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Abstract

This paper describes two methods for computing a bivariate probit
model on panel data with correlated random effects. A first approach us-
ing simulated maximum likelihood has been already presented in the liter-
ature. An alternative method based on a two-step Gauss-Hermite quadra-
ture in order to evaluate the likelihood function is proposed in this article.
A simulation shows the importance to estimate the correlation in random
effects and the correlation between both equations. Finally an application
is performed to estimate the determinants of product or process innova-
tions on a panel of French firms. It shows a very large correlation between
individual effects.
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1 Introduction

The estimation of a probit model on panel data is now usual. Many softwares
propose such method of estimation which relies on individual random effects
because the fixed effects approach is not valid due to the incidental parameters
problem in the non-linear panel data model. In a seminal paper, Butler and
Moffitt (1982) suggested to integrating the density conditional over the distrib-
ution of the individual effects in order to eliminate them by taking an average
density. They proposed to use a Gauss-Hermite Quadrature to compute this
integral for each individual in the panel. On the other hand, many empirical
problems imply two binary variables. The classic bivariate probit model is now
common for cross-section data, but no usual procedure is available for panel
data where there is an individual random effect. In fact, it is interesting to esti-
mate the correlation between the individual effects in the two equations, because
it shows how the unoberved heterogeneity of individuals is correlated accross
equation, while there is still a correlation between the idiosyncratic error terms
in the two equations.
On the line of multivariate probit model, Lee and Oguzoglu (2007) and

Kano (2008) have proposed a simulated maximum likelihood approach where
the individuals effects are integrated out by computing the double integral by
simulation. But this procedure could be very time-consuming even with fast
modern computer. In this article, an alternative approach based on a two-step
Gauss-Hermite Quadrature is used in order to compute this double integral,
which should be rather in the line of the Butler and Moffitt (1982) approach.
Such a method has been already investigated in the context of a Heckman
selection model on panel data by by Raymond et al (2007, 2010). I adapt their
method in the case of a bivariate panel data model in the section 2.
A simulation analysis is done in Section 3 in order to show the importance of

taking account individual effects in estimation of a probit model on panel data.
The separated estimation of the two probit models shows clearly that they are
consistent due to the fact that the model is correctly specified and that the
correlations between the individual effects or between the error terms are only
of second order. In fact like in a seemingly unrelated regression equations model,
there is only a gain in efficiency of taking account of the covariance structure
of the error terms composed of an individual effect and a idiosyncratic error.
However the estimation of the correlations is of interest in order to assess the
effects of unobserved heterogeneity on each equation.
Finally in Section 4, we present an application of this procedure in the

case of the estimation of the determinants of product and process innovations
on a panel of French firms during the period 2000 - 2007. The French data
are annual, but they indicate only whether a firm, with R&D expenditures,
introduces a product or a process innovation during the given year. The model
explaining the product or process innovations is simple because it depends only
on the size of the firm and on the R&D intensity. There is a positive effect
of the size of the firm of the same magnitude for both types of innovation,
while there is also a positive effect of the R&D intensity, but this effect is non-
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linear because it is decreasing up to a R&D intensity which is roughly 50 %
of the total turnover of the firm. Finally the unobserved heterogeneity affects
both equation with a very high positive correlation of 90 %, even though the
estimated correlation between the idiosyncratic errors terms is about 50 %. In
consequence the individual characteristics have the same impact on both type
of innovations.

2 The random effect bivariate probit

2.1 The bivariate probit model

Here we present briefly the bivariate probit model1 . Thismodel is composed by
2 latent variables y∗1 and y

∗

2 which are explained by exogenous variables x1 and
x2 and by possibly correlated error terms ε1 and ε2, normally distributed with
unit variances2 . and correlation coefficient τ :
�
y∗1 = x

′

1β1 + ε1
y∗2 = x

′

2β2 + ε2
where ε =

�
ε1
ε2

�
≈ i.i.d.N

��
0
0

�
;

�
1 τ
τ 1

��

If the data are observed on several individuals only, we obtain the classical
bivariate probit model when the observed variables y1 and y2 are defined as :

�
y1 = 1 (y∗1 > 0)
y2 = 1 (y

∗

2 > 0)

where 1 (...) is the indicator function with value one if the expression in paren-
thesis is true, and zero otherwise. The maximum likelihood estimator is then
simply obtained with the classical transformation :

qj = 2yj − 1

such that the probability of a given choice between the 4 possible configurations
of choice is :

Pr (Y1 = y1, Y2 = y2|x1, x2;β1, β2, τ) = Φ2 [q1 (x′1β1) , q2 (x′2β2) , q1q2τ ]

with Φ2 (•) is the cumulative density fonction of the bivariate standard normal
distribution :

Φ2 [u1, u2; τ ] =

� u1

−∞

� u2

−∞

φ2 (z1, z2; τ) dz1dz2

=

� u1

−∞

� u2

−∞

1

2π

1√
1− τ2

exp

�
−z

2
1 + z

2
2 − 2τz1z2

2 (1− τ2)

