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Abstract: Detecting and modelling structural changes in time series models have attracted great

attention while relatively little effort has been paid to the test of structural changes in panel data models

despite their increasing importance in economics and finance. In this paper, we propose a new approach to

testing structural changes in panel data models with cross-sectional dependence. The idea is to compare

the fitted values of a time-varying parameter panel data model and a constant parameter panel data

model, where the time-varying parameters are estimated by a local linear dummy variable regression and

the constant parameters are estimated by a least squared dummy variable estimation. The test does not

require any prior information about the alternatives of structural changes. It has an asymptotic N(0,1)

distribution under the null hypothesis of parameter constancy and is consistent against a vast class of

smooth structural changes as well as abrupt structural breaks with possibly unknown break points. To

further gauge possible sources of structural changes, a diagnostic test is supplemented to check potential

time-varying interaction while allowing for a common trend. Simulation studies show that the tests

provide reliable inference in finite samples.
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1. INTRODUCTION

The last fifty years have seen the development of a large and still growing literature on the modelling

and testing of structural changes. In time series analysis, a classical econometric test for structural

changes is Chow’s (1960) test, which checks whether there exists a structural break at a known time

point. A great deal of effort has been made in this literature, allowing multiple breaks and/or unknown

time points (e.g., Andrews 1993; Andrews and Ploberger 1994; Bai 1996, 1999; Bai and Perron 1998,

Elliott and Müller 2006, Perron 2006, Chen and Hong 2012, as well as references therein).

Relatively little effort has been paid to the testing of structural changes in panel data models despite

the fact that panel data models have become increasingly popular among both theoretical and applied

researchers (see, e.g., Baltagi 2001, Arellano 2003, Hsiao 2003, 2007). Modelling and testing structural

changes are particularly relevant for panel data over a long time horizon since the underlying economic

mechanism is likely to be disturbed by various factors such as preference changes, institutional changes

and technological progress. The world economy is an increasingly globalized economy and thus policy

changes and technological development are no longer within a country’s borders. Global environmental

issues have also gained enormous attention in recent years. On the other hand, model stability is crucial

for statistical inference, forecasts, and sensible policy implications drawn from the model. Detecting

structural changes in panel data models provides a way to better understand controversial issues such as

uneven cross-country growth and global climate changes.

Some tests have been proposed to detect structural changes in panel data models in the literature.

For example, De Wachter and Tzavalis (2012) propose a likelihood ratio test for a single structural break

at an unknown break point in linear dynamic panel data models. Horváth and Hušková (2012) propose

a CUSUM-based test for the means of panel data models. They focus on a single break although their

test could be extended for multiple breaks. Feng, Kao and Lazarová (2009) study the estimation of a

single change point in panel models via a Wald-type statistic and Baltagi, Kao and Liu (2012) extend it

to allow for nonstationary regressors and innovations.

Almost all existing change-point tests for panel data models are constructed for abrupt changes. From

a practical point of view, slowly-changing breaks may be more realistic. Various economic events, such

as liberalization of emerging markets, integration of world equity markets, changes in exchange rate or

interest rate regimes, may lead to structural changes in panel data models. The changes induced by policy

switch, preference changes and technological progress usually exhibit evolutionary changes in the long

term. Despite the importance of smooth structural changes in panel data models, to our knowledge, there

is only one test designed explicitly for smooth structural changes in the literature. González, Teräsvirta

and van Dijk (2005) develop a Lagrange Multiplier (LM) test against a time-varying panel smooth

transition regression model. While the test might have best power against the assumed alternative,

usually no prior information is available on the form of structural changes for practitioners. Therefore, it

is desirable to develop consistent tests that have good power against all-round alternatives of structural

changes.

Recently, a time-varying parameter panel data model has appeared as a novel tool to identify the trend
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function and capture the evolutionary behavior of economic relationship. Robinson (2012) introduces

a nonparametric trending regression for panel data with cross-sectional dependence and considers a

simple nonparametric trend estimate. Chen, Gao and Li (2012) extend Robinson’s (2012) work to the

semiparametric partially linear panel data model where all individuals share a common trend. Atak,

Linton and Xiao (2011) develop a semiparametric panel model to explain the trend in UK regional

temperatures and other weather outcomes over the last century. The trend is allowed to evolve in a

continuous manner and a nonparametric profile likelihood estimation is developed. Li, Chen and Gao

(2011) generalize Cai’s (2007) time-varying coefficient model to the panel data framework. One advantage

of the evolutionary time-varying parameter panel data model is that little restriction is imposed on the

functional forms of coefficients, except for the regularity condition that they evolve over time smoothly.

Motivated by its flexibility, we will use this model as the alternative to test smooth structural changes

for a panel data model with fixed effects.

We develop a Wald-type test for smooth structural changes as well as sudden structural breaks. Such

a test will complement the existing tests for sudden changes in the literature and avoid the difficulty

associated with whether there are multiple breaks and/or whether the time points of changes are un-

known. We estimate the slowly-changing parameters by local linear dummy variable (LLDV) regression,

and compare them to least squares dummy variable (LSDV) estimators. As shown in Li et al. (2011),

the LLDV approach removes fixed effects by deducting a smoothed version of cross-time average from

each individual and hence is more efficient than the averaged LL estimation, which eliminates fixed ef-

fects by taking cross-sectional averages. Moreover, it ideally suits the present problem at hand. The

proposed Wald-type test can be viewed as a generalization of Hausman’s (1978) test from the parametric

framework to the nonparametric framework. Compared with the existing tests for structural breaks in

panel data models in the literature, the proposed approach has a number of appealing features.

First, the proposed test is consistent against a large class of smooth time-varying parameter alterna-

tives. It is also consistent against multiple sudden structural breaks in panel data models with known

or unknown break points. Second, no prior information on a structural change alternative is needed. In

particular, we do not need to know whether the structural changes are smooth or abrupt, and in the

cases of abrupt structural breaks, we do not need to know the dates or the number of breaks. Third,

unlike most tests for structural breaks in the literature, which often have nonstandard asymptotic distri-

butions, the proposed test has a null asymptotic N(0,1) distribution. The only inputs required are LLDV

and LSDV estimators. Any standard econometric software can carry out computational implementation

easily. Fourth, a diagnostic test is supplemented to check possible sources of structural changes. Specif-

ically, the diagnostic test can detect time-varying interactive effect between the dependent variable and

regressors while allowing for a common trend. Fifth, the LLDV estimator can capture the local behavior

of time-varying parameters. Because only local information is employed in estimating parameters at

each time point, the proposed test has symmetric power against structural breaks that occur either in

the first or second half of the sample period. This is different from the CUSUM-based tests that may

have asymmetric power against structural breaks that have same sizes but occur at different time points.

