007, p. 2323) and can be seen as a special case of the double Dantzig of James and Radchenko

(2009).
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Figure 1: DSSMLE Parameter Path
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Notes: Plot of estimated coefficients for different values of λ. The solid lines represent the variables which are

nonzeros in the true setting of γ. The dashed lines correspond to the remaining variables.

3.3 Simulation results

Compared to the QML and SMLE, our DS-SMLE stimator does not restrict the dependence struc-

ture but uses a sparsity scenario, that is, it estimates only non-zero elements of γ. For all three

estimators, we report bias, variance, MSE, relative effiency (RE) with respect to the QMLE and rel-

ative MSE (RMSE) with respect to QMLE. For SMLE and DS-SMLE we also report the dimension

of γ. The number of observations is 500 and the number of replications is 1,000.

We consider three data generation processes. All have the same exponential marginals, where

the mean µ is the parameter of interest with the true value µ1 = µ2 = 0.5, but the copula functions

are different. We use the Plackett, Student-t, and Frank copulas as these copula families are often

encountered in simulations. The copula parameter varies over the relevant range, representing

different strengths of dependence. We report Kendall’s τ for each such value.

Table 1-8 summarize the results. Two things are important here. First, for some values of τ , the

DS-SMLE is at least as efficient as unrestricted SMLE, while it dramatically reduces the number of

sieve parameters to be estimated. For example, Table 1 shows that the DS-SMLE estimates only

15 of 256 sieve parameters and it preserves the efficiency gains of the SMLE. Second, as negative

dependence goes from high to low, both the SMLE and DS-SMLE have decreasing relative efficiency

over QMLE. For instance, in Table 1-3, we can observe this for the Plackett copula, and similarly
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in Table 4-6 for t and Table 7-8 for Frank.

4 Application from Insurance

We illustrate the use of the DS-SMLE with an insurance application. We consider automobile

bodily injury liability claims from a sample of n = 29 Massachusetts towns in 1995 and 1997. The

details of the data set can be found in Frees and Wang (2005). The two cross-sections have a strong

positive correlation at 0.88 in the average town-wide claims (AC).

Following Frees and Wang (2005), the claims are assumed to have the same gamma distribution

for the two years and the goal is the efficient estimation of the parameters (a, b) of that distribution.

That is, we use the following cdf and pdf, respectively:

Fi(x|a, b) =
1

baΓ(a)

∫ x

0
ta−1e

−t
b dt

fi(x|a, b) =
1

baΓ(a)
xa−1e

−x
b where i=1,2

The four estimators we consider are QMLE, Pseudo-MLE (PMLE), SMLE, and DS-SMLE. The

QMLE estimator assumes independence between cross-section. It is known to be consistent even if

the independence assumption is incorrect. To obtain a robust estimator of the standard errors, the

“sandwich” formula is used. The PMLE is the estimator based on a fully specified parametric joint

likelihood. We follow Frees and Wang (2005) and use t-copula for this. The PMLE is consistent if

the assume copula family is correct. Otherwise, the PMLE is generally biased and we do not know

either the sign or the magnitude of the bias. Both the SMLE and DS-SMLE are robust in the sense

that they do not depend on a specific assumption on the copula family. They are more efficient

asymptotically relative to QMLE and, as illustrated by the simulation of the previous sections,

behavie similarly in small samples.

Table 9 report the estimates and standard errors. A few interesting observations can be made

using these results. First, both the SMLE and DS-SMLE have smaller standard errors than QMLE.

Second, while the SMLE shows evidence of bias, the DS-SMLE estimates are fairly close to FMLE

or QMLE. We use 8 parameters in each dimension of the sieve, where this value is chosen using the

BIC criterion. So for the SMLE, we have 66 parameter to estimate. For the DS-SMLE, we have

only 10.
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5 Concluding remarks

We have proposed to use a penalized sieve to improve efficiency of likelihood-based estimators in

panel settings. The settings can be easily generalized to multivariate models where a part of the

joint distribution is modelled by a sieve with a potentially very large number of parameters, only

a few of which are significant.

