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1 Introduction

Recent advances in discrete choice modeling have seen the development of so-called inflated

models. Such developments have been motivated by the observation that in certain discrete

choice situations, a large proportion of empirical observations fall into one particular choice

category, such that the category with the excess of observations appears ‘inflated’relative to

the others. In this paper, we add to this growing strand of literature by proposing a Tempered

Ordered Probit (TOP) model. Our contribution lies not only in explicitly accounting for an

excessive number of observations in a given choice category - as is the case in the standard

literature on inflated models; rather, we introduce a new econometric model which nests the

recently developed Middle Inflated Ordered Probit (MIOP) models of Brooks, Harris, and

Spencer (2012) and Bagozzi and Mukherjee (2012) as a special case, and which futher, can

be used as a specification test of the MIOP, where the implicit test is described as being one

of symmetry versus asymmetry.1

Our model is then used to exploit a panel dataset containing the votes of Bank of England

Monetary Policy Committee (MPC) members. In our application, which models members’

interest-rate choices, we simultaneously allow for a trichotomous ordered probit equation

capturing an economic conditions equation à la Taylor (1993), coupled with a set of direction

specific binary probit ‘inertia’equations which gauge the propensity of MPC members to

change or not change the interest rate. Our model explicitly accounts for the inflated number

of votes to leave the short-term interest rate unchanged, accounting for no-change decisions

such as those arising from policy makers following a ‘wait and see’policy due to economic

uncertainty. Repeated observations for each committee member allow us to condition on the

presence of any unobserved heterogeneity pertaining to individual members. However, unlike

in Brooks, Harris, and Spencer (2012), where the binary decision to change or not change

the policy rate was assumed to be identical irrespective of its direction (e.g. up or down),

this paper relaxes this assumption. As noted above, a significant corollary of this innovation

is that the TOP model can be used as a specification test of the MIOP model. In the context

of our application, the implicit test is one of symmetry versus asymmetry in the inertia

equation across the alternatives of inertia compared to up, and inertia compared to down.

Our findings suggest that members are indeed characterized by quite different propensities to

1The MIOP model is itself an extension of the Zero-Inflated Ordered Probit Model (Harris and Zhao
2007), where the probability-augmented outcome is not necessarily at one end of the choice spectrum, but in
the middle. This implies that for a MIOP model characterised by ordered framework with three choices, the
middle category is ‘inflated’.
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leave the interest rate unchanged, which in turn represents asymmetric attitudes towards, for

instance, economic uncertainty and the changeability of interest rates. This in turn implies

that a TOP modelling strategy is preferable to a MIOP one.

2 Discrete-Choice Approaches to Monetary Policy

A number of empirical studies have applied limited dependent variable techniques to mod-

elling monetary policy decisions. A useful starting point, and indeed one that has found

much favour in the empirical literature, is the standard ordered probit (OP) model. In such

literature, monetary policy decisions are typically coded to reflect decisions to relax, leave

unchanged, or tighten policy. Gerlach (2007) for instance models the short term-interest

rate setting behavior of the European Central Bank by using the ECB’s Monthly Bulletin to

inform the choice of explanatory variables. However, it is noteworthy that the application of

the OP model is by no means restricted to the using the short-term interest rate to model

monetary policy decisions, an approach exemplified in Xiong (2012) who estimates the policy

stance of the People’s Bank of China (PBC). As no single instrument best capures the policy

stance of the PBC, the author creates a policy stance index which is subsequently discretized

and employed as the dependent variable. The vast majority of papers nevertheless focus on

datasets where the short-term interest rate is the key instrument of of monetary policy.

Other contributions have estimated models within a dynamic setting, which significantly

complicates estimation. Eichengreen, Watson, and Grossman (1985) model the setting of

the bank rate by the Bank of England in the interwar gold standard period using a dynamic

probit model. Davutyan and Parke (1995) extend this approach by applying a dynamic probit

model to the setting of the bank rate in the period prior to World War I. Hamilton and Jorda

(2002) propose a different approach to modelling the US federal funds target rate over the

period from 1984 to 2001. Specifically, they extend the autoregressive conditional duration

model (Engle and Russell 1997; Engle and Russell 1998) to model the likelihood that the

target rate will change tomorrow, given the available information set today. Significantly,

the Hamilton and Jorda (2002) model also includes an ordered probit component. Dolado

and Maria-Dolores (2002) provide an alternative in the framework of a marked-point-process

approach by applying a sequential probit model to understand the interest rate policy of the

Bank of Spain for the period 1984 to 1998. The same authors (Dolado and Maria-Dolores

2005) also employ an ordered probit approach to study the interest rate setting behaviour
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of four European central banks and the US Federal Reserve.2 Other approaches have used

unordered approaches, such as Allen, Bray, and Seaks (1997), Tootell (1991b) and Tootell

(1991a) who employ multinomial logit analysis to model aspects of Federal Reserve interest

rate setting behavior.