�
dz1dz2

1See for example : Greene (2008, Section XXI.6).
2The classical normalization of variances to unity is done here because only the signs of

the latent variables are observed. Therefore the scale does not matter.
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where φ2 (•) is its probability density function of a bivariate standard normal
variable with correlation τ . As the N observations of the sample are indepen-
dent, the log-likelihood function is given by :

ln£ =
n�

i=1

lnΦ2
	
q1,ix

′

1,iβ1, q2,ix
′

2,iβ2; q1,iq2,iτ



which should be maximized to obtain the maximum likelihood estimator of the
bivariate probit model3 . Greene (2008) gives the analytic first and second order
conditions of the estimation problem.
When the observations come from a panel of individuals observed during a

given time period (supposed here for simplicity to be the same for all individuals
such that the panel is balanced), there is often an individual effect to take
account of the unobserved heterogenity of the individuals. However with a non-
linear model, like the probit model, if the individual effects are treated as fixed
or correlated with the explanatory variables, there is an incidental parameters
problem (Neyman and Scott, 1948; Lancaster, 2000; or Cameron and Trivedi;
2006). Thus we need to assume that individual effects are not correlated with
the explanatory variables, and we use a random effects model with a specified
distribution. These random effects are then eliminated by integrating over the
distribution.
The univariate probit case has been first studied by Butler and Moffitt (1982)

and Skrondal and Rabe-Hasketh (2004). We generalize this univariate random
effect probit model to the case of two latent variables for i = 1, ..., N individuals
and t = 1, ..., T time periods :

�
y∗1,it = x

′

1,itβ1 + α1,i + ε1,it
y∗2,it = x

′

2,itβ2 + α2,i + ε2,it
for i = 1, ..., N and t = 1, ..., T .

where :





εit =

�
ε1,it
ε2,it

�
≈ i.i.d.N

��
0
0

�
;

�
1 τ
τ 1

��

αi =

�
α1,i
α2,i

�
≈ i.i.d.N

��
0
0

�
;

�
σ21 ρσ1σ2
ρσ1σ2 σ22

��

Here we assume implicitly that the observations are independant over time and
accross indivisuals. The explanatory variables are exogenous with respect to
the error terms and with the individual random effects. This last hypothesis
could be relaxed by introducing the average values of the regressors along the
lines proposed by Mundlak (1978) if the individual effect can be decomposed
on a linear combination of the averaged regressors plus an uncorrelated effects.
The observed model is: �

y1,it = 1
�
y∗1,it > 0

�

y2,it = 1
�
y∗2,it > 0

�

3See for example the estimation procedure biprobit in Stata (Hardin, 1996).
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Let us define the classical transformation of the observed variables :
�
q1,it = 2y1,it − 1
q2,it = 2y2,it − 1

2.2 The individual joint density function

Because of the independance of observations over time, the conditional joint
density for the T observations of the ith individual is:

fi (yi|Xi, αi, β, τ) =
T�

t=1

fit (yit|Xit, αi, β, τ)

As we have assumed a normal distribution for the error terms in the latent
model, the density for an observation is given as in the bivariate probit model
above:

Pr (Y1 = y1, Y2 = y2|x1, x2;αi, β, τ)
= Φ2 (q1 (x

′

1β1 + α1) , q2 (x
′

2β2 + α2) ; q1q2τ)

where the individual random effects are added up to the conventional observable
parts of the latent functions. The joint density for an individual, conditional to
the vector of the individual random effects αi = (α1,i, α2,i), is then:

fi (yi|Xi, αi, β, τ) =
T�

t=1

Φ2
�
q1,it

�
x′1,itβ1 + α1,i

�
, q2,it

�
x′2,itβ2 + α2,i

�
; q1,itq2,itτ

�

Assuming a normal disribution for these individual random effects with vari-
ances σ21 and σ

2
2 respectively and a correlation coefficient ρ, the density function

for the individual effects is given by :

gi
�
αi|σ21, σ22, ρ

�
=

1

2π

1�
σ21σ

2
2 (1− ρ2)

×

exp

�
−1

2 (1− ρ2)

��
α1,i
σ1

�2
− 2ρ

�
α1,i
σ1

��
α2,i
σ2

�
+

�
α2,i
σ2

�2��

This density function does not depend on observables but on the three parame-
ters which should be estimated. The unconditional (to the individual random
effects) joint density for the ith individual is obtained by averaging over the
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distribution of these individual effects :

ℓi
�
yi|Xi, β, τ , σ21, σ22, ρ

�

=

� +∞

−∞

� +∞

−∞

fi (yi|Xi, αi, β, τ)× gi
�
αi|σ21, σ22, ρ

�
dα1,idα2,i

=

� +∞

−∞

� +∞

−∞

�
T�

t=1

Φ2
�
q1,it

�
x′1,itβ1 + α1,i

�
, q2,it

�
x′2,itβ2 + α2,i

�
; q1,itq2,itτ

�
�
×

1

2π

1�
σ21σ

2
2 (1− ρ2)