No trimming procedure is needed for the proposed test and hence the proposed test is expected to have
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nontrivial powers for structural changes near the boundary regions of time, provided that the sample size

is large enough. Moreover, the LLDV estimator can provide some insight into the economic relationship.

In Section 2, we introduce the time-varying panel framework and hypotheses of interest. Section 3

develops a Wald-type test, derives its asymptotic null distribution and investigates its asymptotic power

property. In Section 4, a diagnostic test is proposed to check time-varying interactive effect while allowing

for a common trend. Section 5 conducts a simulation study to examine the finite sample performance of

the tests. Section 6 provides concluding remarks. All mathematical proofs are collected in the appendix.

Throughout the paper, C denotes a generic bounded constant.

2. TIME-VARYING PANEL DATA MODEL AND HYPOTHESES OF INTEREST

Consider a nonparametric time-varying coefficient panel data model:

Yit = Xᵀ
itβt + αi + λt + εit, i = 1, ..., N, t = 1, ..., T, (1)

where Yit is a scalar, Xit is a d× 1 vector of explanatory variables, βt and λt are d× 1 and 1× 1 possibly

time-varying parameter vector and scalar respectively, αi represents an unobserved individual-specific

effect and εit is weakly serially dependent and cross-sectionally dependent. We allow αi to be correlated

with Xit through some unknown structure and hence both fixed effects and random effects are covered.

For the purpose of identification, we assume that

N∑
i=1

αi = 0.

A keen interest in econometrics is whether the parameters of (1) βt and λt are changing over time.

The null hypothesis is that

H0 : βt = β and λt = λ for all t.

The alternative hypothesis HA is that H0 is false. Under the null, we have

Yit = Xᵀ
itβ + αi + λ+ εit, i = 1, ..., N, t = 1, ..., T,

where λ can be viewed as a ”mean intercept” (Hsiao, 2003). We estimate β and λ via the LSDV

estimation:

β̂ =

[
N∑
i=1

T∑
t=1

(Xit − X̄i)(Xit − X̄i)
ᵀ

]−1 N∑
i=1

T∑
t=1

(Xit − X̄i)(Yit − Ȳi),

λ̂ = Ȳ − X̄ᵀβ̂,

where X̄i = T−1
∑T

t=1Xit, Ȳi = T−1
∑T

t=1 Yit, X̄ = (NT )−1
∑N

i=1

∑T
t=1Xit and Ȳ = (NT )−1

∑N
i=1

∑T
t=1 Yit.

The consistency and asymptotic normality of β̂ and λ̂ are established in Section 3.
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Under the alternative HA, βt and λt are time-varying. Examples include single break and multiple

break models considered in Feng et al. (2009) and Baltagi et al. (2012), González et al.’s (2005) time-

varying panel smooth transition regression model. Tests for parametric structural change alternatives

such as González et al.’s (2005) LM test have best power against the assumed alternative. Unfortunately,

usually no prior information about the structural change alternative is available in practice. To cover a

wide range of alternatives, we consider the following smooth time-varying parameter panel data model:

Yit = Xᵀ
itβ(t/T ) + αi + λ(t/T ) + εit, i = 1, ..., N, t = 1, ..., T, (2)

where β : [0, 1] → Rd and λ : [0, 1] → R are unknown smooth functions except for a finite number of

points on [0, 1]. Discontinuities of β(·) and λ(·) at a finite number of points on [0, 1] allow sudden breaks.

This model is studied in Li et al. (2011) and Chen et al. (2012). It covers Robinson’s (2012) panel

trending regression as a special case. The specification that parameters β(·) and λ(·) are some functions

of ratio t/T rather than time t only is a common scaling scheme in the literature (see, e.g., Phillips

and Hansen 1990, Robinson 1991 and Cai 2007). The reason for this specification is that nonparametric

estimators for βt and λt will not be consistent unless the amount of data on which they depend increases,

and merely increasing the sample size will not necessarily improve estimation of βt and λt at some fixed

point t, even if some smoothness conditions are imposed.

We will assume that β(·) and λ(·) are continuous except for a finite number of points on [0, 1].

Therefore, single structural break or multiple breaks with known or unknown break points are special

cases of model (2). For example, suppose β (u) = β0 and λ(u) = λ0 if u ≤ u0, and β (u) = β1 and

λ(u) = λ1 otherwise. Then we obtain a single break panel data model.

3. NONPARAMETRIC TESTING FOR STRUCTURAL CHANGES

We shall propose a consistent test for smooth structural changes in panel data models. Under the

alternative, we have a time-varying parameter panel data model and we follow Li et al. (2011) to estimate

βt and λt via an LLDV regression. The idea of the LLDV regression is summarized below.

(i) Let θ(τ) = [λ(τ) βᵀ(τ)]ᵀ. For each given τ ∈ (0, 1), we minimize

{
Y −M (τ)

[
θᵀ (τ) , h

(
θ′ (τ)

)ᵀ]ᵀ −Dα}ᵀK (τ)
{
Y −M (τ)

[
θᵀ (τ) , h

(
θ′ (τ)

)ᵀ]ᵀ −Dα} (3)

with respect to [θᵀ (τ) , h (θ′ (τ))ᵀ] and α, where θ′ (τ) = dθ (τ) /dτ, Y = (Y ᵀ
1 , ..., Y

ᵀ
N )ᵀ, Yi = (Yi1, ..., YiT )ᵀ,

α = (α2, ..., αN )ᵀ, Mᵀ (τ) = [Mᵀ
1 (τ) , ...,Mᵀ

N (τ)] with

Mi(τ) =


1 Xᵀ

i1
1−τT
Th

1−τT
Th Xᵀ

i1
...

...
...

...

1 Xᵀ
iT

T−τT
Th

T−τT
Th Xᵀ

iT

 ,
K (τ) = IN ⊗ K (τ) , D = (−1N−1 IN−1)

ᵀ ⊗ 1T , K (τ) = diag
[
k
(
1−τT
Th

)
, ..., k

(
T−τT
Th

)]
, Id is a d × d

identity matrix and 1d is a d×1 vector of ones. The kernel k(·) : [−1, 1]→ R+ is a prespecified symmetric
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probability density and h ≡ h(NT ) is a bandwidth. Examples of k(·) include the uniform, Epanechnikov

and quartic kernels.

