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Abstract

We consider a latent group panel structure as recently studied by Su, Shi, and Phillips (2013),

where the number of groups is unknown and has to be determined empirically. We propose a testing

procedure to determine the number of groups. Our test is a residual-based LM-type test. We show

that after being appropriately standardized, our test is asymptotically normally distributed under

the null hypothesis of a given number of groups and has power to detect deviations from the null.

Monte Carlo simulations show that our test performs remarkably well in finite samples. We apply

our method to study the effect of income on democracy and find strong evidence of heterogeneity

in the slope coefficients. Our testing procedure determines three latent groups among eighty-two

countries.

Key words: Classification Lasso; Dynamic panel; Latent structure; Penalized least square; Number

of groups; Test

JEL Classification: C12, C23, C33, C38, C52.

∗The authors express their sincere appreciation to Stéphane Bonhomme, Xiaohong Chen, Cheng Hsiao, and Peter C.
B. Phillips for discussions on the subject matter and valuable comments on the paper. Su gratefully acknowledges the

Singapore Ministry of Education for Academic Research Fund under grant number MOE2012-T2-2-021. All errors are

the authors’ sole responsibilities. Address correspondence to: Liangjun Su, School of Economics, Singapore Management

University, 90 Stamford Road, Singapore, 178903; Phone: +65 6828 0386; e-mail: ljsu@smu.edu.sg.

1



1 Introduction

Recently latent group structures have received much attention in the panel data literature; see, e.g., Sun

(2005), Sarafidis and Weber (2011), Bonhomme and Manresa (2012), Lin and Ng (2012), Bester and

Hansen (2013), Deb and Trivedi (2013), and Su, Shi, and Phillips (2013). In comparison with some other

popular approaches to model unobserved heterogeneity in panel data models such as random coefficient

models (see, e.g., Hsiao (2003, chapter 6)), one important advantage of the latent group structure is that

it allows flexible forms of unobservable heterogeneity while remaining parsimonious at the same time.

In addition, the group structure has sound theoretical foundations from game theory or macroeconomic

models where multiplicity of Nash equilibria is unavoidable (c.f. Hahn and Moon (2010)). The key

question in latent group structures is how to identify each individual’s group membership. Bester

and Hansen (2013) assume that membership is known and determined by external information, say,

external classification or geographic location, while others assume that it is unrestricted and unknown

and propose statistical methods to achieve classification. Sun (2005) uses a parametric multinomial

logit regression to model membership. Sarafidis and Weber (2011), Bonhomme and Manresa (2012),

and Lin and Ng (2012) extend K-means classification algorithms to the panel regression framework.

Deb and Trivedi (2013) propose EM algorithms to estimate finite mixture panel data models with

fixed effects. Motivated by the sparse feature of the individual regression coefficients under latent group

structures, Su, Shi, and Phillips (2013, SSP hereafter) propose a novel variant of the Lasso procedure, i.e.,

classifier Lasso (C-Lasso), to achieve classification. While these methods make important contributions

by empirically grouping individuals, to implement these methods, we often need to determine the number

of groups first. Some information criteria have been proposed to achieve this goal (see, e.g., Bonhomme

and Manresa (2012) and SSP), which often rely on some tuning parameters. This paper provides a

hypothesis-testing-based solution to determine the number of groups.

Specifically, in the same framework as in SSP, we consider the panel data structure:

 = 00  +  +   = 1  and  = 1   (1.1)

where   and  are the regressors, individual fixed effects, and idiosyncratic error term, respec-

tively and 0 is the slope coefficient that can depend on individual . We assume that the  individuals

belong to  groups and all individuals in the same group share the same slope coefficients That is, 0 ’s

are homogeneous within each of the  groups but heterogeneous across the  groups. For a given 

we can apply the C-Lasso method proposed in SSP to determine the group membership and estimate

0 ’s. However, in practice,  is unknown and has to be determined from data. This motivates us to

test the following hypothesis:

H0 (0) :  = 0 versus H1 (0) : 0   ≤ max

where 0 and max are pre-specified by researchers. We can sequentially test the hypotheses H0 (1) 
H0 (2)   until we fail to reject H0(∗) for some ∗ ≤ max and conclude that the number of groups
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is ∗ Onatski (2009) applies a similar procedure to determine the number of latent factors in panel

factor structures.

In addition to helping to determine the number of groups, testing H0 (0) itself is also useful for

empirical research. When 0 = 1 the test becomes a test for homogeneity in the slope coefficients,

which is often assumed in empirical applications. When 0 is some integer greater than 1, we test

whether the group structure is correctly specified. Although the group structure is flexible in terms of

modeling unobserved slope heterogeneity, it could still be misspecified. Inferences based on misspecified

models are often misleading. Thus conducting a formal specification test is highly desirable.

Our test is a residual-based LM-type test. We estimate the model under the null hypothesis H0 (0)

to obtain the restricted residuals, and the test statistic is based on whether the regressors have predictive

powers on the restricted residuals. Under the null of correct number of latent groups, the regressors

should not contain any useful information about the restricted residuals. We show that after being

appropriately standardized, our test statistic is asymptotically normal under the null. The p-values can

be obtained based on the standard normal approximation, and thus the test is easy to implement. Our

test is related to the literature on testing slope homogeneity and poolability for panel data models in

which case 0 = 1. See, e.g., Pesaran, Smith, and Im (1996), Phillips and Sul (2003), Pesaran and

Yamagata (2008), and Su and Chen (2013), among others. Nevertheless, none of the existing tests can

be applied to test  = 0 where 0  1

We conduct Monte Carlo simulations to show the excellent finite sample performance of our test.

With a high probability, our method can determine the number of groups correctly. We apply our method

to study the relationship between income and democracy. We find that indeed the slope coefficients

(the marginal effects of income and lagged democracy on democracy) are heterogeneous with p-values

being less than 0.001. Further, we determine that the number of heterogeneous groups is three and find

that the slope coefficients of the three groups are substantially different from each other. Though our

classification of groups is completely data-driven, we further investigate the determinants of the group

pattern and find that the initial education level and long-run progress in democracy are important

determinants.

The remainder of the paper is organized as follows. In Section 2, we introduce the hypotheses and

the test statistic. In Section 3 we derive the asymptotic distributions of our test statistic under the null

and study the global power of our test. We conduct Monte Carlo experiments to evaluate the finite

sample performance of our test in Section 4 and apply it to the income-democracy dataset in Section 5.

Section 6 concludes. All proofs are relegated to the Appendix.