Within the context of our own empirical application, a number of contributions have taken

advantage of the information contained in the voting records of monetary policy committees

with a view to attempting to account for differences in members’voting behavior or predicting

future monetary policy decisions. Indeed, Tootell (1991b) and Tootell (1991a) employ a

multinomial logit model to test for differences in the voting behavior of FOMC members.3

In contrast, Gerlach-Kristen (2004) uses a standard ordered probit framework to demonstate

that voting record information can be used to predict future changes in the Bank of England’s

short-term interest rate. This is achieved through using a measure called skew, which proxies

for the extent to which MPC members disagree with each other at a given meeting. As the

current paper also exploits the MPC’s voting record - in our case, a panel of MPC members’

votes on the short term interest-rate - we find it fruitful to expound our formal discussion of

the TOP model in such a context. Moreover, as the foundation of our formal analysis is the

(panel) ordered probit model, we use this as starting point.

2It is also possible to condsider an interval regression approach. Essentially this is very similar to the
ordered probit approach, except that one now: makes a decision regarding the quantitative value of the
cut-points (for example, it might be deemed to be 1.75% in the choice between the two policy rates of 1.5
and 2%); once such assumptions are made, it is now also possible to estimate the variance of y. That is here,
we take advantage of the magnitude of the rate choices (1%,2%2.5%, and so on). Not surprisingly, these two
approaches tend to yield very similar results.

3This paper is also related to a literature which is geared towards explaining the voting behaviour of
members of the United States FOMC. As we generally model MPC members’ votes as a function of the
economic environment, it falls into what Meade and Sheets (2005) label the ‘reaction function’camp (Tootell
1991b; Tootell 1991a), and not the ‘partisan theory of politics’genus of studies (Belden 1989; Havrilesky
and Schweitzer 1990; Havrilesky and Gildea 1991). For example, Tootell (1991b) tests the hypothesis that
District Bank Presidents set policy according to regional, as opposed to national economic conditions. No
evidence to support this claim is found, although evidence to the contrary is found by Meade and Sheets
(2005). In a further paper, Tootell (1991a) tests, but fails to find evidence, to support the hypothesis that
Federal Reserve Bank Presidents vote more ‘conservatively’than members of the Board of Governors. In
both contributions (Tootell 1991b; Tootell 1991a) Greenbook estimates of GDP growth and inflation are
used as covariates. Given that the economy is influenced with lags by monetary policy, it follows that FOMC
members’votes are most likely determined by their expectations of inflation and GDP growth (as opposed
to their current, or past, values).
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2.1 The (Panel) Ordered Probit

Consider a situation where we have repeated observations on members of a monetary policy

committee. Each MPC member i is envisaged to have an underlying, unobserved, propensity

to vote, for a desired rate in meeting t, denoted y∗it. This will be driven by a set of economic

conditions prevailing at time t to the member, xit with unknown weights β and a random

disturbance term εit such that

y∗it = x′itβ + εit. (1)

This unobserved index will translate into votes for a rate decrease (y = −1) , no-change (0)

and increase (y = 1) according to the relationship between y∗ and boundary parameters, µ

y =


−1 if y∗ < µ0

0 if µ0 ≤ y∗ < µ1

1 if y∗ ≥ µ1

(2)

where, for identification, µ0 is normalised to 0 (or equivalently, there is no constant in x)

and where V (εit) = 1, also for identification. Under the usual assumption of normality, this

results in probabilities of each observed state of

Pr (yit) =


−1 = Φ (−x′itβ)

0 = Φ (µ1 − x′itβ)− Φ (x′itβ)

1 = 1− Φ (µ1 − x′itβ)

(3)

Several authors have based analyses on such a set-up; and, as in this paper, some studies

have utilized information contained in the MPC’s voting record. For instance, Harris and

Spencer (2009) adopt a related approach to the current paper, using a similar panel data

set of MPC members’votes and discrete choice methods. Simple ordered probability models

are estimated although the focus is mainly on the inherent differences between the voting

behaviour of ‘internal’ and ‘external’MPC members.4. The reason for such a favoured

approach is primarily based upon and/or justified by, the empirical regularity that both

observed policy rate changes, and votes for changes thereof, are all invariably in the order

of ±25 or 50 basis points. Indeed, the latter are quite rare, and therefore would be hard
to model, therefore the decision is very often converted into a simple up/down/no change

4The internal-external distinction is also followed in Gerlach-Kristen (2003) who shows that disagreements
between members of the Bank’s MPC typically constitute the rule, and not the exception. The paper provides
more of a descriptive overview of MPC voting behavior.
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choice. Indeed, for the expositions below, we will also (unless otherwise stated) assume a three

choice scenario of: up (1) ; no-change (0) ; and down (−1), possibly augmented, for example

to additionally include unobserved effects in equation (1).5 Such an approach, however, does

not address the relative preponderence of no change decisions.

2.2 Middle-Inflated Models

Thus far, there is a limited discrete-choice literature attempting to address the empirical

regularity of an “excess” of observations corresponding to no-change in the interest rate.6

Brooks et al. (2012) address this issue by using a two-stage decision based approach. Their

formal starting point is an underlying latent variable, which variable represents an overall

propensity to choose the inflated category over any other, and therefore translates into an

“observed”binary outcome. This latent variable q∗, can be thus labelled an “inertia” (or

“splitting”) equation, and is assumed to be a linear in parameters (βs) function of a vector

of observed characteristics xs and a random error term εs

q∗ = x′sβs + εs. (4)

A two-regime scenario is then proposed such that for observations in regime q = 0, the inflated

(no-change) outcome is observed; but for those in q = 1 any of the possible outcomes in the

choice set {−1, 0, 1} which includes the outcome with an excess of observations. Of course we
never observe membership of either regime (q = 0, q = 1), and must rely on data to identify

this.