× (1)

exp

�
−1

2 (1− ρ2)

��
α1,i
σ1

�2
− 2ρ

�
α1,i
σ1

��
α2,i
σ2

�
+

�
α2,i
σ2

�2��
dα1,idα2,i

2.3 Decomposition of the double integral

The evaluation of the individual likelihood function (1) requires the computation
of a double integral. Lee and Oguzoglu (2007) and Kano (2008) have proposed a
method of computation by simulation where α1,i and α2,i are randomly drawn in
the bivariate normal distribution4 . The individual joint density (unconditional
to the individual random effects is approximated by :

ℓi
�
yi|Xi, β, τ , σ21, σ22, ρ

�

=

� +∞

−∞

� +∞

−∞

fi (yi|Xi, αi, β, τ)× g
�
αi|σ21, σ22, ρ

�
dα1,idα2,i

≃ 1

R

R�

r=1

�
T�

t=1

Φ2
�
q1,it

�
x′1,itβ1 + a

(r)
1,i

�
, q2,it

�
x′2,itβ2 + a

(r)
2,i

�
, q1,itq2,itτ

��
(2)

where
�
a
(r)
1,i

�
and

�
a
(r)
2,i

�
are R random draws in a bivariate normal distribution:

�
a
(r)
1,i

a
(r)
1,i

�
∼ i.i.d.N

��
0
0

�
;

�
σ21 ρσ1σ2
ρσ1σ2 σ21

��

However the computation should be very time-consuming and imprecise even
though we use modern simulator like GHK or Halton simulators, because we
need to compute R cumulative density function with a large value of R in order
to obtain sufficient precision in the log-likelihood function.
Instead we use the two-step Gauss-Hermite quadrature technique originally

proposed in a couple of papers by Raymond et al. (2007, 2010) in the case of an

4Miranda (2010) suggests the same procedure in an unpublished paper presented at the
Mexican Stata Conference in 2010.
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Heckman sample selection model on panel data. This method relies on a decom-
position of the two-dimensional normal distribution for the individual effects
into a one-dimensional marginal distribution and a one-dimensional conditional
distribution.
The unconditional joint density for the ith individual is rewritten as:

ℓi
�
yi|Xi, β, τ , σ21, σ22, ρ

�

=

� +∞

−∞

� +∞

−∞

fi (yi|Xi, αi, β, τ)×
1

2π

1�
σ21σ

2
2 (1− ρ2)

×

exp

�
−1

2 (1− ρ2)

��
α1
σ1

�2
− 2ρ

�
α1
σ1

��
α2
σ2

�
+

�
α2
σ2

�2��
dα1dα2

=

� +∞

−∞

� +∞

−∞

fi (yi|Xi, αi, β, τ)×
1

2π

1�
σ21σ

2
2 (1− ρ2)

×

exp

�
−1

2 (1− ρ2)

��
α1,i
σ1

�2
− 2ρ

�
α1,i
σ1

��
α2,i
σ2

���
× exp

�
−1
2

(α2,i/σ2)
2

1− ρ2

�
dα1,idα2,i

which can be in turn rewritten as:

ℓi
�
yi|Xi, β, σ21, σ22, ρ

�
=

� +∞

−∞

Hi (α2,i)× exp
�
−1
2

(α2,i/σ2)
2

1− ρ2

�
dα2,i (3)

with

Hi (α2,i) =
1

2π

1�
σ21σ

2
2 (1− ρ2)

� +∞

−∞

fi (yi|Xi, αi, β, τ)×

exp

�
−1

2 (1− ρ2)

��
α1,i
σ1

�2
− 2ρ

�
α1,i
σ1

��
α2,i
σ2

���
dα1,i

Let us evaluate this last function by using a gauss-Hermite Quadrature by
doing a change in variable such that (α1/σ1) = z1

�
2 (1− ρ2) with dα1 =

σ1
�
2 (1− ρ2)dz1 such that5 :

H (α2) =
1

2π

σ1
�
2 (1− ρ2)�

σ21σ
2
2 (1− ρ2)

� +∞

−∞

ℓi

�
yi|Xi, z1σ1

�
2 (1− ρ2), α2,β, τ

�
×

exp

�
−1
2

z212
�
1− ρ2

�

1− ρ2

�
× exp

�
ρ

(1− ρ2)z1
�
2 (1− ρ2)

�
α2
σ2

��
dz1

=
1

π
�
2σ22

� +∞

−∞

fi
�
yi|Xi, z1σ1

�
2 (1− ρ2), α2,β, τ

�
×

exp

�
ρ
√
2�

1− ρ2

�
α2
σ2

�
z1

�
× exp

�
−z21

�
dz1.