To proceed, we adopt the following notation. For an× real matrix we denote its transpose as 0
and its Frobenius norm as kk (≡ [tr(0)]12) where ≡ means “is defined as”. Let  ≡  (0)−10

and  ≡  −  where  denotes an  × identity matrix. When  = {} is symmetric, we
use max () and min () to denote its maximum and minimum eigenvalues, respectively, and denote

diag() as a diagonal matrix whose ( )th diagonal element is given by . Let 0 ≡ −1i i0 and
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0 ≡ −−1i i0  where i is a ×1 vector of ones. Moreover, the operator −→ denotes convergence in

probability, and
−→ convergence in distribution. We use ( ) → ∞ to denote the joint convergence

of  and  when  and  pass to infinity simultaneously. We abbreviate “positive semidefinite”,

“with probability approaching 1”, and “without loss of generality” to “p.s.d.”, “w.p.a.1”, and “wlog”,

respectively.

2 Hypotheses and test statistic

In this section we introduce the hypotheses and test statistic.

2.1 Hypotheses

We consider the panel structure model

 = 00  +  +   = 1  and  = 1   (2.1)

where  is a × 1 vector of exogenous or predetermined regressors,  an individual fixed effect, and
 the idiosyncratic error term. We assume that 

0
 has the following group structure:

0 =

⎧⎪⎪⎨⎪⎪⎩
01 if  ∈ 01
...

...

0 if  ∈ 0



where  is an integer such that 1 ≤    and
©
01  

0


ª
forms a partition of {1  } such

that ∪=10 = {1  } and 0 ∩ 0 = ∅ for any  6=  Further, 0 6= 0 for any  6=  Let

 = |0| be the number of members in 0 i.e., the cardinality of the set 
0
 We assume that 

G0≡©01  0ª  α0≡ (01  0) and β0 ≡ (01  0 ) are all unknown. One key step in estimating
all these parameters is to first determine  as once  is determined, we can readily apply the C-Lasso

estimation method developed in SSP. This motivates us to test the following hypothesis:

H0 (0) :  = 0 versus H1 (0) : 0   ≤ max (2.2)

The testing procedure developed below can be used to determine  Suppose that we have a priori

information such that min ≤  ≤ max where min is typically 1. Then we can first test: H0(min)

against H1(min) If we fail to reject the null, then we conclude that  = min Otherwise, we continue

to test H0(min + 1) against H1(min + 1) We repeat this procedure until we fail to reject the null

H0(∗) and conclude that  = ∗ This procedure is similar to that in Onatski (2009) for determining

the number of latent factors in panel factor structures.
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2.2 Estimation under the null and test statistic

Our test is a residual-based test and so we only need to estimate the model under the null H0 (0) :

 = 0 In the special case where 0 = 1 the panel structure model reduces to a homogeneous

panel data model so that 0 = 0 for all  = 1   and we can estimate the homogeneous slope

coefficient using the usual within-group estimator ̂ In the general case where 0  0 we consider the

C-Lasso estimation proposed by SSP. Let ̃ =  − −1
P

=1  and ̃ =  − −1
P

=1 Let

β̃ ≡(̃1  ̃ ) and α̂0=(̂1  ̂0) be the C-Lasso estimators proposed in SSP, which are defined

as the minimizer of the following criterion function:


(0)
1 (βα0

) = 1 (β) +



Π0

=1 || − || 

where  ≡  is a tuning parameter and

1 (β) =
1



X
=1

X
=1

³
̃ − 0̃

´2


Let ̂ =
n
 ∈ {1 2 } : ̂ = ̂

o
for  = 1 0 Let ̂0 = {1 2 } \(∪0

=1̂) Although

SSP demonstrate that the number of elements in ̂0 shrinks to zero as  → ∞ in finite samples, ̂0

may not be empty. To fully impose the null hypothesis H0 (0)  we force all the estimates of the slope

coefficients to be grouped into 0 groups and define the final estimators of 0 ’s as β̂ ≡(̂1  ̂ )
where

̂ =

(
̃ if  ∈ ̂ for some  = 1 0

̂∗ otherwise


where ∗ ≡ argmin
n
||̃ − ̂||  = 1 0

o
 Note that we have suppressed the dependence of β̂

̂’s, and ̂’s on 0 to maintain notational simplicity.

Given {̂} we can estimate individual fixed effects using ̂ = 1


P
=1( − ̂

0
)

1 The residuals

are obtained by

̂ ≡  − ̂
0
 − ̂ (2.3)

It is easy to show that

̂ = ( − ̄)−
¡
 − ̄

¢0
̂

=  − ̄ +
¡
 − ̄

¢0 ³
0 − ̂

´
 (2.4)

where ̄ = −1
P

=1  ̄ = −1
P

=1 and ̄ = −1
P

=1  Under the null hypothesis, ̂ is

a consistent estimator of 0 
2 Hence, ̂ should be close to  By the assumption,  should not have

1 If 0 = 1 we set ̂ = ̂ the within-group estimator of the homogeneous slope coefficient. Note that we also suppress

the dependence of ̂ on 0
2 Strictly speaking, ̃ is a consistent estimator of 

0
 under the null. But because the cardinality of the set ̂0 shrinks

to zero under the null as  →∞ the difference between ̃ and ̂ is asymptotically negligible.
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any predictive power for  This motivates us to run the following auxiliary regression model

̂ =  + 0 +   = 1    = 1   (2.5)

and test the null hypothesis

H∗0 :  = 0 for all  = 1  

We construct an LM-type test statistic by concentrating the intercept  out in (2.5). Consider the

Gaussian quasi-likelihood function for ̂ :

 (φ) =
X
=1

(̂ −0)
0
(̂ −0) 

where φ ≡ (1   )0  ̂ ≡ (̂1  ̂ )0  and  ≡ (1  )
0
 Define the LM statistic:

 (0) =

µ
−12

 (0)

φ

¶0 µ
−−1 

2 (0)

φ φ0

¶ µ
−12

 (0)

φ

¶
 (2.6)

where we make the dependence of  (0) on 0 explicit. We can verify that

 (0) =
X
=1

̂00 (
0
0)

−1
 0
0̂ (2.7)

where the dependence of  (0) on 0 is through that of ̂ on 0 We will show that after being

appropriately scaled and centered,  (0) is asymptotically normally distributed under H0 (0)

and diverges to infinity under H1 (0) 

Remark. Similar statistics are proposed by Su and Chen (2013) to test for slope homogeneity in

panel data models with interactive fixed effects. Note that we have included a constant term in the

regression in (2.5). Under the assumption that  () = 0 and  and  pass to infinity jointly, one can

also omit the constant term and obtain the following LM test statistic:

 (0) =
X
=1

̂0 (
0
)

−1
 0
̂ (2.8)

The asymptotic distribution of  (0) can be similarly studied with little modification. In case

 is not very large as in our empirical applications, we recommend including a constant term in the

auxiliary regression in (2.5) and thus only focus on the study of  (0) below.