For units in regime q = 1, an underlying latent variable y∗ is specified as a linear in para-

meters function of a vector of observed characteristics xy (with no constant), with unknown

weights βs and a random normally disturbance term uy thus

y∗ = x′sβy + εy. (5)

For individuals in this regime, outcome probabilities are determined by an OP model. Thus

5Using a linear random parameters model, Besley, Meads, and Surico (2008) demonstrate that although
MPC decisions are characterized by voter heterogeneity, the differences in reactions to the inflation forecast
and output gap based on a member’s type and career backgrounds are insignificant. This is in contrast to
Harris and Spencer (2009) who find that internal and external members react very differently to forecasts of
inflation and output.

6That is, even in a continually changing economic environment, both the policy rate, and votes thereof,
are dominated by these no-change observations.
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under the

Pr(yit) =


Pr (yit = −1 |zit,xit ) = Φ (x′sβ, )× Φ

(
µ0 − x′yβy

)
Pr (yit = 0 |zit,xit ) = [1− Φ (x′sβs)] + Φ (x′sβ, )×

[
Φ
(
µ1 − x′yβy

)
− Φ

(
µ0 − x′yβy

)]
Pr (yit = 1 |zit,xit ) = Φ (x′sβ, )×

[
1− Φ

(
µ1 − x′yβy

)]
(6)

where Φ denotes the cumulative distribution function of the standardised normal distribution,

and µj are the J − 1 usual boundary parameters. In this way, the probability of outcome

1 has been ‘inflated’. Thus to observe a yit = 0 outcome we require either that q = 0; or

jointly that q = 1 and that µ0 < y∗ ≤ µ1. Observationally equivalent no-change outcomes,

can hence arise from two distinct sources. In terms of exclusion restrictions Brooks et al.

(2012) propose that the variables entering xs should be Taylor-rule type ones, whereas those

in xy should be more institutional in nature, and include proxies for risk and uncertainty.

2.3 The Tempered Ordered Probit (TOP) Model

It is possible to consider a further refinement to the OP model. As with the usual OP set-up

described above, let each observational unit have a propensity to vote, for a desired rate, y∗.

This can be assumed to again be a function prevailing economic conditions xy with unknown

weights βy and a random disturbance term uy,as per equation (1). However, to allow for

the observed build-up of no-change observations, the movement propensities (that is the up

and down ones) are both tempered by two further equations that allow observations with

either of these propensities to still choose no-change, presumably as a function of proxies for

uncertainty and institutional factors, such as in xs above. We term this model, the Tempered

Ordered Probit (TOP) model. Clearly it would be possible to allow a different variables affect

the tempering on the up and down propensities, but this seems diffi cult to justify on a priori

grounds. Thus we assume that there is one block of variables (xs) that drives both of these

tempering equations.

Explicitly, to incorporate uncertainty into the propensities for vote decreases and in-

creases, respectively, requires specification of two further latent variables, d∗ and u∗. Thus

for observations that have an down propensity, whether they actually choose this outcome

or alternatively opt for a no-change outcome, will be determined by the former, and will be

the result of a binary (yes/no) decision for this observation. Let this process be determined

by an equation of the form

d∗ = x′sβd + εd (7)
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then, under the assumption of normality, conditional on the member having a down propen-

sity, the probability of a vote decrease will be

Pr (decrease |down propensity ) = Φ (x′sβd) (8)

and, by symmetry, for no-change

Pr (no− change |down propensity ) = Φ (−x′sβd) . (9)

Similarly for members who have an up propensity, on the basis of the latent propensity

equation of

u∗ = x′sβu + εu (10)

the probability of them voting for rate increase will be given by

Pr (increase |up propensity ) = Φ (x′sβu) (11)

and for no-change

Pr (no− change |up propensity ) = Φ (−x′sβu) . (12)

Under independence, the overall probabilities of vote decreases, no-change and increases,

will therefore be

Pr (y) =


−1 = Φ

(
µ0 − x′yβy

)
× Φ (x′sβd)

0 =

[
Φ
(
µ1 − x′yβy

)
− Φ

(
µ0 − x′yβy

)]
+[

Φ
(
µ0 − x′yβy

)
× Φ (−x′sβd)

]
+
[(

1− Φ
(
µ1 − x′yβy

))
× Φ (−x′sβd)

]
1 =

[
1− Φ

(
µ1 − x′yβy

)]
× Φ (x′sβu)

(13)

In this way, the empirical regularity of an “excess”of no-change votes is allowed for by the

additional terms of
[
Φ
(
µ0 − x′yβy

)
× Φ (−x′sβd)

]
and

[(
1− Φ

(
µ1 − x′yβy

))
× Φ (−x′sβd)

]
in

equation (13), which represents member uncertainty.