The first order condition of (3) with respect to α yields:

α̂ = [DᵀK (τ)D]−1DᵀK (τ)
{
Y −M (τ)

[
θᵀ (τ) , h

(
θ′ (τ)

)ᵀ]ᵀ}
. (4)

(ii) Plugging (4) into (3), we get the concentrated weighted least squares:

{
Y −M (τ)

[
θᵀ (τ) , h

(
θ′ (τ)

)ᵀ]ᵀ}ᵀW (τ)
{
Y −M (τ)

[
θᵀ (τ) , h

(
θ′ (τ)

)ᵀ]ᵀ}
, (5)

where W (τ) = W ᵀ (τ)K (τ)W (τ) and W (τ) = INT − D[DᵀK (τ)D]−1DᵀK (τ) . Minimizing (5) with

respect to [θᵀ (τ) , h (θ′ (τ))ᵀ], we obtain the LLDV estimator of θ (τ) :

θ̂(τ) = [Id+1 0d+1] [Mᵀ(τ)W (τ)M(τ)]−1Mᵀ (τ)W (τ)Y ,

where 0d+1 is a (d+1)×(d+1) null matrix. Li et al. (2011) assume that (i) (Xt, εt) is a sequence of inde-

pendent and identically distributed (i.i.d.) variables, where Xt = (X1t, ..., XNt)
ᵀ and εt = (ε1t, ..., εNt)

ᵀ;

(ii) the error process {εit} is independent of {Xit}; (iii) neither {εit} nor {Xit} is allowed to have cross-

sectional dependence. We relax their assumptions and derive the asymptotic property of θ̂ (τ) under the

following set of assumptions.

Assumption A.1: (i) (Xt, εt) is an N×(d + 1 ) β-mixing random matrix with mixing coefficients β(j) =

supsE[supA∈G∞s+j |P (A|Gs−∞)− P (A)|], where Gts is the σ-field generated by {(Xk, εk) : k = s, . . . , t} and

{β(j)} satisfies β(j) ≤ Cβρ
j for 0 < Cβ < ∞ and 0 < ρ < 1; (ii) For any t, we have E(Xit) = µX( tT ),

where µX(τ) is continuously differentiable up to the second order on [0, 1].

Assumption A.2: (i) {εt} is a martingale difference sequence (m.d.s.) such that E (εt|Ft−1) = 0, where

Ft−1 is the σ-field generated by {Xt, Xt−1, ..., εt−1, εt−2, ...} ; (ii) suptE|εit|4(1+η) < ∞ for some η > 0;

(iii) As N →∞,

sup
t
E

∣∣∣∣∣
N∑
i=1

εit

∣∣∣∣∣
δ

= O(N δ/2), for some δ ∈ (2, 4].

Assumption A.3: (i) The d× d matrix ΣX( tT ) = E{[Xit−µX( tT )][Xit−µX( tT )]ᵀ} is positive definite.

In addition, ΣX(τ) is continuously differentiable with respect to τ ∈ [0, 1]; (ii) suptE(‖Xit‖4(1+η)) <∞;

(iii) As N → ∞, suptE‖
∑N

i=1[Xit − µX( tT )]‖δ = O(N δ/2); (iv) As N → ∞, suptE‖
∑N

i=1{[Xit −
µX( tT )][Xit − µX( tT )]ᵀ − ΣX( tT )}‖δ = O(N δ/2).

Assumption A.4: There exist a d× d positive definite matrix ΣXε(
t
T ) and 0 < σ2ε(

t
T ) < ∞ such that
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as N →∞,

1

N

N∑
i=1

N∑
j=1

E

{[
Xit − µX

(
t

T

)][
Xjt − µX

(
t

T

)]ᵀ}
σε,t(i, j)→ ΣXε

(
t

T

)
,

1

N

N∑
i=1

N∑
j=1

σε,t(i, j)→ σ2ε

(
t

T

)
,

sup
t

1

N

N∑
i=1

N∑
j=1

E[(εitεjt)
2(1+η)|Ft−1]

1
2(1+η) = O(1),

sup
t

1

N

N∑
i=1

N∑
j=1

(E‖XitX
ᵀ
jt‖

2(1+η))
1

2(1+η) = O(1),

where σε,t(i, j) = E(εitεjt|Ft−1), σ2ε(τ) and ΣXε(τ) are continuously differentiable on [0, 1].

Assumption A.5: Except for a finite number of points on [0, 1] , (i) β(τ) has continuous derivatives up

to the second order; (ii) λ(τ) has continuous derivatives up to the second order.

Assumption A.6: k : [−1, 1] → R+ is a symmetric and Lipschitz continuous probability density func-

tion.

Assumption A.7: As N → ∞ and T → ∞, (i) the bandwidth h satisfies that h → 0, Th →
∞,

√
NTh

log(NT ) → ∞ and T 1− 2
δ h

log(NT ) → ∞; (ii) log(NT )NT 1/2−2/δ → ∞ and Th2 → ∞; (iii) N2/T δ →
0 and NTh6 → 0.

The β-mixing condition in Assumption A.1 imposes a restriction on the temporal dependence in

(Xt, εt). A similar condition has been used in Chen and Hong (2012), Juhl and Xiao (2013) and Kristensen

(2012) in a time series context. Unlike Li et al. (2011), we allow for dependence between Xit and εit

and we relax their assumptions on cross-sectional independence and stationarity. Therefore, we include

the important class of dynamic panel data models in our framework. Assumption A.2 allows panel data

models with potential conditional heteroscedasticity of unknown form. Assumption A.2 requires the

linear panel data model to be correctly specified under H0 and the violation of correct model specification

may lead to spurious rejection of model stability. Assumptions A.3 and A.4 impose moment conditions

on {Xit} and {εit}. Similar to Chen, et al. (2012), we allow for cross-sectional dependence in {εit} and

the degree of cross-sectional dependence is controlled by the moment conditions in Assumption A.4.

Assumption A.5 is to guarantee that the asymptotic bias and variance of the LLDV are well-defined.