3 Asymptotic properties

In this section we first present a set of assumptions that are necessary for asymptotic analyses, and then

study the asymptotic distributions of  (0) under both H0 (0) and H1 (0).
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3.1 Assumptions

Let kk ≡ [(kk)]1 for  ≥ 1. Let Ω̂ ≡ −1 0
0 and Ω ≡ (Ω̂) Define F ≡

({+1  −1 −1 }=1) Let  ∞ be a generic constant that may vary across lines.

We make the following assumptions.

Assumption A.1. (i) max1≤≤ max1≤≤ kk8+4 ≤  for some   0 for  =   and



(ii) There exist positive constants Ω and ̄Ω such that Ω ≤ min1≤≤ min (Ω) ≤ max1≤≤
max (Ω) ≤ ̄Ω

(iii) For each  = 1   {( ) :  = 1 2 } is a strong mixing process with mixing coefficients
{ (·)}.  (·) ≡  (·) ≡ max1≤≤  (·) satisfies  () =  (

−) where  = 3(2 + ) + 

for some arbitrarily small   0. In addition, there exist integers 0 ∗ ∈ (1  ) such that  (0) =

 (1)   ( +12) (∗)
(1+)(2+) =  (1)  and 12−12∗ =  (1) 

(iv) Let  ≡ (1   )0  ( )   = 1   are mutually independent of each other.

(v) For each  = 1    (|F−1) = 0 a.s.

Assumption A.2. (i)  →  ∈ (0 1) for each  = 1 0 as  →∞

(ii) As ( )→∞ →∞ and 4 → 0 ∈ [0∞)
(iii) For any   0  max1≤≤ 

³°°°−1P
=1 ̃

°°° ≥ 
√

´
→ 0 as ( )→∞

(iv) For each  = 1 0, Φ̄ ≡ 1


P
∈0



P
=1 ̃̃

0


→ Φ  0 as ( )→∞

(v) For each  = 1 0,
1√


P
∈0



P
=1 ̃ − 

→  (0Ψ) as ( ) → ∞ where

 =
1√


P
∈0



P
=1(̃) is either 0 or (

p
 ) depending on whether  is strictly

exogenous.

Assumption A.3. There exist finite nonnegative numbers 1 and 2 such that lim sup( )→∞ log( ) 2

= 1 and lim sup( )→∞ log( ) (3+)(4+2)−(5+3)(4+2) = 2

A.1(i) imposes moment conditions on  and . A.1(ii) requires that Ω be positive definite

uniformly in  A.1(iii) requires that each individual time series {( ) :  = 1 2 } be strong mixing.
This condition can be verified if  does not contain lagged dependent variables no matter whether one

treats the fixed effects ’s as random or fixed. In the case of dynamic panel data models, Hahn and

Kuersteiner (2011) assume that ’s are nonrandom and uniformly bounded, in which case the strong

mixing condition can also be verified. In the case of random fixed effects, they suggest adopting the

concept of conditional strong mixing where the mixing coefficient is defined by conditioning on the fixed

effects. Su and Chen (2013) also consider conditional strong mixing processes where the conditioning

set is given by the common factors and factor loadings in their panel factor model. The dependence

of the mixing rate on  defined in A.1(i) reflects the trade-off between the degree of dependence and

the moment bounds of the process {( )  ≥ 1}  The last set of conditions in A.1(iii) can easily
be met. In particular, if the process is strong mixing with a geometric mixing rate, the conditions on
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 (·) can be met simply by specifying 0 = ∗ = b log  c for some sufficiently large   where bc
denotes the integer part of . A.1(iv) rules out cross sectional dependence among ( ) and greatly

facilitates our asymptotic analysis. A.1(v) requires that the error term  be a martingale difference

sequence (m.d.s.) with respect to the filter F which allows for lagged dependent variables in 

and conditional heteroskedasticity, skewness, or kurtosis of unknown form in 

The conditions in A.2 are borrowed from SSP. A.2(i) is identical to Assumption A1(iv) in SSP and

implies that each group has asymptotically non-negligible members as  →∞ A.2(ii)-(iii) and A.2(iv)-

(v) parallel Assumptions A2(i)-(ii) and A3(i)-(ii) in SSP, respectively. The conditions in Assumption

A1(i)-(iii) in SSP are implied by our Assumption A.1. According to Theorem 2.3 in SSP, under our

A.1-A.2 and H0 (0)  the C-Lasso estimates {̂} have the following asymptotic property:

̂ − 0 = 

³
( )−12

´
if  = 0 in A.2(v) and 

³
( )−12 + −1

´
otherwise. (3.1)

A.3 imposes conditions on the rates at which  and  pass to infinity, and the interaction between

( ) and . Note that we allow  and  to pass to infinity at either identical or suitably restricted

different rates. The appearance of the logarithm terms is due to the use of a Bernstein inequality for

strong mixing processes. If the mixing process {( )   ≥ 1} has a geometric decay rate, one can
take an arbitrarily small  in A.1(i) . In this case, A.3 puts the most stringent restrictions on ( )

by passing  → 0 : 35 → 0 as ( ) → ∞ ignoring the logarithm term. On the other hand, if

 ≥ 1 in A.1(i), then the second condition in A.3 becomes redundant given the first condition. In the
case of conventional panel data models with strictly exogenous regressors only, Pesaran and Yamagata

(2008) require that either
√
 → 0 or

√
 2 → 0 for two of their tests; but for stationary dynamic

panel data models, they prove the asymptotic validity of their test only under the condition that

 →  ∈ [0∞)

3.2 Asymptotic null distribution

Let  denote the ( )’th element of ≡0(
0
0)

−1 0
0 Let

†
 ≡ −−1

P
=1 ()

and ̄ ≡ Ω−12 
†
. Define

 ≡ −12
X
=1

X
=1

2 and  ≡ 4−2−1
X
=1

X
=2



"
̄

0


−1X
=1

̄

#2
 (3.2)

The following theorem states the asymptotic null distribution of the infeasible statistic  

Theorem 3.1 Suppose Assumptions A.1-A.3 hold. Then under H0 (0) 

 (0) ≡
³
−12 (0)−

´

p


−→ (0 1)

The proof of the above theorem is tedious and relegated to the appendix. The key step in the

proof is to show that under H0 (0),
√
 (0) =  +  (1) where  ≡

P
=2  and
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 ≡ 2−1−12
P

=1

P−1
=1 ̄

0
̄ By construction, { F} is an m.d.s. so that we can

apply the martingale central limit theorem (e.g., Pollard (1984, p. 171)) to show that 
−→ (0 0)

under Assumptions A.1-A.3, where 0 = lim( )→∞  .