2.4 A Specification Test for the Inflated Ordered Probit Model

There is an interesting empirical issue of whether the down and up propensities were tem-

pered to the same extent, that is whether βd = βu. Indeed, such a simple linear parameter
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restriction could easily be tested by by enforcing this restriction, such that say, βd = βu = βs.

Enforcing this in equation (13 results in

Pr (y) =


−1 = Φ

(
µ0 − x′yβy

)
× Φ (x′sβs)

0 =

[
Φ
(
µ1 − x′yβy

)
− Φ

(
µ0 − x′yβy

)]
+[

Φ
(
µ0 − x′yβy

)
× Φ (−x′sβs)

]
+
[(

1− Φ
(
µ1 − x′yβy

))
× Φ (−x′sβs)

]
1 =

[
1− Φ

(
µ1 − x′yβy

)]
× Φ (x′sβs) .

(14)

Focussing on Pr (y = 0) of equation (14) and re-arranging will prove instructive

Pr (y = 0) =
[
Φ
(
µ1 − x′yβy

)
− Φ

(
µ0 − x′yβy

)]
+[

Φ
(
µ0 − x′yβy

)
× Φ (−x′sβs)

]
+
(
1− Φ

(
µ1 − x′yβy

))
× [1− Φ (x′sβs)]

=
[
Φ
(
µ1 − x′yβy

)
− Φ

(
µ0 − x′yβy

)]
+[

Φ
(
µ0 − x′yβy

)
+
(
1− Φ

(
µ1 − x′yβy

))]
× [1− Φ (x′sβs)]

=
[
Φ
(
µ1 − x′yβy

)
− Φ

(
µ0 − x′yβy

)]
+[

1−
(
Φ
(
µ1 − x′yβy

)
− Φ

(
µ0 − x′yβy

))]
× [1− Φ (x′sβs)]

=
[
Φ
(
µ1 − x′yβy

)
− Φ

(
µ0 − x′yβy

)]
+[

1−
(
Φ
(
µ1 − x′yβy

)
− Φ

(
µ0 − x′yβy

))]
−
[
1−

(
Φ
(
µ1 − x′yβy

)
− Φ

(
µ0 − x′yβy

))]
× [Φ (x′sβs)]

=
[
Φ
(
µ1 − x′yβy

)
− Φ

(
µ0 − x′yβy

)]
+
[
1−

(
Φ
(
µ1 − x′yβy

)
− Φ

(
µ0 − x′yβy

))]
− [Φ (x′sβs)] +

[(
Φ
(
µ1 − x′yβy

)
− Φ

(
µ0 − x′yβy

))
× Φ (x′sβs)

]
= [1− Φ (x′sβs)] +

[(
Φ
(
µ1 − x′yβy

)
− Φ

(
µ0 − x′yβy

))]
× Φ (x′sβs)

Or equivalently, by re-arranging the Pr (y = 0) expression as 1 minus the Pr (y = −1) and

Pr (y = 1) terms of equation (14) we have

Pr (y = 0) = 1−
[
Φ
(
µ0 − x′yβy

)
× Φ (x′sβs)

]
−
[(

1− Φ
(
µ1 − x′yβy

))
× Φ (x′sβs)

]
= Φ (x′sβs) + [1− Φ (x′sβs)]−[

Φ
(
µ0 − x′yβy

)
× Φ (x′sβs)

]
−
[(

1− Φ
(
µ1 − x′yβy

))
× Φ (x′sβs)

]
= [1− Φ (x′sβs)] +

[
1− Φ

(
µ0 − x′yβy

)
−
(
1− Φ

(
µ1 − x′yβy

))]
× Φ (x′sβs)

= [1− Φ (x′sβs)] +
[
Φ
(
µ1 − x′yβy

)
− Φ

(
µ0 − x′yβy

)]
× Φ (x′sβs)
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yielding the rewritten restricted probabilities as

Pr (y) =


−1 = Φ

(
µ0 − x′yβy

)
× Φ (x′sβd)

0 = [1− Φ (x′sβs)] +
[
Φ
(
µ1 − x′yβy

)
− Φ

(
µ0 − x′yβy

)]
× Φ (x′sβs)

1 =
[
1− Φ

(
µ1 − x′yβy

)]
× Φ (x′sβu)

(15)

A comparison of equations (6) and (14) shows that the restricted form of the TOP model

is identical to that of the IOP one. That is, even though different inherent sequences in

the choice process are used to justify both models, they are equivalent under a simple set

of parameter restrictions. In this way the TOP model can be used as a specification test

of the IOP, where the implicit test is one of symmetry versus asymmetry in the inertia

equation across the alternatives of inertia compared to up, and inertia compared to down.

An appropriate testing procedure would appear to be a likelihood ratio test of TOP versus

IOP, with degrees of freedom the rank of xs.

2.5 Beyond Trichotomous Choice

It is possible, probable even, that the researcher will be faced with a five, or more outcomes;

and moreover be faced with cell sizes that do not neceassirly suggest collapsing of cells. In this

instance, we would suggest, to maintain the nesting of the IOPmodel, that the “first”decision

is one of: large-increase, small-increase, no-change, small-decrease and finally, large-decrease.