Assumption A.6 implies
∫ 1
−1 k(u)du = 1,

∫ 1
−1 uk(u)du = 0 and

∫ 1
−1 u

2k(u)du < ∞. All examples noted

in Section 2 satisfy this assumption. Assumption A.7 imposes mild conditions on the bandwidth h and

sample sizes N and T. Note that we allow N/T → C for 0 ≤ C ≤ ∞ as (N,T ) → ∞ and it covers the

optimal rate h ∝ (NT )−
1
5 of the nonparametric estimation for θ(τ).1

We now state the asymptotic property of θ̂(τ).

Proposition 1. Suppose Assumptions A.1, A.2(i)-(ii), A.3-A.7(i) hold . Then for any τ ∈ (0, 1), where

1Our derivation can still go through with a fixed N. But as a tradeoff, we need to impose a stronger assumption on T.
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τ is a continuity point for the β (·) and λ(·), as N →∞ and T →∞,

√
NTh[θ̂ (τ)− θ (τ)−B (τ)]

d→ N (0̄d+1,Σ(τ)) ,

where 0̄d+1 is a (d+ 1)-dimensional null vector,

B (τ) =
h2θ

′′
(τ)
∫ 1
−1 u

2k (u) du

2
+ oP (h2),

Σ(τ) = ν0

[
σ2ε(τ) + µᵀX(τ)Σ−1X (τ)ΣXε(τ)Σ−1X (τ)µX(τ) −µᵀX(τ)Σ−1X (τ)ΣXε(τ)Σ−1X (τ)

−Σ−1X (τ)ΣXε(τ)Σ−1X (τ)µX(τ) Σ−1X (τ)ΣXε(τ)Σ−1X (τ)

]
, θ (τ) = [λ (τ) ,

β1 (τ) , ..., βd(τ)]ᵀ, θ
′′
(τ) = d2θ (τ) /dτ2 and ν0 =

∫ 1
−1 k

2(u)du.

Proposition 1 extends Theorem 2.2 of Li et al. (2011) to allow for cross-sectional dependence and

nonstationarity. We only impose a mild condition on the relative rates of growth between T and N, thus

the proposed estimator and test below are applicable to panel data with various size combinations of T

and N. Both β̂(τ) and λ̂(τ) achieve the same convergence rate.

Under the null hypothesis, β (·) and λ (·) are constant and we estimate them via the LSDV estimation,

which is discussed in Section 2. Let θ = [λ βᵀ]ᵀ and θ̂ = [λ̂ β̂ᵀ]ᵀ. The asymptotic property of θ̂ is

established below.

Proposition 2. Suppose Assumptions A.1, A.2(i)-(ii), A.3(i)-(ii), A.4 hold . Then under H0, as T →∞
and N →∞,

√
NT (θ̂ − θ) d→ N (0̄d+1,Σθ) ,

where Σθ = ΞV Ξᵀ, A =
∫ 1
0 ΣX(τ)dτ +

∫ 1
0 µX (τ)µᵀX (τ) dτ −

∫ 1
0 µX (τ) dτ

∫ 1
0 µ

ᵀ
X (τ) dτ ,

Ξ =

[
1 +

∫ 1
0 µ

ᵀ
X(τ)dτA−1

∫ 1
0 µX(τ)dτ −

∫ 1
0 µ

ᵀ
X(τ)dτA−1 −

∫ 1
0 µ

ᵀ
X(τ)dτA−1

−A−1
∫ 1
0 µX(τ)dτ A−1 A−1

]

andV =


∫ 1
0 σ

2
ε(τ)dτ

∫ 1
0 σ

2
ε(τ)µᵀX(τ)dτ 0̄ᵀd∫ 1

0 σ
2
ε(τ)µX(τ)dτ

∫ 1
0 σ

2
ε(τ)µX(τ)µᵀX(τ)dτ 0d

0̄d 0d
∫ 1
0 ΣXε(τ)dτ

 .

The LSDV estimator has been commonly used in practice, but its asymptotic property under non-

stationarity, both cross-sectional and serial dependence has not yet been developed to our knowledge.

Proposition 2 thus fills the gap in the literature. Under the null hypothesis H0, the LSDV estimator θ̂

and the LLDV estimator θ̂t converge to the same probability limit; under the alternative hypothesis HA,

they depart from each other. Therefore, to check parameter constancy, we consider a Wald-type test

that compares these two estimators via a weighted quadratic form:

Q̂ = N
√
h

T∑
t=1

(
θ̂t − θ̂

)ᵀ
Ω̂t

(
θ̂t − θ̂

)
,
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where the weighting matrix Ω̂t = N−1
∑N

i=1[1 Xᵀ
it]

ᵀ[1 Xᵀ
it]. The statistic (NT

√
h)−1Q̂ converges to 0

under H0, but to a strictly positive constant under HA, giving our one-sided test asymptotic unit power.

Any significant departure from 0 is evidence of structural changes. Formally, our generalized Hausman

test is a standardized version of Q̂ :

Ĥ = (Q̂− Ĉ)/
√
Ŝ,

where

Ĉ = h−1/2ν0

∫ 1

0

[
σ̂2ε(τ) + trace(Σ̂−1X (τ)Σ̂Xε(τ))

]
dτ,

Ŝ = 4

∫ 1

0

[
σ̂4ε(τ) + trace(Σ̂−1X (τ)Σ̂Xε(τ)Σ̂−1X (τ)Σ̂Xε(τ))

]
dτ

∫ 1

0
[

∫ 1

−1
k(u)k(u+ v)du]2dv

are centering and scaling factors, σ̂2ε(τ) = N−1
∑N

i=1

∑N
j=1 σ̂ε,τ (i, j), σ̂ε,τ (i, j) = (Th)−1

∑T
t=1 ε̂itε̂jtk( t−τTTh ),

Σ̂X(τ) = N−1
∑N

i=1 M̂
ii
τ , Σ̂Xε(τ) = N−1

∑N
i=1

∑N
j=1 M̂

ij
τ σ̂ε,τ (i, j) , M̂ ij

τ = (Th)−1ΣT
t=1[Xit−µ̂iX( tT )][Xjt−

µ̂jX( tT )]ᵀk( t−τTTh ), µ̂iX(τ) = (Th)−1
∑T

t=1 k( t−τTTh )Xit and ν0 is defined in Proposition 1.

We now state the asymptotic distribution of Ĥ under H0.