To implement the test, we need consistent estimates of both  and  . We propose to estimate

them respectively by

̂ (0) = −12
X
=1

X
=1

̂2 and ̂ (0) = 4
−2−1

X
=1

X
=2

"
̂̂

0


−1X
=1

̂̂

#2
(3.3)

where ̂ = Ω̂
−12
 ( − −1

P
=1)

3 Then we can define a feasible test statistic:

̂ (0) ≡
³
−12 (0)− ̂ (0)

´


q
̂ (0) (3.4)

The following theorem establishes the consistency of ̂ (0) and ̂ (0) and the asymptotic dis-

tribution of ̂ (0) under H0 (0) 

Theorem 3.2 Suppose Assumptions A.1-A.3 hold. Then under H0 (0)  ̂ (0) =  +  (1) 

̂ (0) =  +  (1)  and ̂ (0)
−→ (0 1)

Theorem 3.2 implies that the test statistic ̂ (0) is asymptotically pivotal under H0 (0). We

can compare ̂ (0) with the one-sided critical value , i.e., the upper th percentile from the

standard normal distribution, and reject the null when ̂ (0)   at the asymptotic  significance

level.

We obtain the above distributional results despite the fact that the individual effects ’s can only

be estimated at the slower rate −12 than the rate ( )−12 or ( )−12 + −1 at which the group-

specific parameter estimates {̂  = 1 0} converge to their true values under H0 (0). The slow

convergence rate of these individual effect estimates does not have adverse asymptotic effects on the

estimation of the bias term   the variance term   and the asymptotic distribution of ̂ (0) 

Nevertheless, they can play an important role in finite samples, which we verify through Monte Carlo

simulations.

3.3 Consistency

Let G = {(1  ) : ∪=1 = {1  } and  ∩  = ∅ for any  6= } That is, G denotes

the class of all possible -group partitions of {1  }. To study the consistency of our test, we add
the following assumption.

Assumption A.4. (i) −1
P

=1

°°0°°2 =  (1) 

(ii) inf(10 )∈G0 min(10 )
−1P0

=1

P
∈

°°0 − 
°°2 → 0

 0 as  →∞

3Let ̂ ≡ (̂1  ̂ )0 Note that ̂ =0Ω̂
−12
 
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A.4(i) is trivially satisfied if 0 ’s are uniformly bounded or random with finite second moments.

A.4(ii) essentially says that one cannot group the  parameter vectors
©
0  1 ≤  ≤ 

ª
into 0 groups

by leaving out an insignificant number of unclassified individuals. It is satisfied for a variety of global

alternatives:

1. The number of groups is  = 0 +  for some positive integer  such that  →  ∈ (0 1)
for each  = 1 0 +  

2. There is no grouped pattern among
©
0  1 ≤  ≤ 

ª
such that we have a completely heterogeneous

population of individuals.

3. The regression model is actually a random coefficient model: 0 = 0 +  where 
0 is a fixed

parameter vector, and ’s are independent and identical draws from a continuous distribution

with zero mean and finite variance.

4. The regression model is a hierarchical random coefficient model:

0 =

⎧⎪⎪⎨⎪⎪⎩
01 + 1 if  ∈ 01

...
...

0 +  if  ∈ 0



where 01  
0
 are defined as before, ’s (for  = 1 ) are independent and identical draws

from a continuous distribution with zero mean and finite variance, and  may be different from

0

The following theorem establishes the consistency of ̂ .

Theorem 3.3 Suppose Assumptions A.1 and A.3-A.4 hold. Then under H1 (0) with possible diverging

max and random coefficients,  (̂ (0) ≥  )→ 1 as ( )→∞ for any non-stochastic sequence

 = 
¡
12

¢


The above theorem indicates that our test statistic ̂ (0) is divergent at 12 -rate under

H1 (0) and thus has power to detect any alternatives such that A.4 is satisfied.

3.4 Issues related to sequential multiple testing

It is well known that we need to take into account the multiplicity of individual tests when controlling

sizes in multiple testing procedures. In this subsection, we briefly discuss the related issues in our

context. Suppose that the null hypothesis H0 (0) is true. We consider the sequential testing procedure

described above to determine the number of groups, in which case we reject H0 (0) in either of the

following two cases:
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Case () :We fail to reject one of the individual hypotheses: H0 (1) H0 (2)  H0 (0 − 1)  say H0 (∗),
then we conclude that  = ∗ thus H0 (0) is rejected;

Case () : We reject all the individual hypotheses: H0 (1) H0 (2)  H0 (0 − 1)  and H0 (0) 

Note that when H0 (0) is true, H0 (1) H0 (2)  H0 (0 − 1) are all false. Let  (0) be the

asymptotic type I error of testing the single hypothesis H0 (0). Further let 
∗ (0) be the asymptotic

type I error of the sequential testing procedure described above. The next lemma shows that  (0)

and ∗ (0) are equal.

Lemma 3.4 Suppose that Assumptions A.1-A.3 hold. Then ∗ (0) =  (0) 

The key condition to ensure ∗ (0) =  (0) is that our test is consistent for the individual

hypotheses: H0 (1)  H0 (2)   and H0 (0 − 1) 
Suppose that our testing procedure starts with testing H0 (1) and ends with testing H0 (∗) where

∗ ≥ 2 This means that we have conducted ∗ tests, rejected H0 (1)  H0 (∗ − 1) but failed to
reject H0 (∗) at some prescribed nominal significance level . We consider the family-wise error rate
(FWER) for our sequential tests of H0 ()  1 ≤  ≤ ∗ which is defined as

FWER =  (Reject at least one hypothesis H0 () that is true 1 ≤  ≤ ∗ | H0 (0)) 

To control the FWER, one may consider the use of the Holm-Bonferroni method (see, e.g., Holm

(1979) and Hochberg (1988)).4 We order the individual p-values from the smallest to the largest as

(1) ≤ (2) ≤  ≤ (∗) with their corresponding null hypotheses labelled accordingly as H0(1) H0(2) 
H0(∗) Then, we reject H0() when for all  = 1   () ≤  (∗ −  + 1)  Thus, to control the

FWER at asymptotic level  for the ∗ tests we end up with, we can use the step-down Holm adjusted

-values for testing H0():
adjusted-() = min

¡
(∗ −  + 1) () 1

¢
and compare it with 

The Holm adjusted -values do not account for the dependence of the multiple tests. More sophis-

ticated methods, such as those based on resampling, can also be used to improve test powers (see, e.g.,

Romano and Wolf (2005a, 2005b)).