However, again because of the hypothesised inertia in these choice decisions, these (change)

propensities will again all be tempered. Due to the inertia, and the apparent pull towards

“zero”, a propensity for small-increase will be tempered by the binary decision of small-

increase or no-change (that is, a movement from here to large-increase is not entertained).

Conversely, what of those in a large-increase propensity? This decision could be tempered

by the binary choice of both small-increase or no-change. Although this is likely to vary by

application, we suggest here that an appropriate choice-set would be between large-decrease

and no-change. There are two viable alternatives to this: 1) consider the choice-set as large-

increase, small-increase and no-change: this would both require a further OP equation and

therefore would not (obviously) nest the restricted IOP model, and would essentially put

extra probability mass into all of the small-increase (decrease) and no-change categories

(which may, however, be warranted by the particular application). 2) Consider the choice-set

as large-increase and small-increase: again this does not nest the IOP as a special case, and

moreover would only serve to put extra mass into the small-increase (decrease) categories.
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However, as is obvious, this generic TOP set-up (for more than three outcomes) offers the

applied a researcher a very rich variety of options.

Under the assumption of tempering only to no-change, the TOP model here would have

probabilities of the form

Pr (y) =



−2 = Φ
(
µ0 − x′yβy

)
× Φ

(
x′sβd,−2

)
−1 =

[
Φ
(
µ1 − x′yβy

)
− Φ

(
µ0 − x′yβy

)]
× Φ

(
x′sβd,−1

)

0 =

[
Φ
(
µ2 − x′yβy

)
− Φ

(
µ1 − x′yβy

)]
+[

Φ
(
µ1 − x′yβy

)
− Φ

(
µ0 − x′yβy

)]
× Φ

(
−x′sβd,−1

)
+[

Φ
(
µ0 − x′yβy

)
× Φ

(
−x′sβd,−2

)]
× Φ

(
−x′sβd,−2

)
+[

Φ
(
µ3 − x′yβy

)
− Φ

(
µ2 − x′yβy

)]
× Φ

(
−x′sβu,1

)
+[

1− Φ
(
µ3 − x′yβy

)]
× Φ

(
−x′sβu,2

)
1 =

[
Φ
(
µ3 − x′yβy

)
− Φ

(
µ2 − x′yβy

)]
× Φ

(
x′sβu,1

)
2 =

[
1− Φ

(
µ3 − x′yβy

)]
× Φ

(
x′sβu,2

)

(16)

where βd,−2 are the coeffi cients in the binary tempering equation for large-decrease propen-

sites (where the choice-set is large-decrease or no-change); and so on.

Several hypothesis tests would be of interest here. Firstly, that there may be only one

tempering decision in say, just the up-propensities, H0 : βd,−2 = βd,−1; or only a single

tempering decision in both of the up- and down-propensites, H0 : βd,−2 = βd,−1 and βu,−2 =

βu,−1. As before, an obvious one would be a single tempering decision, H0 : βd,−2 = βd,−1 =

βd,−2 = βd,−1, which would test the general TOP model versus the (restricted) IOP one. As

these are all simple tests of parameter restrictions, Likelihood ratio tests would appear to be

an obvious choice.

2.6 Unobserved Heterogeniety

However, the random disturbances of equations (1), (7) and (10) all relate to the same unit

of observation, and therefore correlations between these are very likely. That is, for example,

the unobservables driving the up/down/no-change propensity (of equation (1)), are likely to

be correlated with those which then drive the up/no-change ones for those members having

a “up”propensity. However, given that any member in anytime period can only be in any

one of the “down” and “up” propensities, there can be no correlations across εu and εd,

but εy and εd will be correlated with correlation coeffi cient ρyd; and similarly εy and εu

with coeffi cient ρyu. Now the joint probabilities of equation (13) are no longer products of

11



univariate probabilities, but bivariate normal ones such that

Pr (y) =


−1 = Φ2

(
µ0 − x′yβy,x′sβs;−ρyd

)
0 =

[
Φ
(
µ1 − x′yβy

)
− Φ

(
µ0 − x′yβy

)]
+

Φ2

(
µ0 − x′yβy,−x′sβd; ρyu

)
+ Φ2

(
x′yβy − µ1,−x′sβd;−ρyd

)
1 =

[
Φ2

(
x′yβy − µ1,x′sβs; ρyu

)]
.

(17)

where Φ2 (a, b; ρ) represents the standardized bivariate Normal density with upper integration

limits a and b with correlation ρ.

Treating each observation as an independent random draw,7 the estimation of probabilities

given by equation (17) is obtained by maximizing the log-likelihood function L (θ) with

respect to the parameter vector θ = (β′,µ′, ρ′)
′. So, for J = 3 vote outcomes and each

member i being observed for t = 1, . . . , Ti time periods, we have

lnL (θ) =
N∑
i=1

Ti∑
t=1

1∑
j=−1

dijt ln [Pr (yit = j |X)] (18)

where dijt is the indicator function such that

dijt =

{
1 if individual i chooses outcome j in meting t

0 otherwise.
(19)

for i = 1, . . . , N ; j = −1, 0, 1; t = 1..., Ti.