5We drop the individual index i for the clarity of the exposition.
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This is a Gaussian integral which can be approximated by a Gauss-Hermite
quadrature with weights ωm and abscissas am for M integration points (m =
1, ...,M)6 :

� +∞

−∞

f (z) e−z
2

dz ≃
M�

m=1

ωmf (am)

Thus the H (α2) function is approximated by :

Hi (α2,i) ≃
1

π
�
2σ22

M�

m=1

ωmfi

�
yi|Xi, amσ1

�
2 (1− ρ2), α2,i,β, τ

�
exp

�
ρ
√
2�

1− ρ2

�
α2,i
σ2

�
am

�
.

Now the second step of the procedure is to introduce this function in the
individual joint density ℓi

�
yi|Xi, β, τ , σ21, σ22, ρ

�
above (3) with a second change

in variables (α2/σ2) = z2
�
2 (1− ρ2) with dα2 = σ2

�
2 (1− ρ2)dz2 to obtain:

ℓi
�
yi|Xi, β, τ , σ21, σ22, ρ

�

=

� +∞

−∞

H (α2) exp

�
−1
2

(α2/σ2)
2

1− ρ2

�
dα2,i

=
1

π
�
2σ22

� +∞

−∞

M�

m=1

ωmfi

�
yi|Xi, amσ1

�
2 (1− ρ2), α2,β, τ

�

× exp
�
ρ
√
2�

1− ρ2

�
α2
σ2

�
am

�
× exp

�
−1
2

(α2/σ2)
2

1− ρ2

�
dα2

=
σ2
�
2 (1− ρ2)
π
�
2σ22

� +∞

−∞

M�

m=1

ωmfi
�
yi|Xi, amσ1

�
2 (1− ρ2), z2σ2

�
2 (1− ρ2), β, τ

�

× exp
�
ρ
√
2�

1− ρ2
z2
�
2 (1− ρ2)am

�
× exp

�
−1
2

z222
�
1− ρ2

�

1− ρ2

�
dz2

=

�
1− ρ2
π

� +∞

−∞

M�

m=1

ωmℓi
�
yi|Xi, amσ1

�
2 (1− ρ2), z2σ2

�
2 (1− ρ2), β, τ

�

× exp [2ρamz2]× exp
	
−z22



dz2

A second Gauss-Hermite quadrature can be used to compute this Gaussian
integral. For P integration points (p = 1, ..., P ), we have the weights ωp and the
abscissas ap. Finally the individual joint density unconditional to the individual
effects can be approximated by :

6The more the number of points, the more precise is the approximation. Genrally the
number of points is set to 8, 12 or 16 (see Cameron and Trivedi, 2005, Section XII.3.1). The
values of weights ωm and abscissas am can be found in mathematical textbooks.
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ℓi
�
yi|Xi, β, τ, σ21, σ22, ρ

�
(4)

≃
�
(1− ρ2)
π

P�

p=1

M�

m=1

ωpωm exp [2ρamap]

�
T�

t=1

Φ2 (q1u1,m; q2u2,p; q1q2τ)

�

where the arguments of the bivariate cumulative density function are :

u1,m = x′1β1 + amσ1
�
2 (1− ρ2)

u2,p = x′2β2 + apσ2
�
2 (1− ρ2)

Finally as the individuals are independent, the log-likelihood function should
be expressed as:

ln£ =
N�

i=1

ln ℓi
�
yi|Xi, β, τ , σ21, σ22, ρ

�

= −N ln (π) + N
2
ln
�
1− ρ2

�
+

N�

i=1

ln

�
P�

p=1

M�

m=1

ωpωm exp [2ρamap]
T�

t=1

Φ2 (q1,iu1,m,i; q2,iu2,m,i; q1,iq2,iτ)

�
(5)

In order to maximize this log-likelihood function, we can use the usual trans-
formations for the correlation coefficients:




ρ∗ = a tanh ρ = 1

2 ln
�
1+ρ
1−ρ

�

τ∗ = a tanh τ = 1
2 ln

�
1+τ
1−τ

�

or �
ρ = exp(2ρ∗)−1

exp(2ρ∗)+1

τ∗ = exp(2τ∗)−1
exp(2τ∗)+1

At each evaluation of the likelihood function, it is necessary to compute
N ×M × P cumulative density functions of the bivariate normal variables Φ2
with this two-step quadrature, which seems much more reasonable relative to the
computation of N ×R2 cumulative density functions for the simulated method.
In fact we should have a sufficiently good approximation with M = P = 12
points in the Gauss-Hermite quadrature, even though we shoud take at least
R = 200 points for the computation by simulation with less precision. The
two procedures of estimation of the bivariate probit model by maximum likeli-
hood have been written in a Stata program either with the simulated maximum
likelihood or with the Gauss-Hermite quadrature7 .