4When ∗  0, none of the hypotheses H0 ()   = 1 ∗ is true. Thus, the FWER = 0 When ∗ = 0, only

one of the hypotheses (H0 (0)) is true. Then, the FWER is the same as the probability of falsely rejecting H0 (0) 

which is well controlled as shown in Lemma 3.4. Nevertheless, in the case ∗  0 H0 (0)  H0 (∗) can all be
regarded as true in the sense that our test does not have power against H0 () for  = 0+1 ∗ when H0 (0) holds.

In this case, the FWER is different from the size of individual tests. In practice, we do not know whether ∗  0

∗ = 0 or 
∗  0 thus we recommend the use of conservative bounds for p-values.
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4 Monte Carlo simulations

In this section, we conduct Monte Carlo simulations to examine the finite sample performance of our

proposed testing method.

4.1 Data generating processes and implementation

We consider the following four data generating processes (DGPs):

DGP 1:  = 011 + 022 +  + 

DGPs 2-4:  = 011 + 02−1 +  + 

where  = + and ,   are IID  (0 1) variables, and mutually independent of each other.

DGP 1 is a static panel structure, while DGPs 2-4 are dynamic panel structures. In DGPs 1 and 2,¡
01 

0
2

¢
has a group structure:

¡
01 

0
2

¢
=

⎧⎪⎪⎨⎪⎪⎩
(05−05) with probability 0.3

(−05 05) with probability 0.3

(0 0) with probability 0.4



Therefore in DGPs 1 and 2, the true number of groups is 3. In DGP 3, we consider a completely

heterogeneous (random coefficient) panel structure where 01 and 
0
2 follow  (05 1) and U(−05 05) 

respectively. In principle, the true number of groups is the cross-section dimension  in this case. In

DGP 4, (01 
0
2) is similar to that in DGPs 1 and 2 except that it has some additional small disturbance.

Specifically,

¡
01 

0
2

¢
=

⎧⎪⎪⎨⎪⎪⎩
(05 + 011−05 + 012) with probability 0.3

(−05 + 011 05 + 012) with probability 0.3

(011 012) with probability 0.4



where 1 and 2 are each IID  (0 1)  mutually independent, and independent of ,  and 

DGP 4 can be thought of as a small deviation from a group structure.

For each DGP, we first test the null hypotheses: H0(1) H0(2) and H0(3) to examine the levels and
powers of our test.

We then use our tests to determine the number of groups as described in Section 2.1. We set

max = 8 and let the nominal size decrease with the time series dimension  to ensure that the type I

error decreases with  Specifically, we let the nominal size be 1 which equals to 0.10, 0.05 and 0.025

for  = 10 20 and 40, respectively.5 If all eight hypotheses, H0(1)  and H0(8) are rejected, then we
stop and conclude that the number of groups is greater than 8.

For the combination of  and  , we consider the typical case in empirical applications that  is

smaller than or comparable to  and let ( ) = (40 10)  (40 20) (40 40)  (80 10)  (80 20) and

(80 40)  The number of replications in the simulations is 1000.

5We also try fixing the nominal level at 0.05. The results are similar and available upon request.
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One important step in implementing our testing procedure is to choose the tuning parameter 

Following the theory in SSP, we let  =  ·  · −34 where  is the sample standard deviation of 
and  is some constant. We use three different values of  (025 05 and 1) to examine the sensitivity of

our results to  (thus ).

4.2 Simulation results

Table 1 shows the level and power behavior of our test statistics for testing the three null hypotheses:

H0(1) H0(2) and H0(3) We choose three conventional nominal levels: 0.01, 0.05 and 0.10. For DGPs
1 and 2, the true number of groups is 3. For H0(1) the rejection frequencies are all almost 1 for all
combinations of  and  at all three nominal levels. For H0(2) the powers of the test increase rapidly
with both  and  For example, when  = 40 the rejection frequencies are all 1 at all three nominal

levels. For H0(3) we examine the level of our test and find that the rejection frequencies are fairly close
to the nominal levels, especially when  is large.

For the heterogeneous DGP 3, our test rejects all the three hypotheses with the frequencies being 1

or nearly 1 at all three nominal levels. This reflects the power of our test against global alternatives. For

DGP 4 which represents a small deviation from the group structure, our test shows reasonable power

for large  , though it rejects  = 3 with a small frequency when  is small, as expected. Also note

that all the testing results are quite robust to the values of  (thus ).

Table 2 shows the proportions of the replications in which the number of groups determined by our

method is equal to a certain number. For DGPs 1 and 2, our method determines the correct number

of groups (3) with a large probability. For example, when  = 40 the number of groups determined

by our testing procedure equals the true number 3 with probabilities ranging from 0969 to 0988.

This is consistent with the recommended nominal level 0.025 (1 ) for  = 40 For DGP 3 where the

true number of groups is  our method determines a large number of groups (greater than 8) with

probabilities higher than 0.96 even when  = 20. DGP 4 represents a small deviation from a 3-group

structure. With a high probability, the number of groups determined by our method is 3 when  and

 are small, and is equal to or larger than 5 when  and  are large. These results are reasonable.

Intuitively, if  and  are small, the data can only provide limited information on the underlying DGP,

and it is reasonable to apply a 3-group structure to serve as a good approximation to the true model.

As  and  become large, more information on the underlying DGP is revealed, and it is sensible to

adopt a larger number of groups to approximate the true model more accurately.

5 Empirical application: income and democracy

The relationship between income and democracy has attracted much attention in empirical research;

see, e.g., Lipset (1959), Barro (1999), Acemoglu, Johnson, Robinson, and Yared (2008, AJRY hereafter),
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and Bonhomme, and Manresa (2012, BM hereafter). To the best of our knowledge, none of the existing

studies allows for heterogeneity in the slope coefficients in their model specifications. As discussed in

AJRY, “societies may embark on divergent political-economic development paths”. Thus, ignoring the

heterogeneity in the slope coefficients may result in model misspecification and invalidates subsequent

inferences. Hence, it is important to know whether the data support the assumption of homogeneous

slope coefficients. If not, then we need to determine the number of heterogeneous groups and classify

the countries using statistic methods. We apply our new method to study this important question.

5.1 Data and implementation

We let  be a measure of democracy for country  in period  and  be the logarithm of its real GDP

per capita. The measure of democracy and real GDP per capita are from the Freedom House and Penn

World Tables, respectively.6 Note that the Freedom House measures of democracy () are normalized

to be between 0 and 1.

We consider the fixed effect specification,

 = 1−1 + 2−1 +  + 

and assume that (1 2) has a group structure to account for possible heterogeneity.
7 In a closely

related paper, BM consider a group structure in the interactive fixed effects and assume (1 2) is

constant for all 

We use a balanced panel dataset similar to that in BM. The number of countries () is 82. The time

index is  = 1  8 where each period corresponds to a five-year interval over the period 1961-2000.