Assumption A.8: (i) As N → ∞, supt
1
N

∑N
i=1

∑N
j=1{E[(εitεjt)

4(1+η)|Ft−1]}
1

4(1+η) = O (1) ; (ii) As

N →∞, supt
1
N

∑N
i=1

∑N
j=1{E[(εitεjt)

8(1+η)‖XitXjt‖8(1+η)]}
1

8(1+η) = O (1) ; (iii) suptE ‖Xit‖8(1+η) <∞
and suptE|εit|8(1+η) <∞.

Assumption A.9: As N →∞, (i) E‖
∑N

i=1

∑N
j=1[εitεjt−E(εitεjt)]‖δ = O(N δ/2); (ii) E‖

∑N
i=1

∑N
j=1{εitεjt[Xit−

µX( tT )][Xjt − µX( tT )]ᵀ − E{εitεjt[Xit − µX( tT )][Xjt − µX( tT )]ᵀ}}‖δ = O(N δ/2).

Theorem 1: Suppose Assumptions A.1, A.2(i)(ii)-A.4, A.6, A.7(i)(ii)-A.9 and H0 hold. Then

Ĥ
d→ N(0, 1)

as T →∞ and N →∞.

The Ĥ test has a convenient null asymptotic N(0,1) distribution. This is quite appealing in light of the

facts that most existing tests for structural changes in panel data models have nonstandard distributions

which may depend on the DGPs. The proposed test does not require formulation of an alternative and

is applicable when one has no prior information of the alternative. Moreover, no trimming is needed. As

an important feature of the Ĥ test, the use of the LSDV estimator θ̂ in place of the true parameter θ

under H0 has no impact on the limit distribution of Ĥ. Intuitively, the parametric estimator θ̂ converges

to θ at a
√
NT -rate, which is faster than the nonparametric estimator θ̂t. Consequently, the asymptotic

distribution of Ĥ is solely determined by the nonparametric estimator θ̂t and is nuisance parameter free.

Next, we investigate the asymptotic power property of Ĥ under HA.

Assumption A.10: (i) supv∈(0,1) ‖limτ→v+ β (τ)− limτ→v− β (τ)‖ ≤ C; (ii) sup v∈(0,1) ‖limτ→v+ λ (τ)−
limτ→v− λ (τ)‖ ≤ C.

Theorem 2: Suppose Assumptions A.1, A.2(i)(ii)-A.7(i)(ii), A.8-A.10 hold. Then for any sequence of

nonstochastic constants {CT = o(NT
√
h)}, P (Ĥ > CT )→ 1 under HA as T →∞ and N →∞.
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Assumption A.5 allows for both smooth structural changes and abrupt structural breaks with known

or unknown break points. We permit θ(·) to have a fixed number of discontinuities. Hence, single

structural break and multiple breaks with known or unknown break points, which are often considered

in this literature, are included as special cases. For abrupt structural breaks, the break size is bounded

by Assumption A.10. Theorem 2 suggests that the Ĥ test is consistent against all alternatives to H0,

subject to a set of regularity conditions. Thus, the proposed test will be able to detect any structural

changes in panel data models as long as T and N are sufficiently large. This is appealing in light of

the fact that no prior information about the alternative of structural changes is available in practice. It

avoids the blindness of searching for possible alternatives of structural changes in practice.

4. DIAGNOSTIC TESTING FOR TIME-VARYING INTERACTION

When structural changes are detected by the Ĥ test, it would be interesting to explore possible

sources of the rejection. That is, whether the rejection is from a time-varying intercept or slope, which

corresponds to a time trend or a time-varying interactive effect in economic applications. Such informa-

tion, if any, will be valuable in reconstructing the model and studying the relationship between economic

variables. For example, in a simple wage equation, it might be interesting to check whether structural

changes exist in the return to schooling while allowing for time variation in the intercept. On the other

hand, researchers may have some prior information (from e.g., economic theories or empirical evidences)

on the existence of a time trend. Therefore, the structural break tests could mainly focus on the slope

coefficients. For example, in the model of regional economic growth, it is important and challenging to

study the stability of the impact of various economic factors (e.g., capital stock, labor input, technology,

etc.) on growth rate, while a time trend is usually assumed.

In the past few years, panel data models with a common trend, which specifies the time-specific effect

with some unknown functions rather than dummy variables, have become popular. For example, Atak,

Linton and Xiao (2012) develop a semiparametric panel model to explain the trend in UK temperatures

over the last century using data observed at the twenty six Meteorological Office stations. Chen, et

al. (2012) study a semiparametric fixed effect model to capture the nonlinear trending phenomenon in

panel data analysis and develop a pooled semiparametric profile dummy variable estimation (PSPDV).

Zhang, Su and Phillips (2012) propose a nonparametric test for common trend in semiparametric panel

data models with fixed effects. Hence, we build on this rich literature and focus on testing whether the

interactive effect (βt) is time-varying while allowing for a time trend in this section. Namely, the DGP is

Yit = Xᵀ
itβt + αi + λt + εit, i = 1, ..., N, t = 1, ..., T,

the null hypothesis is

H∗0 : βt = β for all t

and the alternative hypothesis H∗A is the negation of H∗0. We shall follow Chen et al. (2012) to estimate

β via a PSPDV estimation under the null hypothesis H∗0. The idea of the PSPDV estimation is briefly

summarized below.
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(i) For given α and β, we estimate λ (τ) by(
λ̂β (τ)

λ̂′β (τ)

)
= arg min

γ
[Y −Xβ −Dα− Z (τ) γ]ᵀK (τ) [Y −Xβ −Dα− Z (τ) γ] , (6)

where X = (Xᵀ
1 , ..., X

ᵀ
N )ᵀ, Xi = (Xi1, ..., XiT )ᵀ, Z (τ) = 1N ⊗ z (τ) , z (τ) =

(
1 . . . 1

1−τT
Th . . . T−τT

Th

)ᵀ

.

The first order condition of (6) yields

λ̂β (τ) = (1, 0)S (τ) (Y −Xβ −Dα) ,

where S (τ) = [Zᵀ (τ)K (τ)Z (τ)]−1Zᵀ (τ)K (τ) .