7These programs uses the maximum likelihood procedures in Stata by Gould et al. (2010).
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3 A simulation

A simulation of the procedures for the estimation of the bivariate probit model
has been performed in order to assess the effect of neglecting the correlation
between the two equations, and between the unobserved heterogeneity in each
equation. A set of observations for N individuals during T periods has been
generated for a bivariate latent process:

�
y∗1 = β1,0 + β1,1x1 + β1,2x2 + α1 + ε1
y∗2 = β2,0 + β2,1x1 + β2,2x2 + α2 + ε2

where ε =

�
ε1
ε2

�
≈ i.i.d.N

��
0
0

�
;

�
1 τ
τ 1

��

where the exogenous variables x1 and x2 have been drawn independently for each
observations in a standard normal distribution. The individual effects α1 and
α2 have been also drawn into a bivariate normal distribution with correlation
ρ:

�
α1
α2

�
≈ i.i.d.N

��
0
0

�
;

�
σ21 ρσ1σ2
ρσ1σ2 σ22

��
.

Then the observable dependent variables are constructed on the basis of the
sign of the corresponding latent variables:

�
y1 = 1 (y

∗

1 > 0)
y2 = 1 (y

∗

2 > 0)

In the following simulations, the number of individuals has been set to 1 000
with 10 periods for each individuals, such that there are 10 000 observations
in the panel data set which corresponds to the usual size of such data. The
true structural parameters in the model are the following : β1,0 = 0.50, β1,1 =
1.00, β1,2 = 0.00 and β2,0 = −0.50, β2,1 = −0.50, β2,2 = 1.00 . Therefore the
second explanatory variable appears only in the second equation. The correla-
tion coefficient of the error terms has been set to τ = 0.50, the same value has the
correlation coefficient between the individual random effects : ρ = 0.50, while
the standard deviation of these individual effects are the same: σ1 = σ2 = 2.00.
The observed patterns of response in this simulated model is the shown

in the Table 1.This simulated data set exhibits an association between both
dependent variable with a Kendall’s-tb measure of association of 0.222 with a
standard error of 0.010, as well a Pearson Chi-squared of 491.55 showing clearly
a positive significant association between the two observed dependent variables.
Moreover the tetrachoric correlation is 0.349 with a standard error 0.015 which
is less than the assumed correlation between the error terms in the latent model.
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y2
0 1 Total

y1 0 29.7 % 12.4 % 42.0 %
1 28.1 % 29.9 % 58.0%
Total 57.7 % 42.3 % 100 %

Table 1 : Contingency table of the binary variables in the simualted model.

This simulated data set exhibits an association between both dependent
variable with a Kendall’s-tb measure of association of 0.222 with a standard
error of 0.010, as well a Pearson Chi-squared of 491.55 showing clearly a positive
significant association between the two observed dependent variables. Moreover
the tetrachoric correlation is 0.349 with a standard error 0.015 which is less than
the assumed correlation between the error terms in the latent model.
The model is estimated by a pooled bivariate probit method where there are

no individual effects as a benchmark for estimations. Then it is estimated using
the Gauss-Hermite Quadrature (with 12 points) allowing individual effects. We
proceed to four estimations : the first one (estimation 1) with the individual
random effects but with a zero correlation between error terms (τ = 0) and a
zero correlation between the individual effects (ρ = 0), the second estimation
(2) allows for an estimated correlation between the error terms (τ), wile the
third estimation (3) allows only a correlation between the individual effects (ρ).
Finally the last estimation (4) is the complete model where both correlations
must be estimated. The standard likelihood ratio tests are performed in order
to verify the assumption about the individual effects and the correlations in the
model.
The Gauss-Hermite Quadrature procedure with 12 integration points is here

faster by 40 % than the simulated maximum likelihhod procedures performed
on the same dataset and on the same computer. Even though the convergence
is quite fast in three or four iterations starting with the initial values from the
two univariate panel probit estimations, it takes hovever between 7 minutes (for
the first estimation) to 14 minutes (for the last estimation) to perform such a
regression8 on 10 000 observations for a model with only 3 parameters in each
equation !
The benchmark estimation is clearly biased for the structural parameters of

each equation because there is no individual effects. Only a correlation between
the idiosyncratic error terms is estimated with an estimated value (0.511) close
to the theoretical correlation (0.50). Let us remark that the parameter esti-
mates are less than the half of their theoretical values. A likelihood ratio test
rejects clearly this hypothesis of no individual random effects. Introducing indi-
vidual random effects in the estimation but with no correlation is equivalent to
two distinct estimation of a random effect probit model for each equation. The
structural parameter estimates are now close to their theoretical value, taking

8The estimation are performed on a Dell OptiPlex 9010 with a i7 Intel processor running
at 3.4 Ghz. The procedures are written in a standard code for maximum likelihhod estimation
with Stata 12 software.
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account their standard errors. This is rather the case for the second equation,
while the first one presents estimates a litle bit smaller than theitr theoreti-
cal values. However the estimated standard deviations of the individual effects
are lower than expected for both equations. The likelihood ratio tests of the
correlations between individual effects and/or between the error terms in the
model clearly accept the presence of such correlations in the estimations. More-
over these estimated correlations have a very small estimated standard error,
even though they are non-linear transformations of the estimated parameters in
constructing interval confidence foor these correlations.

