RETHINKING THE PRODUCTIVITY OF JAPANESE AGRICULTURE IN 1930S

A PANEL DATA ANALYSIS USING THE THIRD PERIOD MAF SURVEY OF FARM HOUSEHOLD ECONOMY

TAKESHI MARU (HITOTSUBASHI UNIVERSITY),

MOTOI KUSADOKORO (TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY),

MASANORI TAKASHIMA (HITOTSUBASHI UNIVERSITY) 10/JUL/2014 - IPDC @ HITOTSUBASHI HALL, TOKYO

OUTLINE

- Introduction
- Literature review
- Introduction of our database
- Production function estimation
 - Static Models
 - without imposing CRS
 - with imposing CRS
 - Dynamic Model
- Conclusion

1. INTRODUCTION

- Japan experienced the Showa Depression in 1930 – in the midst of the interwar period.
- It had large impact on farm economy. In 1931, rice price and farm income per labor hour scored the lowest level of the interwar period (Fujie and Senda 2011, Sakane 2010).
- Also, environments surrounding agricultural production changed in the interwar period.

1. INTRODUCTION

- Landlord-tenant system collapsed and tenancy disputes occurred (Kojima 2008, Sakane 2011).
- Number of Landed-tenant farmers with medium size of land increased, and the size of managed land converged to about 2 ha (Kurihara 1948).

Need for measuring productivity of inputs.

2. LITERATURE REVIEW

Table 1. Production elasticity of previous studies

	Akino and H Hayami 19 19	layami 1974, 973, (Akino 972)	Shintani 1983	Minami 1981		
	1930-1935	(1930-1935)	1934-1936	1931-1935	1936-1940	
Land	0.15	0.38	0.4	0.63	0.57	
Labor	0.4	0.31	0.45	0.21	0.29	
Capital	0.15	0.06	0.15	0.15	0.13	
Misc. goods	0.3	0.26				

Note:

Akino and Hayami 1974, Hayami 1973, and Akino 1972 used prefectural level data. Shintani 1983 used the same database as ours, however the use of the data was limited. Shintani did not impose CRS at the time of estimation. Minami 1981 used prefectural data.

2. LITERATURE REVIEW

- Relatively large variations in estimates.
- Agriculture might adjust to adopt laborintensive and -responsive production technology (Shintani 1983).
- Industries already needed a certain amount of labor before the Depression. Fertilizer-using technology was also important for production in the interwar period (Hayami 1973).
- The variations might also be caused by data availability and difference in specifications.

2. LITERATURE REVIEW

- In addition to the variations in estimates, these studies have one feature: assumption of constant returns to scale (CRS)
- Reasons are limitation in data availability and computational circumstance.
- In recent years, Hitotsubashi University has been constructing panel database of farm household surveys in this period. This study provides experimental research on agricultural production function.

3. THE MAF SFHE DATABASE

In Japan, data on farm household economy has been collected since 1890s.

- The Mankichi Saito survey, 1909–1920
- The Teikoku Nokai survey, 1913–1915
- The MAF survey (first period), 1921–1923
- The MAF survey (second period), 1924–1930
- The MAF survey (third period), 1931–1941
- The MAF survey (fourth period), 1942–1948

(MAF: Ministry of Agriculture and Forestry, SFHE: Survey of Farm Household Economy)

 \odot

3. THE MAF SFHE DATABASE

Our Data (the third period MAF survey)

- 16 prefectures and 11 years.
- 1079 observations (224 households), with basically six or nine households in each prefecture per year.

Figure 1. Locations of prefectures used in our data (Orange)

3. THE MAF SFHE DATABASE

Our Data (the third period MAF survey)

- NOT random sampling and NOT balanced.
- Since bookkeeping requires literacy, selected farmers tended to manage relatively larger areas of land than average.
- However, upward bias is smaller than other surveys (Senda and Kusadokoro 2009)

- Estimation without assumption of CRS
- Standard Cobb-Douglas production function to compare results with previous studies.
- Estimated models
 - Pooled OLS
 - Random effect model (RE)
 - Fixed effect model (FE)
- No assumption of CRS

•
$$y_{it} = \beta_l l_{it} + \beta_h h_{it} + \beta_c c_{it} + \beta_g g_{it} + u_{it}$$
 (1)

Variables y_{it} : log of Y_{it} l_{it} : log of L_{it} h_{it} : log of H_{it} c_{it} : log of C_{it} g_{it} : log of G_{it} u_{it} : error term Table 2. Descriptive statistics

Description (unit)	Mean	S.D.				
Value of farm output Y_{it} (1,000JPY)	1.167	0.563				
L_{it} Cultivated land (cho)	1.311	0.576				
H_{it} Labor hour (1,000 hour)	5.271	2.191				
Value of capital C_{it} (1,000JPY)	1.043	0.853				
G_{it} Value of miscellaneous goods (1,000JPY)	0.229	0.216				
Source: The third period MAF survey.						