(ii) Let Λ̂β = 1N ⊗ [λ̂β (1/T ) , ..., λ̂β(T/T )]ᵀ. We estimate (αᵀ, βᵀ)ᵀ by

min
(αᵀ,βᵀ)ᵀ

(
Y −Xβ −Dα− Λ̂β

)ᵀ (
Y −Xβ −Dα− Λ̂β

)
. (7)

By solving the optimization problem in (7), we obtain the solution:

β̂P =
(
X̃ᵀD̃X̃

)−1
X̃ᵀD̃Ỹ , (8)

where X̃ = (INT − S̃)X, Ỹ = (INT − S̃)Y, D̃ = INT − D∗(D∗ᵀD∗)−1D∗ᵀ, D∗ = (INT − S̃)D and

S̃ = 1N ⊗ {[(1, 0)S (1/T )]ᵀ, ..., [(1, 0)S (T/T )]ᵀ}ᵀ.
We now state the asymptotic property of β̂P in (8).

Proposition 3. Suppose Assumptions A.1, A.2, A.3(i)(ii)(iii), A.4, A.5(ii), A.6, A.7(i)(iii) and

A.10(ii) hold . Then under H∗0, as T →∞ and N →∞,

√
NT (β̂P − β)

d→ N (0̄d,Σβ) ,

where Σβ =
[∫ 1

0 ΣX(τ)dτ
]−1 ∫ 1

0 ΣXε(τ)dτ
[∫ 1

0 ΣX(τ)dτ
]−1

.

Proposition 3 is an extension of Theorem 3.1 in Chen et al. (2012). We relax their stationarity

assumption so that lagged dependent variables can be included as regressors. The smoothness condition

of the trend function λ(τ) is also relaxed to allow for a finite number of jumps. When the null hypothesis

H∗0 holds, the PSPDV estimator β̂P and the LLDV estimator β̂t will be close to each other while under H∗A,
β̂P and β̂t will converge to different probability limits. Therefore, the test statistic for the time-varying

interaction can be constructed as

Ĥ1 =
(
Q̂1 − Ĉ1

)
/

√
Ŝ1,
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where

Q̂1 = N
√
h

T∑
t=1

(
β̂t − β̂P

)ᵀ
M̂t

(
β̂t − β̂P

)
,

M̂t = N−1
N∑
i=1

XitX
ᵀ
it,

and

Ĉ1 = h−1/2ν0

∫ 1

0
trace(Ψ̂X(τ)Σ̂Xε(τ))dτ,

Ŝ1 = 4

∫ 1

0
trace(Ψ̂X(τ)Σ̂εX(τ)Ψ̂X(τ)Σ̂εX(τ))dτ

∫ 1

0
[

∫ 1

−1
k(u)k(u+ v)du]2dv

are centering and scaling factors respectively, where Ψ̂X(τ) = Σ̂−1X (τ) + Σ̂−1X (τ)µ̂X(τ)µ̂ᵀX(τ)Σ̂−1X (τ),

µ̂X(τ) = (NTh)−1
∑N

i=1

∑T
t=1 k( t−τTTh )Xit and ν0 is defined in Proposition 1.

The asymptotic null distribution and the asymptotic power property of Ĥ1 are stated below.

Theorem 3: Suppose Assumptions A.1-A.4, A.5(ii), A.6-A.8, A.9(ii), A.10(ii) and H∗0 hold. Then

Ĥ1
d→ N(0, 1)

as T →∞ and N →∞.

Theorem 4: Suppose Assumptions A.1-A.8, A.9(ii) and A.10 hold. Then for any sequence of non-

stochastic constants {CT = o(NT
√
h)}, P (Ĥ1 > CT )→ 1 under H∗A as T →∞ and N →∞.

Similar to the Ĥ test, the use of the PSPDV estimator β̂P in place of the true parameter β under

H∗0 has no impact on the limit distribution of Ĥ1. That is due to the fact that β̂P could achieve a
√
NT

rate, which is faster than the convergence rate of the nonparametric estimator β̂t. Theorem 4 allows β(·)
to have a fixed number of discontinuities and thus includes single structural break and multiple breaks

with known or unknown break points as special cases.

5. FINITE SAMPLE PERFORMANCE

Next, we study the finite sample performance of our tests. Theorems 1 and 3 provide the null

asymptotic N(0, 1) distribution of Ĥ and Ĥ1. Thus, one can implement our tests for H0 and H∗0 by

comparing Ĥ and Ĥ1 with a N(0, 1) critical value. However, like many other nonparametric tests in the

literature, the size of Ĥ and Ĥ1 in finite samples may differ significantly from the prespecified asymptotic

significance level. Our analysis suggests that the asymptotic theory may not work well even for relatively

large sample sizes, because the asymptotically negligible higher order terms in Ĥ and Ĥ1 are close in

order of magnitude to the dominant U -statistic that determines the limit distribution of Ĥ and Ĥ1. To

overcome this problem, we consider a residual-based bootstrap:

Step (i): Use the sample {(Yit, X
ᵀ

it), i = 1, ..., N, t = 1, ..., T} to estimate the model via LSDV

(PSPDV for the Ĥ1 test) and LLDV regression respectively and compute the Ĥ and Ĥ1 statistics and
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the nonparametric residual ε̂it = Yit−λ̂t−α̂i−Xᵀ
itβ̂t; Step (ii): Obtain a bootstrap residual ε̂∗it by random

sampling with replacement from the centered nonparametric residual ε̄it = ε̂it−N−1T−1ΣN
i=1Σ

T
t=1ε̂it and

construct a bootstrap sample {(Y ∗it , X
ᵀ

it), i = 1, ..., N, t = 1, ..., T}, where Y ∗it = Xᵀ
itβ̂ + α̂i + λ̂ + ε̂∗it

(Y ∗it = Xᵀ
itβ̂ + α̂i + λ̂t + ε̂∗it for the Ĥ1 test); Step (iii): Compute the bootstrap statistics Ĥ∗ and Ĥ∗1 , in

the same way as Ĥ and Ĥ1 respectively, with {(Y ∗it , X
ᵀ

it), i = 1, ..., N, t = 1, ..., T} replacing the original

sample {(Yit, X
ᵀ

it), i = 1, ..., N, t = 1, ..., T}; Step (iv): Repeat steps (ii) and (iii) B times to obtain B

bootstrap test statistics {Ĥ∗l }Bl=1 and {Ĥ∗1l}Bl=1, where B is sufficiently large; Step (v): Compute the

bootstrap p-values p∗ ≡ B−1ΣB
l=11(Ĥ∗l > Ĥ) and p∗1 ≡ B−1ΣB

l=11(Ĥ∗1l > Ĥ1), where 1(·) is the indicator

function.