We extend out baseline model in two important ways. Firstly, we introduce additive

heterogeneity - or “traditional”unobserved (random) effects - into the two (conditional) up

and down propensity equations. Thus equations (10) and (7), respectively become

u∗ = x′sβu + αiu + εu (20)

and

d∗ = x′sβd + αid + εd, (21)

where the i index on both α’s is to make clear that these are observation-varying, but constant

over time. As is common in the panel data we will make the assumption that αiu ∼ N (0, σ2u)

and αid ∼ N (0, σ2d).That is, even though two members may both be in “up propensity”

positions, and conditional on their realisations of xs they are still likely to have differing

7This somewhat restrictive simplifying assumption is relaxed below.
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conditional propensities for up and no-change. It is exactly these differing propensities that

these unobserved effects will account for.

The second way we extend our baseline model is allow for members to equivalently have

differing information sets, or for them to react differently to the same information sets. The

information sets that MPC members will be utilising in their voting decisions will be those

primarily relating to inflation forecasts (as they are primarily charged with the responsibility

of achieving inflation targets), but also to GDP. Thus the approach we adopt here, is a

random parameters one where we allow member-specific coeffi cients on all the Taylor-rule

variables in the first propensity equation, equation (1) such that

βpi = β̄
p

+ epi (22)

βGDPi = β̄
GDP

+ eGDPi

where epi ∼ N
(
0, σ2p

)
and eGDPi ∼ N (0, σ2GDP ) .

However, the presence of such unobserved effects complicates evaluation of the resulting

likelihood function. Effectively all of these unobserved elements need to be integrated out

of the likelihood function. To this end we utilise simulated maximum likelihood techniques,

with Halton random. Essentially this entails random draws from the assumed normal dis-

tribution(s), which are then entered into equations (20) to (22) and the likelihood evaluated

for this particular set of draws. This is undertaken r = 1, . . . , R times and the resulting

simulated likelihood function is the average of these r ones over R. However, now due to the

dependence across observations arising from from the inclusion of these various unobserved

effects, the likelihood for an individual is the product of their sequences of individual likeli-

hoods over the Ti. time period that they are observed for. Thus the log-simulated likelihood,

lnL (θ)s , becomes

lnL (θ)s =

N∑
i=1

ln
1

R

R∑
r=1

Ti∏
t=0

1∑
j=−1

dijt [Pr (yit,r = j |X, r )] (23)

where now θadditionally includes the for variance parameters.
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3 Empirical Application

In the decade that followed the granting of operational independence to the Bank of England

in May 1997, three notable empirical regularities characterized the behavior of the policy rate.

First, even with the arrival of new economic information, interest rates were infrequently

adjusted. Second, when rates were moved, they were done so in discretized fixed intervals,

typically 25 basis point multiples ranging from −50 to +25 basis points. Third, when rates

were adjusted, they moved in a series of small unidirectional 25 basis point steps rather than

fewer relatively larger ones.

These stylized regularities also extend to individual votes on the policy rate cast by Bank

of England MPC members. In our application, we propose that to explain members’votes,

the confluence of these characteristics warrants a Tempered Ordered Probit (TOP) model.

Our application models members’interest-rate choices by simultaneously allowing for a tri-

chotomous ordered probit equation capturing a policy rule à la Taylor (1993), coupled with

a set of binary direction specific probit ‘inertia’ equations which gauge the propensity of

MPC members to change or not change the interest rate. Our estimation strategy explicitly

accounts for the preponderance of votes to leave the interest rate unchanged, accounting for

no-change decisions such as those arising from policy makers following a ‘wait and see’pol-

icy due to economic uncertainty. Repeated observations for each committee member allow

us to condition on the presence of any unobserved heterogeneity appertaining to individ-

ual members. This system of equations not only allows one to ‘inflate’the probability of a

no-change decision on interest rates, thereby allowing such observations to arise from two

distinct sources; significantly, it also 8 allows us to test whether members exhibit asymmetric

preferences towards economic uncertainty and the changability of interest rates. As men-

tioned, because the overwhelming majority of votes cast to change interest rates as 25 besis

points in magnitude, we assume a three choice scenario of: up (1) ; no-change (0) ; and down

(−1). Very little information is thus lost in the process of estimation.

Figure 2 is a graphical representation of the TOP model.9

8Unlike in (Brooks, Harris, and Spencer 2012), where the binary decision to change or not change the
policy rate was assumed to be identical irrespective of its direction (e.g. up or down), this paper relaxes this
assumption.