Table 3. Estimation results of static models

	OLS		RE		FE	
Land (β_l)	0.401	***	0.299	***	0.118	***
	(0.020)		(0.027)		(0.042)	
Labor (β_h)	0.221	***	0.250	***	0.239	***
	(0.022)		(0.023)		(0.027)	
Capital (β_c)	0.051	***	0.098	***	0.097	***
	(0.013)		(0.019)		(0.032)	
Misc. goods (β_{α})	0.282	***	0.261	***	0.234	***
9	(0.012)		(0.014)		(0.017)	
Adj. R-squared	0.777					
Breusch Pagan test			774.85			
(p-value)			0.000			
F-test					6.68	
(p-value)					0.000	
Hausman test			20.48			
(p-value)			0.116			
Elasticity of scale	0.955		0.908	0.908		
CRS (p-value)	0.012		0.00	1	0.000	

Note: ***, **, and * indicate significance at 1%, 5%, and 10% level respectively.

- Each value scores the lowest level of previous studies, and CRS is rejected in all models.
- In FE, β_l is low.
 Just absorbed by fixed effect (caused by conversion of land size to 2ha)?

Source: Kusadokoro, Maru and Takashima 2012

- Estimation with imposing CRS
- Regress output per land (Y_{it} / L_{it}) to inputs per land (H_{it}/L_{it}, C_{it}/L_{it}, G_{it}/L_{it}).

•
$$y_{it} - l_{it} = {\beta'}_h (h_{it} - l_{it}) + {\beta'}_c (c_{it} - l_{it}) + {\beta'}_g (g_{it} - l_{it}) + u'_{it}$$

• After estimation, elasticity value of land (β'_l) is calculated.

Table 4. Estimation results of static models (CRS)

	OLS		RE		FE		
Land (β'_l)	0.417		0.344		0.276		
Labor (β'_{h})	0.246	***	0.278	***	0.289	***	
	(0.020)		(0.022)		(0.026)		
Capital (β'_{c})	0.058	***	0.115	***	0.184	***	
	(0.013)		(0.018)		(0.029)		
Misc. goods (β'_{α})	0.279	***	0.263	***	0.251	***	
- 9	(0.012)		(0.014)		(0.017)		
Adj. R-squared	0.577						
Breusch Pagan test			790.36				
(p-value)			0.000				
F-test					6.33		
(p-value)					0.000		
Hausman test			45.78				
(p-value)			0.000				

Note: ***, **, and * indicate significance at 1%, 5%, and 10% level respectively. β_l is calculated after the estimation.

0.282

Misc. goods

Table 5. Result comparison of static models

	Not-ii	mposing CF	RS	Imposing CRS			
	OLS	RE	FE	OLS	RE	FE	
and	0.401	0.299	0.118	0.417	0.344	0.276	
abor	0.221	0.250	0.239	0.246	0.278	0.289	
Capital	0.051	0.098	0.097	0.058	0.115	0.184	

0.234

0.279

0.263

0.261

- Without assumption of CRS
 RE is adopted and CRS is rejected.
 β_l is low in FE.
- With assumption of CRS
 Elasticity values are boosted (especially in FE).

 Each elasticity value shows relatively large difference among models.

Dynamic model (Blundell and Bond 2000)

Methodology

System GMM (Blundell and Bond 2000)

• Error term in equation (1) is specified as

$$\begin{aligned} u_{it} &= \gamma_t + (\eta_i + v_{it} + m_{it}), \\ v_{it} &= \rho v_{i,t-1} + e_{it}, \ |\rho| < 1, \ e_{it}, m_{it} \sim MA(0) \end{aligned}$$

- γ_t : year-specific intercept
- η_i : unobserved farm-specific effect
- v_{it} : possibly autoregressive shock
- m_{it} : serially uncorrelated measurement error
- e_{it} : productivity shock