Benchmark (1) (2) (3) (4)
Equation 1

β1,0 0.212 0.429 0.440 0.436 0.446
[= 0.50] (0 .013 ) (0 .047 ) (0 .047 ) (0 .052 ) (0 .051 )
β1,1 0.408 0.928 0.927 0.942 0.939

[= 1.00] (0 .014 ) (0 .027 ) (0 .026 ) (0 .027 ) (0 .027 )
β2,1 −0.005 −0.005 −0.004 −0.004 −0.003

[= 0.00] (0 .013 ) (0 .020 ) (0 .020 ) (0 .020 ) (0 .020 )
Equation 2

β1,0 −0.218 −0.523 −0.507 −0.545 −0.511
[= −0.50] (0 .013 ) (0 .067 ) (0 .061 ) (0 .067 ) (0 .065 )
β1,1 −0.220 −0.489 −0.493 −0.495 −0.497

[= −0.50] (0 .014 ) (0 .022 ) (0 .022 ) (0 .023 ) (0 .022 )
β2,1 0.465 1.016 1.008 1.029 1.022

[= 1.00] (0 .014 ) (0 .028 ) (0 .028 ) (0 .028 ) (0 .028 )
Standard Error of Individual Effects

σ1 0 1.777 1.737 2.002 1.995
[= 2.00] − (0 .098 ) (0 .095 ) (0 .128 ) (0 .127 )
σ2 0 1.668 1.637 1.902 1.895

[= 2.00] − (0 .092 ) (0 .090 ) (0 .124 ) (0 .122 )
Correlations

τ 0.511 0 0.534 0 0.476
[= 0.50] (0 .014 ) − (0 .046 ) − (0 .036 )
ρ 0 0 0 0.550 0.536

[= 0.50] − − − (0 .027 ) (0 .027 )
Log Likelihood −11972.8 −7896.7 −7816.4 −7762.9 −7688.3
Standard errors of estimates in parenthesis.

True value of parameters in squared brackets in first column.

Table 2 : Simulation Results

If a correlation between the error terms in both equations is allowed (τ 	= 0),
the estimated results are closer from the theoretical values, while the standard
deviation of the individual effect are again under-estimated. In the opposite if
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only a correlation between individual random effects is allowed in the estimation
(ρ 	= 0), there are small changes in the structural parameters estimates, even
though the estimated standard deviations of the individual effects are now close
from their theoretical values. The same conclusions are obtained in the full
model where both correlations are estimated. All estimated parameters are now
very close from their theoretical values, and the hypothesis of no correlations
between individual effects and between error terms is clearly rejected by the
likelihood ratio tests.

4 An application to product and process inno-
vations

In this section, we investigate the behavior of product and process innovations
on a panel of French firms on the period 1999 - 2007. The data comes from
the annual R&D surveys conllected each year by the Ministry of Research. The
1999 reform of the R&D surveys in France introduced two new question s about
the product or the process innovations. These question are stated as :

"During the year, did your enterprise or your group introduce new or
significantly improved goods coming from the R&D activity of your firm?"

(Yes or No)
"During the year, did your enterprise or your group introduce new or
significantly improved methods of manufacturing or producing goods or

services coming from the R&D activity of your firm?"
(Yes or No)

These questions are slightly different from the usual Community Innovation
Survey (CIS) questionnaire because in the latter the time period is prolonged
over 3 years. For examples in the CIS 2004 questions, the first words are replaced
by “During the three years 2002 to 2004,...“. Moreover in the French R&D
surveys, only innovations coming from the R&D done by the firm are considered.
That excludes the innovations which were introduced without any R&D effort.
On the other hand, the product or process innovations can be done by another
firm in the group. This is why the answers to the CIS surveys and the R&D
surveys are not directly comparable. But the most important difference is that
in CIS surveys, the innovations are accounted for on the three years period.
A second problem arises from the fact that firms has many difficulties to

disentangle product or process innovations, even though the definitions from
the Oslo manual are quite precise (see the discussion in Mairesse and Mohnen,
2001). When a firm introduces a new product on the market, it changes and
improves also the methods of production. Therefore, the product and process
innovations is linked at the firm level. Even though this problem of measurement
is a serious one, we will consider both types of innovations in the following.
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While there are some firms which innovates only in product or in process, the
statistical difference between both types of innovations are thin. There are also
cross relationships between product and process innovations.
The sample of the French R&D surveys covers a 8 years period : from 2000

to 2007. Only firms with at least 4 consecutive years of data are retained in
the sample. There are 2 174 firms, corresponding to 12 506 observations in
the unbalanced sample. 61.5 % of firms report an innovation in a new product
during the year, while there are 60.3 % of firms indicating a process innovation.
But large firms are more innovative than smaller firms. When the share of
innovators are weighted by employment, the rate of innovation rises to 81 %
for both product and process innovations. In fact about 60 % of small and
medium-sized firms report an innovation, either in product or in process, while
75 % of large firms (more than 2000 employees) introduce an innovation during
a given year.