To examine the size of our test Ĥ under H0, we consider the following DGP:

DGP S.1 [No Structural Change]:

Yit = λ̄+ β̄Xit + αi + εit,

where λ̄ and β̄ are the average of λ (t/T ) and β (t/T ) respectively with t = 1, ..., T :

λ(τ) = τ2 + τ + 1 (9)

β(τ) = sin(πτ),

Xit =
1

2
Xi,t−1 + vit,

and

αi = θ0X̄i + ui, i = 1, · · · , N − 1, θ0 = 1, ui ∼ i.i.d.N(0, 1),

αN = −
N−1∑
i=1

αi.

To check the robustness of our test Ĥ, we generate vit and εit in two ways: one is from an i.i.d.N(0, 1)

distribution and the other has cross-sectional dependence following Chen et al. (2012). Let εt =

(ε1t, ε2t, . . . , εNt)
ᵀ, which is generated as a sequence of an N -dimensional vector of independent Gaussian

random variables with zero mean and covariance matrix (cij), where

cij = 0.8|j−i| .

We generate vit similarly, but with covariance matrix (dij) where dij = 0.5|j−i|. We generate 500 data

sets of a random sample {(Yit, X
ᵀ

it), i = 1, ..., N, t = 1, ..., T} for N,T = 15, 20, 25, 30. To investigate the

power of our test Ĥ in detecting structural changes in panel data models, we consider three alternatives:

DGP P.1 [Single Structural Break ]:

Yit =

{
λ̄+ β̄Xit + αi + εit, if t ≤ 0.5T,

(λ̄+ 0.5) + (β̄ + 0.5)Xit + αi + εit, otherwise.
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DGP P.2 [Multiple Structural Breaks]:

Yit =

{
(λ̄+ 0.5) + (β̄ + 0.5)Xit + αi + εit, if 0.3T ≤ t ≤ 0.7T,

λ̄+ β̄Xit + αi + εit, otherwise.

DGP P.3 [Smooth Structural Changes]:

Yit = λ̄+ φ
[
λ (t/T )− λ̄

]
+
{
β̄ + φ

[
β (t/T )− β̄

]}
Xit + αi + εit,

where φ = 0.4.

The single break has been a structural change with classical importance. Under DGP P.1, an abrupt

break occurs in the panel data model at some unknown time t. DGP P.2 admits nonmonotonic multiple

breaks. DGP P.3 is the time-varying coefficient panel model considered in Li et al. (2011).

For the proposed Ĥ test, we use the uniform kernel. In fact, our simulation experience (not reported

here) suggests that the choice of k(·) has little impact on the performance of the test. For simplicity, we

choose the bandwidth h = C(NT )−
1
5 with C = 0.5, 1 and 1.5. We use the bootstrap procedure described

above with the number of bootstrap iterations B = 99.

Table 1 reports the rejection rates of Ĥ under DGP S.1 at the 10% and 5% significance levels, using

bootstrap critical values (BCVs). When εit is i.i.d, the Ĥ test has good size with the rejection rates close

to the nominal levels. When εit is cross-sectionally dependent, the size performance of Ĥ enjoys similar

pattern, which suggests that our Ĥ test is robust to potential cross-sectional dependence. We also note

that the size of our Ĥ test is robust to different choices of bandwidth.

Table 2 reports the rejection rates of Ĥ with BCVs under DGPs P.1-P.3 at the 10% and 5% levels.

The Ĥ test has reasonable all-around power against smooth and abrupt structural changes. The power

increases as either N or T increases. The rejection rate is about 52% at the 5% level even when (N,T )

is as small as (15, 15), and approaches unity when (N,T ) = (30, 30). The choice of bandwidth has some

effect on the power of our test when the sample size is small. However, with the increase of N and T,

the power becomes rather robust to choices of bandwidth.

Next, we turn to the finite sample performance of our diagnostic test Ĥ1. We use a similar DGP as

DGP S.1 for size while replacing λ̄ with the time varying function (9):

DGP S1.1 [No Structural Break in the Interactive Effect ]:

Yit = λt + β̄Xit + αi + εit,

where λt = λ(t/T ) = (t/T )2 + (t/T ) + 1 and β̄, Xit, αi and εit are generated as before.

To check the power of Ĥ1, we consider three types of structural changes in the interactive effect while

allowing for the common time trend λt.
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DGP P1.1 [Single Structural Break in the Interactive Effect ]:

Yit =

{
λt + β̄Xit + αi + εit, if t ≤ 0.5T,

λt + (β̄ + 0.5)Xit + αi + εit, otherwise.

DGP P1.2 [Multiple Structural Breaks in the Interactive Effect ]:

Yit =

{
λt + (β̄ + 0.5)Xit + αi + εit, if 0.3T ≤ t ≤ 0.7T,

λt + β̄Xit + αi + εit, otherwise.

DGP P1.3 [Smooth Structural Changes in the Interactive Effect ]:

Yit = λt +
{
β̄ + φ

[
β (t/T )− β̄

]}
Xit + αi + εit,

where φ = 0.4.

Tables 3 and 4 report the empirical size and power of Ĥ1 under DGPs S1.1 and P1.1-1.3. Similar

to the Ĥ test, Ĥ1 has reasonable size performance and is robust to potential cross-sectional dependence

and the bandwidth selection. As expected, the Ĥ1 test has a bit lower rejection rate than the Ĥ test.

But the rejection rate increases with both N and T and approaches to unity when (N,T ) = (30, 30).

To confirm that our tests have the right power when the distance between the null and alternative

hypotheses is increased, we plot in Figures 1 and 2 the empirical power of Ĥ and Ĥ1 as functions of φ

for DGPs P.3 and P1.3. When φ = 0, we are back to our null models DGPs S.1 and S1.1. Figures 1 and

2 show that the power functions increase monotonically with φ. When the magnitude of φ is increased

to a larger extent, the power of our tests is reaching unity.

To sum up, we observe that both Ĥ and Ĥ1 tests have good sizes in finite samples when the residual-

based bootstrap is applied. They also have reasonable powers against both sudden structural breaks and

smooth structural changes.