9For some of estimation sample, the nominal interest rate was at the effective zero-lower bound. In this
period, the choice-set faced by the MPC members is clearly restricted to one of no-change or up. For this
part of the sample, we restrict the choice-set to these alternatives.
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Table 1: MPC members June 1997 - December 2011a
Breakdown of votes

Member
First

Meeting
Last

Meeting
Votes
cast

Loosen No Change tighten

Mervyn King�,† June 1997 June 2013∗ 176 23 (13.1) 123 (69.9) 30 (17.0)

Eddie George� June 1997 May 2003 74 15 (20.3) 50 (67.6) 9 (12.1)

Howard Davies� June 1997 July 1997 2 0 (0) 2 (100) 0 (0)

Ian Plenderleith� June 1997 May 2002 61 13 (21.3) 39 (64.0) 9 (14.7)

David Clementi� Sept. 1997 Aug. 2002 61 14 (23.0) 38 (62.3) 9 (14.7)

John Vickers� June 1998 Sept. 2000 28 7 (25.0) 11 (39.3) 10 (35.7)

Charles Bean�,† Oct. 2000 July 2013∗ 136 22 (16.2) 106 (77.9) 8 (5.9)

Paul Tucker� June 2002 Feb 2014∗ 115 10 (8.7) 92 (80) 13 (11.3)

Andrew Large� Oct. 2002 Jan. 2006 40 1 (2.5) 27 (67.5) 12 (30.0)

Rachel Lomax� July 2003 June 2008 60 3 (5) 50 (83.3) 7 (11.7)

John Gieve� Feb. 2006 March 2009 37 10 (27) 21 (56.8) 6 (16.2)

Willem Buiter�� June 1997 May 2000 36 10 (27.8) 9 (25.0) 17 (47.2)

Charles Goodhart�� June 1997 May 2000 36 7 (19.5) 17 (47.2) 12 (33.3)

De Anne Julius��,† Sept. 1997 May 2001 45 18 (40.0) 24 (53.3) 3 (6.7)

Alan Budd�� Dec. 1997 May 1999 18 6 (33.
·
3) 6 (33.

·
3) 6 (33.

·
3)

Sushil Wadhwani�� June 1999 May 2002 37 16 (43.2) 18 (48.7) 3 (8.1)

Stephen Nickell��,† June 2000 May 2006 73 23 (31.5) 41 (56.2) 9 (12.3)

Christopher Allsopp�� June 2000 May 2003 37 18 (48.7) 19 (51.3) 0 (0)

Kate Barker��,† June 2001 May 2010 109 20 (18.3) 78 (71.6) 11 (10.1)

Marian Bell�� July 2002 May 2005 36 6 (16.7) 26 (72.2) 4 (11.1)

Richard Lambert�� June 2003 Mar. 2006 34 2 (5.9) 27 (79.4) 5 (14.7)

David Walton��,∗∗ July 2005 June 2006 12 2 (16.
·
6) 8 (66.

·
6) 2 (16.

·
6)

David Blanchflower�� June 2006 May 2009 36 19 (52.8) 16 (44.4) 1 (2.8)

Timothy Besley�� Sept. 2006 Aug 2009 36 8 (22.2) 18 (50) 10 (27.8)

Andrew Sentance�� Oct. 2006 May 2011 56 8 (14.3) 28 (50) 20 (35.7)

David Miles�� June 2009 May 2015∗ 31 0 (0) 31 (100) 0 (0)

Adam Posen�� Sep 2009 Aug 2012∗ 28 0 (0) 28 (100) 0 (0)

Martin Weale�� Aug 2010 July 2013∗ 17 0 (0) 10 (58.8) 7 (41.2)

Ben Broadbent�� June 2011 May 2014∗ 7 0 (0) 7 (100) 0 (0)
aNumbers in round brackets (·) show the percentage of votes cast in each category.
�/��Denotes internal/external member. ∗Continued to serve on the MPC after May 2007.
†Reappointed. ∗∗Died unexpectedly in June 2006.
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Figure 1: MPC members’votes modelled as a Tempered Ordered Probit (TOP) model
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Table 2: Estimation Results - All Modelsa
Equation Variables OP IOP
OP Equation πDev,t 0.195

(0.025)

∗∗∗ 0.590
(0.076)

∗∗∗

GAPt 0.055
(0.052)

0.150
(0.088)

µ0 −0.915
(0.041)

∗∗∗ −0.633
(0.074)

∗∗∗

µ1 1.103
(0.046)

∗∗∗ 1.014
(0.083)

∗∗∗

Splitting Equation Constant − 1.306
(0.464)

∗∗∗

TYPE − −0.546
(0.129)

∗∗∗

FTSE − 0.310
(0.065)

∗∗∗

πσ − 0.332
(0.067)

∗∗∗

GAPσ − −0.381
(0.078)

∗∗∗

IR − 0.904
(0.139)

∗∗∗

NRI+ − −0.312
(0.095)

∗∗∗

AIC 2344.4447 1928.2760
BIC 2365.7479 1986.8599
CAIC 2369.7479 1997.8599
LogL −1168.2224 −953.13800

UTOP PTOP
OP Equation πDev,t 0.596

(0.081)

∗∗∗ 0.905
(0.085)

∗∗∗

GAPt 0.361
(0.114)

∗∗∗ 0.157
(0.131)

µ0 −0.613
(0.107)

∗∗∗ −0.597
(0.153)

∗∗∗

µ1 0.606
(0.194)

∗∗∗ 0.661
(0.215)

∗∗∗

OP random parameters σ2π − 0.442
(0.058)

∗∗∗

σ2GAP − 0.288
(0.145)

∗∗∗

Splitting Equations Down Up Down Up
Constant 1.851

(1.435)
1.968
(0.604)

∗∗∗ 1.930
(1.198)

3.405
(0.910)

∗∗∗

TYPE −0.783
(0.189)

∗∗∗ −0.154
(0.131)