We showed that the sparse sieve MLE, based on the Dantzig penalization, has very similar

properties to the sieve MLE in finite samples, so the sparsity imposed by the Dantzig constraint

does not add to the bias as much as much as it takes away from the variance. We also looked at the

behavior of the estimator for various values of the tolerance and found evidence that our estimator

tends to over-shrink. We proposes a two-step procedure that addresses this issue and clarifies the

problem of choosing the tolerance level.

The relative efficiency and mean square gains we obtain are up to 70% which is very encouraging.

The computational benefit is of course even more important; especially in cases when SMLE is

infeasible due to small sample size.
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Table 1: Comparison of QMLE, SMLE and DS-SMLE with Kendall τ = −0.9,
Plackett θ = 0.002, dim(γsmle) = 256,dim(γds−smle = 15)

τ = −0.9 µ1 QMLE SMLE DS-SMLE µ2 QMLE SMLE DS-SMLE

mean 0.4996 0.4939 0.4959 0.4999 0.4940 0.4956

Nvar 0.2575 0.0769 0.0735 0.2864 0.0771 0.0750

MSE 0.2574 0.1137 0.0901 0.2862 0.1124 0.0945

RE 0.2988 0.2855 0.2692 0.2619

RMSE 0.4419 0.3499 0.3929 0.3303

Table 2: Comparison of QMLE, SMLE and DS-SMLE with Kendall τ = −0.8
Plackett θ = 0.009,dim(γsmle) = 49,dim(γds−smle = 8)

τ = −0.8 µ1 QMLE SMLE DS-SMLE µ2 QMLE SMLE DS-SMLE

mean 0.4999 0.4903 0.4941 0.5003 0.4898 0.4937

Nvar 0.4836 0.3491 0.2888 0.4976 0.3376 0.2951

MSE 0.4831 0.4433 0.3228 0.4971 0.4405 0.3340

RE 0.7220 0.5972 0.6785 0.5932

RMSE 0.9177 0.6682 0.8862 0.6718

Table 3: Comparison of QMLE, SMLE and DS-SMLE with Kendall τ = −0.7
Plackett θ = 0.023,dim(γsmle) = 64,dim(γds−smle = 61)

τ = −0.7 µ1 QMLE SMLE DS-SMLE µ2 QMLE SMLE DS-SMLE

mean 0.5005 0.4947 0.4951 0.4995 0.4942 0.4936

Nvar 0.2455 0.2013 0.2021 0.2508 0.2157 0.2099

MSE 0.2451 0.2148 0.2137 0.2504 0.2323 0.2296

RE 0.8198 0.8233 0.8598 0.8367

RMSE 0.8764 0.8717 0.9277 0.9170
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Table 4: Comparison of QMLE, SMLE and DS-SMLE with Kendall τ = −0.9
t copula,R = −0.9877, µ = 20 , dim(γsmle) = 225,dim(γds−smle = 150)

τ = −0.9 µ1 QMLE SMLE DS-SMLE µ2 QMLE SMLE DS-SMLE

mean 0.5016 0.4941 0.4939 0.4993 0.4932 0.4935

var 0.4983 0.1404 0.1561 0.4933 0.1470 0.1782

MSE 0.5003 0.1747 0.1933 0.4934 0.1932 0.2209

RE 0.2817 0.3132 0.2980 0.3612

RMSE 0.3491 0.3864 0.3915 0.4477

Table 5: Comparison of QMLE, SMLE and DS-SMLE with Kendall τ = −0.8
t copula,R = −0.9511, µ = 20,dim(γsmle) = 225,dim(γds−smle = 64)