For example,  = 1 refers to years 1961-1965. Because the lagged  is used as a regressor, the number

of time periods ( ) is 7 The choice of the countries is determined by data availability. In addition,

we exclude the countries whose measures of democracy remain constant over all eight periods. The list

of the 82 countries can be found in Table 7. Table 3 presents the summary statistics. The details of

implementation of our method are the same as in the simulations.

5.2 Testing and estimation results

We first test the hypothesis H0(1) i.e., we test whether (1 2) is constant for almost all  For all three
values of the tuning parameter  =  · ·−34 ( = 025 05 and 1), we soundly reject this hypothesis.
All the p-values are less than 0.001. This provides strong evidence that the slope coefficients are not

homogeneous. We then test the hypothesis H0(2) and reject the hypothesis again at 5% level with

p-values being 0.006, 0.024 and 0.010 for  = 025 0.5 and 1, respectively. We continue to test H0(3)
6All the data are directly from AJRY: http://economics.mit.edu/faculty/acemoglu/data/ajry2008.
7We do not include time fixed effects, as our econometric theory so far has not yet been developed to allow time fixed

effect. We leave this important question for future research.
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and find that the p-values are 0.269, 0.173 and 0.045 for  = 025 0.5 and 1, respectively. Considering

that the p-values are above or close to 5%, we stop the testing procedure and conclude that the number

of groups is 3. Table 4 presents all the testing results and Table 7 shows the country membership of the

three groups. Note that we also report Holm adjusted -values in the last row in Table 4, which also

lend strong support to the conclusion of three groups in the data.

Table 5 presents the estimation results. We report both C-Lasso estimates and post C-Lasso esti-

mates. C-Lasso estimates are defined in Section 2.2. The post C-Lasso is implemented on the data of

each group based on the results of our classification. Both estimates are bias-corrected and the stan-

dard errors are obtained using the asymptotic theory developed in SSP. The C-Lasso and post C-Lasso

estimation results are similar for different values of  = 025 0.5 and 1. In the following discussion, we

focus on the post C-Lasso estimates with  = 05 It is clear that the estimated slope coefficients exhibit

substantial heterogeneity. For 1 the estimates for the three groups are -0.427, 0.078, and 0.341. All

of them are significant at the 5% level. It is interesting to note that not only the magnitudes but also

the signs of estimates are different among the three groups. For group 1, income has a negative effect

on democracy, while for groups 2 and 3, the effects are positive with different magnitudes. For 2 the

three group estimates are 0.115, -0.107 and 0.380. The first two estimates are not significant at the

5% level, while the third estimate is significant at the 1% level. We also present the point estimates of

cumulative income effect (CIE), which is defined as 1 (1− 2)  The estimates of CIE for the three

groups are -0.482, 0.070 and 0.550, which imply that a 10% increase in income per capita is associated

with increases of -0.0482, 0.007 and 0.055 in the measures of democracy, respectively.

Note that if we assume that 1 and 2 are homogeneous across  then the common estimates are

0.130 and 0.290, respectively. The common CIE estimate is 0.183. All the common estimates fall in the

middle of their corresponding group estimates.

To understand the heterogeneity in the data intuitively, we select a country from each of the three

groups (Malaysia, Indonesia, and Nepal) and show their time-series data in Panel A of Table 6. We

simply calculate the correlations between the dependent variable  and the key explanatory variable

−1 Even the simple correlations exhibit substantial heterogeneity with the values being -0.863, 0.069

and 0.658. This suggests that it is implausible that the slope coefficients are the same for all countries

even without doing any sophisticated analysis.

This application shows that ignoring the heterogeneity in the slope coefficients can mask the true

underlying relationship among economic variables.

5.3 Explaining the group pattern

According to the estimates of 1, we refer to groups 1, 2 and 3 as the “negative effect”, “small effect”

and “large effect” groups, respectively. Apparently, the group membership listed in Table 7 does not

match the countries’ geographic locations, though most of the countries in the “negative effect” group
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are in Africa or Central America. One natural question is how we explain the group membership.

For example, we may wonder why China and the United States, two very different countries, are both

classified into the same “small effect” group. This is actually not difficult to understand. We list the

original time-series data for the two countries in Panel B of Table 6. China’s measures of democracy

over this period do not show much progress, though it has a fast economic growth. Hence, intuitively,

China’s income effect should be small. On the other hand, the United States’ measures of democracy

remain constant at the highest level (1) over the period  = 2 8, which explains why United States is

also in the “small effect” group.

So far, our classification of the groups is completely statistical and does not use any a priori in-

formation. We further investigate the group pattern by using a cross-section multinomial logit model.

We let the dependent variable be group membership, which takes one of three values: 1, 2 or 3.8 The

explanatory variables include () initial education level in 1965, () initial income level in 1965, ()

initial democracy level in 1965, () a measure of constraints on the executive at independence, () inde-

pendence year/100, () 500-year change in income per capita over 1500-2000 and () 500-year change

in democracy over 1500-2000. Among them, ()  () and () are the initial key economic variables.

Acemoglu, Johnson and Robinson (2005) suggest that () is an important determinant of democracy.

() measures how recent a country became independent. () and () present long-run changes in

income and democracy levels, respectively. All the data are taken directly from AJRY.

Table 8 provides summary statistics for each of the three groups. The initial education levels are

clearly substantially different among the three groups. The average initial education level of the “neg-

ative effect” group is only half of that of the “small effect” and “large effect” groups. The 500-year

changes of income per capita and of democracy also differ noticeably among the three groups. The

“negative effect” group has smaller values of these two variables than the other two groups, which sug-

gests that “negative effect” group has achieved relatively slow long-run progress in economic growth

and democracy.

Table 9 presents the multinomial logit regression results for various model specifications. We choose

group 3 (the “large effect” group) as the base group. Compared with the “large effect” group, at the 5%

level, a higher education, a later independence year, or a larger 500-year change in democracy leads to

a reduced likelihood of being in the “negative effect” group, while a larger constraint on the executive

at independence leads to an increased likelihood. On the other hand, a higher education leads to a

higher likelihood of being in the “small effect” group and a larger 500-year change in democracy leads

to a lower likelihood. In summary, we find that the initial education level and the long-run progress in

democracy are important determinants of our group pattern.

8We only report the results for  = 05. The results for  = 025 and 1 are similar and available upon request.

16



6 Conclusion

We develop a data-driven procedure to determine the number of groups in a latent group panel structure

proposed in Su, Shi, and Phillips (2013). The procedure is based on conducting hypothesis testing on

the model specifications. The test is a residual-based LM type test and is asymptotically normally

distributed under the null. We apply our new method to study the relationship between income and

democracy and find strong evidence that the slope coefficients are heterogeneous and form three distinct

groups. Further, we find that the initial education level and the long-run progress in democracy are

important determinants of the group pattern.