−1.053
(0.318)

∗∗∗ −0.586
(0.323)

∗∗∗

FTSE 1.245
(0.231)

∗∗∗ −0.192
(0.070)

∗∗∗ 1.450
(0.263)

∗∗∗ −0.317
(0.116)

∗∗∗

πσ −0.176
(0.144)

0.350
(0.066)

∗∗∗ −0.213
(0.149)

∗∗∗ 0.225
(0.094)

∗∗∗

GAPσ −0.125
(0.094)

−0.552
(0.090)

∗∗∗ −0.134
(0.053)

∗∗∗ −0.549
(0.074)

∗∗∗

IR 0.973
(0.306)

∗∗∗ 0.723
(0.138)

∗∗∗ 1.016
(0.198)

∗∗∗ 0.989
(0.218)

∗∗∗

NRI+ −0.6905
(0.1206)

∗∗∗ 0.398
(0.213)

∗ −0.653
(0.125)

∗∗∗ 0.385
(0.205)

∗∗∗

Random effects σ2down − 0.466
(0.062)

∗∗∗

σ2up − 1.162
(0.208)

∗∗∗

AIC 1860.0843 2536315.1
BIC 1955.9489 2536432.3
CAIC 1973.9489 2536454.3
LogL −912.04216 −1268135.6
aStandard errors in parentheses.
∗∗∗/∗∗/∗Denotes two-tailed significance at one / five / ten percent levels.17



Table 3: TOP Estimates: Marginal Effectsa

Overall marginal effects No Change Decomposition

Ease
No

Change Tighten
Down
Equation

Up
Equation

OP equation
πDev,t −0.1799

(0.01801)

∗∗∗ 0.1244
(0.02264)

∗∗∗ 0.05551
(0.01453)

∗∗∗

GAPt −0.03115
(0.02569)

∗∗∗ 0.02154
(0.01729)

∗∗∗ 0.009614
(0.009006)

∗∗∗

Splitting Equation
TYPE −0.2099

(0.07567)

∗∗∗ 0.2323
(0.07764)

∗∗∗ −0.02239
(0.01470)

∗∗∗ 0.2099
(0.07567)

∗∗∗ 0.02239
(0.01470)

∗∗∗

FTSE 0.2889
(0.04587)

∗∗∗ −0.2767
(0.04826)

∗∗∗ −0.01212
(0.006495)

∗∗∗ −0.2889
(0.04587)

∗∗∗ 0.01212
(0.00649)

∗∗∗

πσ −0.04241
(0.02718)

∗∗∗ 0.03382
(0.02848)

∗∗∗ 0.008583
(0.005901)

∗∗∗ 0.04241
(0.02718)

∗∗∗ −0.008583
(0.005901)

∗∗∗

GAPσ −0.02680
(0.01089)

∗∗∗ 0.04778
(0.01161)

∗∗∗ −0.02098
(0.008145)

∗∗∗ 0.02680
(0.01089)

∗∗∗ 0.02098
(0.008145)

∗∗∗

IR 0.2024
(0.04430)

∗∗∗ −0.2402
(0.04184)

∗∗∗ 0.03779
(0.01224)

∗∗∗ −0.2024
(0.04430)

∗∗∗ −0.03779
(0.01224)

∗∗∗

NRI+ −0.1301
(0.02379)

∗∗∗ 0.1154
(0.02297)

∗∗∗ 0.01471
(0.007528)

∗∗∗ 0.1301
(0.02380)

∗∗∗ −0.01471
(0.007527)

∗∗∗

aStandard errors in round (·) brackets;�/��Denotes internal/external member.
∗∗∗/∗∗/∗Denotes two-tailed significance at one / five / ten percent levels.
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Figure 2: MPC members’votes modelled as a Tempered Ordered Probit (TOP) model
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4 Conclusions

This paper empirically accounts for the stylized facts of voting on the policy rate associated

with members of the Bank of England Monetary Policy Committee. We achieve this through

combining a set of binary propensity to change equations or with an economic conditions

equation. Estimation is performed using a discrete-choice framework, such that a new statis-

tical model, the Tempered Ordered Probit, is proposed. It is likely that such a model may of

use in numerous applied settings where the researcher is faced with modeling ordered discrete

data with a disproportionately large occurrence of one of the middle outcomes. We have also

demonstrated that the TOP model can be construed as a specification test of the MIOP

model. Utilizing the panel nature of our data, unobserved effects were conditioned in each

of the implicit underlying structural equations. We find substantial evidence that while ex-

ternal and internal members of the MPC react differently to the economic environment (via

the economic conditions equation) the MPC is still characterized by individual voter hetero-

geneity and asymmetric attitudues towards for instance, economic uncertainty (via the set

of inertia equation). Put another way, our findings suggest that members are characterized

by quite different propensities to leave the interest rate unchanged, which in turn represents

asymmetric attitudes towards, for instance, economic uncertainty and the changeability of

interest rates.The inclusion of a set of inertia equations captures an important aspect of vot-

ing behavior which hereunto has not been modelled using discrete choice methods. Future

work will to apply the TOP model to other committees for which voting data is available,

such as Executive Board of the Swedish Riksbank and the United States FOMC.
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