Process Innovation
NO YES TOTAL

Product NO 26.7 % 11.8 % 38.5 %
Innovation YES 13.0 % 48.5 % 61.5 %

TOTAL 39.7 % 60.3 % 100 %
12 506 observations, 2 174 firms, 2000 - 2007.

Table 3 : Share of Product and Process Innovators in France

There is a positive and large association between product and process as-
sociation. Nearly half of the observations in the sample lead to both types of
innovation, while routhly a quarter of the sample reports no innovation at all,
neither in product nor in process, even though the firms are doing R&D during
the year. Finally 12 % of observations show only a product innovation, while 13
% only a process innovation. The Kendall’s-τB measure of association is 0.479
with an asymptotic standard error of 0.007 showing a large and positive associ-
ation between both types of innovations. Finally the tetrachoric correlation is
0.689 with a standard error 0.008. This clearly demonstrates the link between
both type of innovations at the firm level. But this high correlation can be due
to the unobserved characteristics of the firm, or rather to an idiosyncratic shock
affecting both innovations at each period. We will estimate a simple bivariate
probit model determining each type of innovations at the firm level to illustrate
which correlations are the most important at the firm level.
In this simple model, the product or the process innovations are determined

by the size of the firm, measured by the log of its total employment: log (L),
and by the R&D intensity: R/Y , i.e. the total R&D expenditure divided by the

total turnover of the firms. The squared value of the R&D intensity (R/Y )2 is
also introduced in the model in order to capture a non linear effect of the R&D
intensity9 . A full set of time dummies is also considered in the estimation. They

9A non-linear effect of the size of the firm have been tested with the squared log of total
employment. But its parameter estimates is never significantly different from zero.
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are always jointly significant in all the estimations below. Table 4 shows the
main result of the analysis for the classical Probit model without any individual
effect and for the Panel Probit model with individual random effects. The
usual univariate estimations are done separately for each equations, while the
bivariate estimations are presented with both correlations between individual
effects and between the error terms. This last estimations is done by using our
double Gauss-Hermite Quadrature procedures using 12 integration points for
both dimensions. It takes more than 140 minutes to obtain the convergence to
a maximum for the log-likelihood function but after only 5 iterations.

PROBIT PANEL PROBIT
UNIVARIATE BIVARIATE UNIVARIATE BIVARIATE

PRODUCT INNOVATION
log(L) 0.084 0.088 0.114 0.114

(0 .007 ) (0 .007 ) (0 .015 ) (0 .014 )
(R/Y ) 1.585 1.630 1.835 1.658

(0 .180 ) (0 .179 ) (0 .317 ) (0 .307 )

(R/Y )2 −1.550 −1.583 −1.749 −1.554
(0 .180 ) (0 .180 ) (0 .310 ) (0 .300 )

Const. −0.579 −0.596 −0.780 −0.758
(0 .059 ) (0 .060 ) (0 .100 ) (0 .098 )

PROCESS INNOVATION
log(L) 0.085 0.090 0.114 0.117

(0 .007 ) (0 .007 ) (0 .015 ) (0 .015 )
(R/Y ) 1.484 1.531 1.519 1.443

(0 .181 ) (0 .180 ) (0 .320 ) (0 .311 )

(R/Y )2 −1.560 −1.598 −1.572 −1.493
(0 .181 ) (0 .181 ) (0 .313 ) (0 .303 )

Const. −0.821 −0.862 −1.075 −1.094
(0 .060 ) (0 .061 ) (0 .102 ) (0 .100 )

STANDARD DEVIATIONS AND CORRELATIONS
σ1 0 0 0.990 0.508

− − (0 .028 ) (0 .028 )
σ2 0 0 1.001 0.526

− − (0 .029 ) (0 .029 )
τ 0 0.714 0 0.464

− (0 .009 ) − (0 .016 )
ρ 0 0 0 0.899

− − − (0 .005 )
Log.Likelihood −16231.68 −14699.08 −14308.14 −13087.34
12 506 Observations, 2 174 Firms, 2000 - 2007