6. CONCLUSION

The modelling of structural changes in panel data models has attracted increasing attention in econo-

metrics. We have complemented the literature by proposing a Wald-type test for smooth structural

changes as well as abrupt structural breaks in panel data models, which has not been attempted in

the previous literature. Our generalized Hausman’s (1978) test is intuitively appealing and straightfor-

ward to compute. It has a convenient null asymptotic N(0,1) distribution, does not require trimming

data, does not require prior information on the possible alternative, and is consistent against all smooth

structural changes as well as multiple abrupt structural breaks in panel data models. Moreover, only

a mild condition is imposed on the relative rates of growth between T and N, thus our approach can

be applied to panel data with various size combinations of T and N. Our omnibus test is supplemented

by a diagnostic test, which allows for a common trend and focuses on potential structural changes in

the interactive effect. Such information is useful for practitioners in reconstructing a misspecified model

and studying the relationship between economic variables. To overcome the adverse impact of the first
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stage nonparametric estimation of the time-varying parameters, we use residual-based bootstrap, which

provides reasonable size and power for the proposed tests in finite samples.
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González, A., Teräsvirta, T. & van Dijk, D. (2005) Panel Smooth Transition Regression Models. Working

paper.

15



Hall, P. & Heyde, C.C. (1980) Martingale Limit Theory and its Applications. Academic Press.

Hausman, J. (1978) Specification Tests in Econometrics. Econometrica 46, 1251-1271.
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TABLE I

Empirical Size of the Ĥ Test

N/T 15 20 25 30

10% 5% 10% 5% 10% 5% 10% 5%

with i.i.d innovations

15 0.100 0.050 0.104 0.046 0.096 0.052 0.116 0.044

20 0.106 0.040 0.106 0.044 0.086 0.048 0.082 0.034

25 0.110 0.054 0.102 0.042 0.110 0.056 0.066 0.036

30 0.076 0.030 0.092 0.052 0.090 0.048 0.112 0.058

with cross-sectionally dependent innovations

15 0.106 0.052 0.102 0.036 0.088 0.042 0.084 0.034

20 0.106 0.064 0.110 0.054 0.110 0.052 0.112 0.050

25 0.084 0.038 0.092 0.046 0.080 0.040 0.114 0.050

30 0.104 0.056 0.100 0.042 0.090 0.050 0.078 0.038

Notes: (1) Ĥ denotes the test for the overall model stability; (2) 500 iterations;

(3) Rejection rates are based on bootstrap critical values with B=99.

TABLE II

Empirical Power of Ĥ under DGPs P.1-P.3

N/T 15 20 25 30

10% 5% 10% 5% 10% 5% 10% 5%

DGP P.1-Single Structural Break

15 0.832 0.708 0.928 0.876 0.980 0.964 0.998 0.992

20 0.924 0.850 0.984 0.968 1.000 0.992 1.000 1.000

25 0.964 0.916 0.998 0.986 1.000 1.000 1.000 1.000

30 0.986 0.954 1.000 0.998 1.000 1.000 1.000 1.000

DGP P.2- Multiple Structural Breaks

15 0.692 0.522 0.736 0.564 0.932 0.866 0.928 0.836

20 0.812 0.628 0.878 0.742 0.974 0.926 0.990 0.948

25 0.880 0.758 0.906 0.762 0.982 0.952 0.990 0.958

30 0.914 0.808 0.912 0.810 0.994 0.984 0.996 0.986

DGP P.3-Smooth Structural Changes

15 0.882 0.776 0.938 0.898 0.988 0.960 1.000 0.996

20 0.940 0.862 0.994 0.972 0.998 0.990 1.000 0.998

25 0.974 0.954 0.990 0.984 1.000 0.998 1.000 1.000

30 0.994 0.974 1.000 0.996 1.000 1.000 1.000 1.000

Notes: (1) Ĥ denotes the test for the overall model stability; (2) 500 iterations;

(3) Rejection rates are based on bootstrap critical values with B=99.



TABLE III

Empirical Size of the Ĥ1 Test

N/T 15 20 25 30

10% 5% 10% 5% 10% 5% 10% 5%

with i.i.d innovations

15 0.110 0.064 0.130 0.078 0.116 0.056 0.098 0.046

20 0.096 0.046 0.124 0.072 0.094 0.054 0.092 0.044

25 0.104 0.068 0.124 0.070 0.118 0.060 0.086 0.034

30 0.092 0.044 0.100 0.050 0.096 0.056 0.094 0.052

with cross-sectionally dependent innovations

15 0.110 0.068 0.096 0.056 0.098 0.050 0.084 0.038

20 0.108 0.046 0.100 0.046 0.096 0.050 0.098 0.054

25 0.084 0.032 0.090 0.046 0.084 0.036 0.110 0.058

30 0.106 0.046 0.076 0.022 0.086 0.040 0.090 0.046

Notes: (1) Ĥ1 denotes the diagnostic test for the potential time-varying interaction; (2) 500

iterations; (3) Rejection rates are based on bootstrap critical values with B=99.

TABLE IV

Empirical Power of Ĥ1 under DGPs P1.1-P1.3

N/T 15 20 25 30

10% 5% 10% 5% 10% 5% 10% 5%

DGP P1.1-Single Structural Break

15 0.636 0.504 0.820 0.656 0.894 0.812 0.956 0.892

20 0.714 0.580 0.866 0.790 0.956 0.890 0.984 0.964

25 0.800 0.684 0.954 0.892 0.986 0.964 0.996 0.992

30 0.868 0.752 0.968 0.914 0.996 0.988 1.000 1.000

DGP P1.2- Multiple Structural Breaks

15 0.468 0.290 0.530 0.360 0.776 0.604 0.718 0.572

20 0.520 0.326 0.666 0.444 0.838 0.688 0.832 0.690

25 0.630 0.450 0.626 0.422 0.874 0.740 0.882 0.756

30 0.670 0.524 0.740 0.520 0.930 0.814 0.942 0.860

DGP P1.3-Smooth Structural Changes

15 0.292 0.198 0.420 0.288 0.532 0.390 0.612 0.472

20 0.358 0.254 0.542 0.394 0.620 0.500 0.752 0.584

25 0.466 0.324 0.622 0.476 0.746 0.620 0.798 0.696

30 0.550 0.372 0.748 0.592 0.808 0.658 0.896 0.798

Notes: (1) Ĥ1 denotes the diagnostic test for the potential time-varying interaction; (2) 500

iterations; (3) Rejection rates are based on bootstrap critical values with B=99.



Figure 1: Power curve of the Ĥ test

Figure 2: Power curve of the Ĥ1 test
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