 To estimate the parameters of the restricted model (1), a dynamic (common factor) representation of (1) is adopted as

$$\begin{split} y_{it} &= \beta_l l_{it} - \rho \beta_l l_{i,t-1} + \beta_h h_{it} - \rho \beta_h h_{i,t-1} \\ &+ \beta_c c_{it} - \rho \beta_c c_{i,t-1} + \beta_g g_{it} - \rho \beta_g g_{i,t-1} \\ &+ \rho y_{it-1} + (\gamma_t - \rho \gamma_{t-1}) \\ &+ \{\eta_i (1 - \rho) + e_{it} + m_{it} - \rho m_{it-1} \} \end{split}$$

- Or, an unrestricted model expression $y_{it} = \pi_1 l_{it} + \pi_2 l_{i,t-1} + \pi_3 h_{it} + \pi_4 h_{i,t-1} + \pi_5 c_{it} + \pi_6 c_{i,t-1} + \pi_7 g_{it} + \pi_8 g_{i,t-1} + \pi_9 y_{it-1} + \gamma_t^* + (\eta_i^* + w_{it})$
- Common factor restrictions

$$\pi_2 = -\pi_1 \pi_9, \ \pi_4 = -\pi_3 \pi_9, \ \pi_6 = -\pi_5 \pi_9, \ \pi_8 = -\pi_7 \pi_9$$

•
$$\gamma_t^* = \gamma_t - \rho \gamma_{t-1}, \eta_i^* = \eta_i (1 - \rho),$$

 $w_{it} = \begin{cases} e_{it} \sim MA(0) \\ e_{it} + m_{it} - \rho m_{it-1} \sim MA(1) \end{cases}$

Table 7. Result of dynamic model

Unrestricted Model	Lä	ag: t-2	Lag: t-3		
Land (π_1)	0.104	(0.117)	0.216	(0.135)	
- Lagged (π_2)	0.006	(0.065)	0.107	(0.148)	
Labor (π_3)	0.280	(0.123) **	0.137	(0.114)	
- Lagged (π_4)	0.083	(0.108)	-0.023	(0.118)	
Capital (π_5)	0.059	(0.118)	0.126	(0.128)	
- Lagged (π_6)	-0.139	(0.120)	-0.187	(0.129)	
Misc. goods (π_7)	0.224	(0.065) ***	0.264	(0.070) ***	
- Lagged (π_8)	-0.020	(0.052)	-0.124	(0.067) *	
Lagged Output (π_9)	0.237	(0.080) ***	0.333	(0.124) ***	
AR (1) (p-value)		0.000		0.000	
AR (2) (p-value)		0.752		0.160	
Hansen OID (p-value)		0.348		0.357	

Note: ***, **, and * indicate significance at 1%, 5%, and 10% level respectively.

Table 7. Result of dynamic model (continued)

La	ag: t-2	Lag: t-3			
0.101	(0.111)	0.261	(0.103) **		
0.362	(0.094) ***	0.154	(0.093) *		
0.006	(0.078)	0.058	(0.088)		
0.229	(0.061) ***	0.242	(0.056) ***		
0.364	(0.057) ***	0.476	(0.078) ***		
	0.205		0.660		
	0.009		0.003		
	La 0.101 0.362 0.006 0.229 0.364	Lag: t-2 0.101 (0.111) 0.362 (0.094) *** 0.006 (0.078) 0.229 (0.061) *** 0.364 (0.057) *** 0.205 0.205	Lag: t-2 Lag 0.101 (0.111) 0.261 0.362 (0.094) *** 0.154 0.006 (0.078) 0.058 0.229 (0.061) *** 0.242 0.364 (0.057) *** 0.476 0.205 0.009		

Note: ***, **, and * indicate significance at 1%, 5%, and 10% level respectively.

Comfac is a minimum distance test for common factor restrictions.

CRS is a test for Constant Returns to Scale.

Table 8. Result comparison with previous studies

	S <u>y</u> (I	Sys GMM (Lag: t-3)		Akino and Hayami 1974, Hayami 1973, (Akino 1972)		Shintani 1983 Minam		ni 1981	
		Conv CRS	Conv CRS	1930- 1935	(1930- 1935)	1934- 1936	1931- 1935	1936- 1940	
Land	0.26	0.36	0.55	0.15	0.38	0.40	0.63	0.57	
Labor	0.15	0.22	0.33	0.40	0.31	0.45	0.21	0.29	
Capital	0.06	0.08	0.12	0.15	0.06	0.15	0.15	0.13	
Misc. goods	0.24	0.34		0.30	0.26				

Note: Values in 'Conv CRS' means ratio of elasticity value of each input to total.