There are several interesting topics for further research. Here we apply our testing procedure to

determine the number of groups for slope coefficients. The same idea can be applied to other group

structures, such as those considered in Bonhomme and Manresa (2012) where fixed effects have a

grouped pattern. We may also extend our methods to non-linear panel data models such as discrete

choice models.
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Table 1: Empirical rejection frequency

 = 025  = 05  = 1

  0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

40 10 0.998 0.999 1 0.998 0.999 1 0.998 0.999 1

40 20 1 1 1 1 1 1 1 1 1

= 1 40 40 1 1 1 1 1 1 1 1 1

80 10 1 1 1 1 1 1 1 1 1

80 20 1 1 1 1 1 1 1 1 1

80 40 1 1 1 1 1 1 1 1 1

40 10 0.214 0.459 0.568 0.176 0.400 0.525 0.144 0.358 0.484

40 20 0.708 0.88 0.939 0.683 0.865 0.935 0.665 0.855 0.932

DGP 1 = 2 40 40 1 1 1 1 1 1 1 1 1

80 10 0.471 0.702 0.792 0.385 0.63 0.749 0.323 0.581 0.715

80 20 0.970 0.997 0.999 0.964 0.996 0.999 0.966 0.993 0.999

80 40 1 1 1 1 1 1 1 1 1

40 10 0.022 0.062 0.110 0.016 0.061 0.104 0.012 0.049 0.094

40 20 0.019 0.043 0.074 0.014 0.039 0.077 0.009 0.037 0.075

= 3 40 40 0.008 0.036 0.063 0.007 0.034 0.061 0.012 0.036 0.065

80 10 0.022 0.107 0.168 0.025 0.080 0.152 0.021 0.078 0.138

80 20 0.015 0.035 0.057 0.020 0.039 0.063 0.019 0.043 0.078

80 40 0.008 0.045 0.078 0.009 0.042 0.073 0.007 0.041 0.078

40 10 1 1 1 1 1 1 1 1 1

40 20 1 1 1 1 1 1 1 1 1

= 1 40 40 1 1 1 1 1 1 1 1 1

80 10 1 1 1 1 1 1 1 1 1

80 20 1 1 1 1 1 1 1 1 1

80 40 1 1 1 1 1 1 1 1 1

40 10 0.206 0.433 0.547 0.152 0.361 0.482 0.118 0.289 0.421

40 20 0.792 0.937 0.966 0.766 0.924 0.959 0.739 0.907 0.957

DGP 2 = 2 40 40 1 1 1 1 1 1 1 1 1

80 10 0.468 0.715 0.837 0.376 0.623 0.769 0.266 0.503 0.659

80 20 0.990 0.998 0.999 0.986 0.998 0.999 0.980 0.997 0.999

80 40 1 1 1 1 1 1 1 1 1

40 10 0.008 0.053 0.102 0.008 0.036 0.062 0.004 0.026 0.054

40 20 0.011 0.038 0.069 0.014 0.039 0.075 0.009 0.034 0.073

= 3 40 40 0.007 0.021 0.054 0.006 0.021 0.052 0.008 0.023 0.050

80 10 0.028 0.088 0.127 0.014 0.043 0.087 0.008 0.034 0.068

80 20 0.017 0.042 0.087 0.022 0.044 0.086 0.019 0.045 0.080

80 40 0.016 0.049 0.095 0.013 0.048 0.088 0.014 0.049 0.086
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Table 1: Empirical rejection frequency (cont’d)

 = 025  = 05  = 1

  0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

40 10 1 1 1 1 1 1 1 1 1

40 20 1 1 1 1 1 1 1 1 1

= 1 40 40 1 1 1 1 1 1 1 1 1

80 10 1 1 1 1 1 1 1 1 1

80 20 1 1 1 1 1 1 1 1 1

80 40 1 1 1 1 1 1 1 1 1

40 10 0.998 1 1 0.999 1 1 0.997 1 1

40 20 1 1 1 1 1 1 1 1 1

DGP 3 = 2 40 40 1 1 1 1 1 1 1 1 1

80 10 1 1 1 1 1 1 1 1 1

80 20 1 1 1 1 1 1 1 1 1

80 40 1 1 1 1 1 1 1 1 1

40 10 0.970 0.994 0.997 0.974 0.995 0.997 0.981 0.996 0.999

40 20 1 1 1 1 1 1 1 1 1

= 3 40 40 1 1 1 1 1 1 1 1 1

80 10 1 1 1 1 1 1 1 1 1

80 20 1 1 1 1 1 1 1 1 1

80 40 1 1 1 1 1 1 1 1 1

40 10 1 1 1 1 1 1 1 1 1

40 20 1 1 1 1 1 1 1 1 1

= 1 40 40 1 1 1 1 1 1 1 1 1

80 10 1 1 1 1 1 1 1 1 1

80 20 1 1 1 1 1 1 1 1 1

80 40 1 1 1 1 1 1 1 1 1

40 10 0.308 0.568 0.696 0.243 0.501 0.633 0.181 0.404 0.552

40 20 0.921 0.974 0.994 0.907 0.97 0.991 0.891 0.958 0.985

DGP 4 = 2 40 40 1 1 1 1 1 1 1 1 1

80 10 0.670 0.864 0.931 0.590 0.805 0.893 0.476 0.705 0.839

80 20 0.999 1 1 0.999 1 1 0.999 1 1

80 40 1 1 1 1 1 1 1 1 1

40 10 0.031 0.113 0.172 0.034 0.089 0.145 0.019 0.079 0.124

40 20 0.115 0.229 0.312 0.104 0.208 0.290 0.098 0.202 0.282

= 3 40 40 0.388 0.623 0.737 0.380 0.617 0.733 0.370 0.611 0.725

80 10 0.091 0.201 0.300 0.066 0.157 0.260 0.052 0.142 0.222

80 20 0.224 0.408 0.525 0.209 0.385 0.512 0.210 0.379 0.501

80 40 0.773 0.915 0.957 0.769 0.913 0.954 0.759 0.909 0.947
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Table 2: Frequency of number of groups determined