τ = −0.8 µ1 QMLE SMLE DS-SMLE µ2 QMLE SMLE DS-SMLE

mean 0.4990 0.4933 0.4927 0.5006 0.4940 0.4935

var 0.4889 0.2904 0.2430 0.5023 0.2965 0.2411

MSE 0.4895 0.3356 0.2967 0.5021 0.3327 0.2835

RE 0.5940 0.4971 0.5904 0.4801

RMSE 0.6857 0.6062 0.6626 0.5647

Table 6: Comparison of QMLE, SMLE and DS-SMLE with Kendall τ = −0.7
t copula, R = −0.8910, µ = 20,dim(γsmle) = 64,dim(γds−smle = 62)

τ = −0.7 µ1 QMLE SMLE DS-SMLE µ2 QMLE SMLE DS-SMLE

mean 0.4991 0.4945 0.4947 0.5006 0.4953 0.4955

var 0.4953 0.4377 0.4017 0.4944 0.4281 0.4069

MSE 0.4956 0.4671 0.4290 0.4943 0.4497 0.4269

RE 0.8836 0.8110 0.8659 0.8230

RMSE 0.9425 0.8656 0.9099 0.8638
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Table 7: Comparison of QMLE, SMLE and DS-SMLE with Kendall τ = −0.9
Frank θ = −39,dim(γsmle) = 225,dim(γds−smle = 111)

τ = −0.9 µ1 QMLE SMLE DS-SMLE µ2 QMLE SMLE DS-SMLE

mean 0.4996 0.4926 0.4927 0.5006 0.4930 0.4929

Nvar 0.4772 0.1479 0.1552 0.4823 0.1477 0.1547

MSE 0.4769 0.2032 0.2077 0.4821 0.1968 0.2044

RE 0.3099 0.3252 0.3062 0.3208

RMSE 0.4262 0.4355 0.4083 0.4241

Table 8: Comparison of QMLE, SMLE and DS-SMLE with Kendall τ = −0.8
Frank θ = −18.19,dim(γsmle) = 49,dim(γds−smle = 7)

τ = −0.8 µ1 QMLE SMLE DS-SMLE µ2 QMLE SMLE DS-SMLE

mean 0.4996 0.4879 0.4947 0.5004 0.4875 0.4886

Nvar 0.4790 0.3131 0.2787 0.4899 0.3139 0.2802

MSE 0.4787 0.4580 0.3062 0.4896 0.4708 0.4098

RE 0.6538 0.5819 0.6408 0.5720

RMSE 0.9569 0.6397 0.9616 0.8371

Table 9: QMLE, t copula based Pseudo-MLE, SMLE, DS-SMLE for insurance application with
standard errors

QMLE PMLE SMLE DS-SMLE

(Rob.St.Er) (Rob.St.Er) (St.Er Rob.St.Er) (St.Er Rob.St.Er )

a 14.7561 15.0103 15.7039 15.0344

(4.4702) (4.3306) (3.1607 6.1343) (3.4653 6.0796)

b 9.7020 9.6806 9.2871 9.7482

(2.9080) (2.8499) (2.1433 3.4674) (2.4846 3.8158)

LogL -290.8190 -266.3389 -271.5390 -271.7004
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Tenbusch, A. (1994): “Two-dimensional Bernstein polynomial density estimators,” Metrika, 41(1), 233–

253, Metrika.

Vitale, R. (1975): “A Bernstein polynomial approach to density function estimation,” in Statistical infer-

ence and related topics, ed. by M. Puri.

Zheng, Y. (2011): “Shape restriction of the multi-dimensional Bernstein prior for density functions,” Statis-

tics and Probability Letters, 81(6), 647–651.

21


	Introduction
	Copula-Based SMLE of Parameters in Marginals
	SMLE and QMLE
	Bernstein Polynomial Sieve
	SMLE with Dantzig Selector
	Dantzig Selector
	Dantzig Selector for Copula Score
	Oracle Inequality


	Simulations
	Simulating from Bernstein copula
	Sparse parameter path
	Simulation results

	Application from Insurance
	Concluding remarks