- In unrestricted model, both t-2 and t-3 specifications satisfy AR test and Hansen OID test.
- In t-3, β_l recovers to around 0.26 (get close to RE) and ratio of each elasticity value to total is similar to previous studies.
- However, CRS test is rejected again.

6. CONCLUSION

Static models

- RE is adopted.
 In FE, value of land elasticity is lower than OLS and RE, and aggregated value of elasticity decreases to under 0.7.
- 2) CRS is rejected. Imposing CRS ununiformly increases coefficients.

6. CONCLUSION

Dynamic model

- Value of land elasticity recovers.
 Ratio of each elasticity value to overall is at an average of previous studies.
- 2) However, CRS is rejected again.

Decreasing returns to scale can be considered as a supporting evidence for the convergence to medium-scale farmers.

6. CONCLUSION

Remaining issues

- 1) Specification
- Functional forms
- Number of instruments
- 2) Sampling
- Not balanced, with upward bias
- On-going database

REFERENCES

Akino, M. (1972) "Nogyo Seisan Kansuu no Keisoku [Estimation of Agricultural Production Function] (in Japanese)," Quaterly Journal of Agricultural Economics, Vol. 26, No. 2, pp. 163–200.

Akino, M and Y. Hayami (1974) "Sources of Agricultural Growth in Japan," The Quarterly Journal of Economics, Vol. 88, No. 3, pp. 454—479.

Blundell, R. and S. Bond (2000) "GMM Estimation with Persistent Panel Data: An Application to Production Functions," Econometric Reviews, Vol. 19, No. 3, pp. 321—340.

Fujie, T. and T. Senda (2011) "How do Farm Households Cope with Aggregate Shocks? Evidence from the Great Depression in Prewar Japan (in Japanese)," Journal of Rural Economics, Vol. 83, pp. 15—27.

Hayami, Y. (1973) Nihon Nogyo no Seicho Katei [Growth Process of Japanese Agriculture] (in Japanese), Sobun-sha: Tokyo.

Kojima, Y. (2008) "The Process of acceptance into the agricultural insurance during the interwar period in Japan: The case of Noka-Hoken-Kumiai in Saitama prefecture (in Japanese)," Journal of Agricultural History, Vol. 42, pp. 103—111.

Kurihara, H. (1948) Nihon Nogyo no Kiso Kozo [Basic Structure of Japanese Agriculture] (in Japanese), Chuo Koron-sha: Tokyo

REFERENCES

Kusadokoro, M., T. Maru, and M. Takashima (2012) "Asset Accumulation Behavior of Rural Households in the Reconstruction Period following the Showa Depression: A Panel Data Analysis Using the Third Period MAF Survey of Farm Household Economy (in Japanese)," Global COE Hi-Stat Discussion Paper Series, No. 231.

Minami, R. (1981) "Long-term Changes in the Output Elasticity of Labor in Agriculture: Estimation and Analysis (in Japanese)," The Economic Review, Vol. 32, No. 4, pp. 358—366.

Sakane, Y. (2010) "VI Kindai (Modern Age)," in Kimura, S. ed., Nihon Nogyo Shi [History of Japanese Agriculture] (in Japanese), Yoshikawa Kobun-kan: Tokyo, pp. 256—337.

Sakane, Y. (2011) Nihon Dento Syakai to Keizai Hatten: le to Mura [Japanese Traditional Social Community and Economic Development: Family and Village] (in Japanese), Nosangyo-son Bunka Kyokai: Tokyo.

Senda, T. and M. Kusadokoro (2009) "Senzenki Noka Keizai Chosa no Hyohon Renzokusei to Noka Keizai Kozo: Dai 3 Ki kara Dai 4 Ki ni Okeru Kaisei no Eikyo to Teikoku Nokai Chosa tono Hikaku ni Chumoku shite [Continuity of Samples and Structure of Farm Household Economy on the Survey of Farm Household Economy in Pre-war Japan] (in Japanese)," Tokei Shiryo Series, Vol. 63, pp. 83—122.

Shintani, M. (1983) Nihon Nogyo no Seisan Kansu Bunseki [Production Function Analysis of Japanese Agriculture] (in Japanese), Taimei-do: Tokyo.