Standard errors in parenthesis. Full set of time dummies not reported here

Table 4 : Parameter Estimates
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All the parameters estimates are highly significant because there is a lot
of observations (12 506) in the sample, while there are up to 26 parameters
to estimate in the full bivariate model. Moreover the likelihood ratio tests
reject clearly the assumptions of the absence of individual effects, and the zero
correlations between these individual effects or between the equations. The
introduction of individual effects rises the effect of the size on the innovations in
product or in process. The ffect of the R&D intensity is positive but decreasing
for all the estimations because the parameter of the level is positive, even though
the parameter of its squared value is negative. In consequence the effect of R&D
intensity on innovations increases up to a maximum which is routhly 50 % of
the total turnover of the firm. The change of the parameter estimates for the
R&D intensity is mixed according to the methods of estimation. The bivariate
probit model are similar for the product innovation, while its effect seems to
be a lit bit smaller for the process innovations with the panel bivariate probit
estimation. The estimated standard deviations of the individual effects are
smaller when we take account of the correlation between these effects. They are
roughly divided by 2, even though the correlation between the individual effects
is very large with an estimates of �ρ = 0.90. Therefore the unobserved individual
characteristics of the firm seems to affect in the same way the probability to
innovate in product and in process. Finally the bivariate panel probit estimation
allows to disentangle the correlation between the individual effects from the
correclation in the idiosyncratic error terms between the two equations, which
is precisely estimated with �τ = 0.46.
The Table 5 presents the computation of the marginal effect computed at

the mean value in the sample. The effect of the log employment is small but
if the size of a firm is twice the size of another firm (then log (L) increases of
0.69), the probability to innovate in product or in process will be higher by 2.6
%.

PROBIT PANEL PROBIT
UNIVARIATE BIVARIATE UNIVARIATE BIVARIATE

PRODUCT INNOVATION
log(L) 0.029 0.030 0.037 0.037
(R/Y ) 0.548 0.563 0.602 0.543

(R/Y )
2 −0.536 −0.547 −0.574 −0.509

PROCESS INNOVATION
log(L) 0.029 0.031 0.037 0.038
(R/Y ) 0.510 0.526 0.494 0.467

(R/Y )2 −0.536 −0.549 −0.511 −0.484
12 506 Observations, 2 174 Firms, 2000 - 2007

Table 5 : Marginal Effects at the Mean

Using the bivariate panel probit estimation, the effect of the R&D intensity
is also positive and reach a maximum at 54 % for the product innovation and
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48 % for the process innovation. Comparing the case where the firm does not
perform R&D with these maximum points, the probability of an innovation in
product increases by 14.5 %, while the probability of a process innovation will
be higuer by 11.3 %. These figures seems to be reasonable because about 60 %
of firms in the sample innovates in product or in process.

5 Conclusions

In this article, an alternative metod of estimation of a bivariate probit model on
panel data is presented. In such bivariate probit model on panel data, the likeli-
hood function implies to integrate the density conditional over the distribution
of the individual random effects in order to eliminate them by taking an aver-
age density. In the literature, some papers use simulations in order to compute
the double integral. The alernative method relies on a double Gauss-Hermite
quadrature procedure in order to evaluate the double integral. This paper de-
velops the log-likelihood function in this case and a program is written in Stata
to estimate such model. This program should be optimized in the future in
order to reduce estimation time, may be by using an adaptative Gauss-Hermite
procedure.
On panel data , it is important to introduce individial specific effects in

order to avoid the omitted variable bias. This is shown in a simulation exercise
where the pooled bivariate probit model is clearly rejected when there is no
individual effects in estimation. The separated estimation of the two probit
models is clearly consistent due to the fact that the model is correctly specified
and that the correlations between the individual effects or between the error
terms are only of second order. However a bivariate probit model allows also
to estimate consistently the correlation between the individual random effect
and between the idiosyncratic error terms in the 2 equations model. But the
procedure should be long even thouh the number of iterations is reduced.
This procedure is applied in the case of the estimation of the determinants

of product and process innovations on a panel of French firms during the period
2000 - 2007. Here the model explaining the product or process innovations is
simple because it depends only on the size of the firm and positively on the
R&D intensity. There is a positive effect of the size of the firm of the same
magnitude for both types of innovation, while there is also a positive effect of
the R&D intensity, but this effect is non-linear because it is decreasing up to a
R&D intensity which is roughly 50 % of the total turnover of the firm. Finally
the estimated correlation between the idiosyncratic errors terms is about 50 %
indicating that a shock affect in the same sense with a high magnitude both
types of innovations.
The unobserved heterogeneity also affects both product and process innova-

tions with a very high positive correlation of 90 %, whicjh can be due to the
fact that our model is very simple. The firm’s unobserved characteristics may
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lead to a firm’s innovative behaviour for both innovations, but these character-
istics should come from the internal organization of the firm or from the market
on which it operates. A further investigation of these determinants should be
on the next agenda of research. The large correlated effects could be also the
sign of a high persistence of innovative behaviour at the firm’s level. The firm’s
characteristics can also affet persistenly the product or process innovations. We
should investigate the persistence of this innovative behaviour in a following
paper.
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