   = 1  = 2  = 3  = 4  = 5   5

40 10 0 0.432 0.460 0.081 0.025 0.002

40 20 0 0.118 0.838 0.032 0.011 0.001

 = 025 40 40 0 0 0.981 0.015 0.004 0

80 10 0 0.209 0.623 0.132 0.035 0.001

80 20 0 0.003 0.961 0.027 0.007 0.002

80 40 0 0 0.973 0.018 0.009 0

40 10 0 0.475 0.421 0.075 0.026 0.003

40 20 0 0.133 0.828 0.025 0.014 0

DGP 1  = 05 40 40 0 0 0.981 0.013 0.006 0

80 10 0 0.251 0.599 0.127 0.023 0

80 20 0 0.004 0.957 0.031 0.007 0.001

80 40 0 0 0.976 0.014 0.010 0

40 10 0 0.516 0.390 0.065 0.026 0.003

40 20 0 0.144 0.818 0.027 0.010 0.001

 = 1 40 40 0 0 0.977 0.016 0.006 0.001

80 10 0 0.286 0.577 0.115 0.020 0.002

80 20 0 0.007 0.949 0.029 0.015 0

80 40 0 0 0.977 0.011 0.012 0

   = 1  = 2  = 3  = 4  = 5   5

40 10 0 0.453 0.448 0.077 0.020 0.002

40 20 0 0.063 0.898 0.033 0.006 0.000

 = 025 40 40 0 0 0.988 0.011 0.000 0.001

80 10 0 0.163 0.710 0.097 0.028 0.002

80 20 0 0.002 0.956 0.036 0.006 0

80 40 0 0 0.969 0.027 0.004 0

40 10 0 0.518 0.421 0.048 0.013 0

40 20 0 0.075 0.886 0.033 0.006 0

DGP 2  = 05 40 40 0 0 0.987 0.012 0.000 0.001

80 10 0 0.232 0.682 0.063 0.020 0.003

80 20 0 0.002 0.954 0.034 0.010 0

80 40 0 0 0.971 0.024 0.005 0

40 10 0 0.580 0.367 0.037 0.015 0.001

40 20 0 0.091 0.875 0.028 0.006 0

 = 1 40 40 0 0 0.986 0.012 0.001 0.001

80 10 0 0.342 0.590 0.055 0.012 0.001

80 20 0 0.003 0.952 0.032 0.013 0

80 40 0 0 0.974 0.022 0.004 0

Note: the numbers in the main entries are the proportions of the replications in which the number

of groups determined by our method is equal to, less than (5 in DGP 3), or greater than (5 in

DGPs 1, 2, and 4, 8 in DGP 3) a number.
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Table 2: Frequency of number of groups determined (cont’d)

    5  = 5  = 6  = 7  = 8   8

40 10 0.030 0.058 0.047 0.100 0.028 0.737

40 20 0 0.002 0.008 0.013 0.011 0.966

 = 025 40 40 0 0 0 0 0 1

80 10 0 0.003 0 0.014 0.002 0.981

80 20 0 0 0 0 0 1

80 40 0 0 0 0 0 1

40 10 0.016 0.042 0.023 0.067 0.016 0.836

40 20 0 0 0.004 0.013 0.012 0.971

DGP 3  = 05 40 40 0 0 0 0 0 1

80 10 0 0.001 0 0.005 0 0.994

80 20 0 0 0 0 0 1

80 40 0 0 0 0 0 1

40 10 0.008 0.022 0.012 0.027 0.014 0.917

40 20 0 0 0 0.004 0.004 0.992

 = 1 40 40 0 0 0 0 0 1

80 10 0 0 0 0.002 0 0.998

80 20 0 0 0 0 0 1

80 40 0 0 0 0 0 1

   = 1  = 2  = 3  = 4  = 5   5

40 10 0 0.305 0.524 0.110 0.050 0.011

40 20 0 0.023 0.747 0.167 0.050 0.013

 = 025 40 40 0 0 0.484 0.269 0.181 0.066

80 10 0 0.069 0.632 0.169 0.116 0.014

80 20 0 0 0.592 0.257 0.122 0.029

80 40 0 0 0.131 0.334 0.297 0.238

40 10 0 0.367 0.490 0.094 0.042 0.007

40 20 0 0.030 0.761 0.140 0.056 0.013

DGP 4  = 05 40 40 0 0 0.490 0.262 0.179 0.069

80 10 0 0.107 0.634 0.152 0.097 0.010

80 20 0 0 0.615 0.232 0.122 0.031

80 40 0 0 0.139 0.301 0.314 0.246

40 10 0 0.450 0.426 0.080 0.038 0.006

40 20 0 0.041 0.756 0.124 0.071 0.008

 = 1 40 40 0 0 0.506 0.231 0.195 0.068

80 10 0 0.162 0.616 0.136 0.081 0.005

80 20 0 0 0.618 0.205 0.139 0.038

80 40 0 0 0.145 0.251 0.356 0.248
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Table 3: Summary statistics ( = 82)

Time period  Years  : democracy : logarithm of real GDP per capita

mean median s.d. mean median s.d.

1 1961 - 1965 0.590 0.580 0.272 7.805 7.762 0.864

2 1966 - 1970 0.419 0.333 0.364 7.948 7.837 0.905

3 1971 - 1975 0.394 0.333 0.350 8.045 8.122 0.936

4 1976 - 1980 0.465 0.333 0.344 8.152 8.224 0.978

5 1981 - 1985 0.498 0.500 0.367 8.177 8.188 0.997

6 1986 - 1990 0.543 0.500 0.354 8.227 8.186 1.068

7 1991 - 1995 0.577 0.667 0.343 8.273 8.270 1.151

8 1996 - 2000 0.632 0.667 0.332 - - -

Table 4: Test statistics

 = 025  = 05  = 1

Null hypothesis  = 1  = 2  = 3  = 1  = 2  = 3  = 1  = 2  = 3

Statistics 3.706 2.518 0.619 3.706 1.975 0.944 3.706 2.323 1.699

p-values 0.0001 0.006 0.269 0.0001 0.024 0.173 0.0001 0.010 0.045

Holm adjusted p-values 0.0003 0.012 0.269 0.0003 0.048 0.173 0.0003 0.020 0.045
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Table 5: Estimation results

1 2 CIE

estimates s.e. t-stat estimates s.e. t-stat estimates

common estimation 0.130 0.031 4.160 0.290 0.043 6.770 0.183

Group 1 -0.449 0.054 -8.360 0.181 0.080 2.250 -0.548

C-Lasso Group 2 0.121 0.032 3.804 -0.144 0.074 -1.948 0.106

 = 025 Group 3 0.334 0.080 4.174 0.417 0.069 6.022 0.573

Group 1 -0.394 0.054 -7.333 0.129 0.077 1.611 -0.452

Post C-Lasso Group 2 0.103 0.034 3.245 -0.084 0.068 -1.135 0.095

Group 3 0.393 0.064 4.907 0.394 0.069 5.691 0.649

Group 1 -0.512 0.058 -8.778 0.163 0.088 1.863 -0.612

C-Lasso Group 2 0.121 0.036 3.332 -0.156 0.079 -1.973 0.105

 = 05 Group 3 0.301 0.057 5.280 0.413 0.064 6.503 0.513

Group 1 -0.427 0.058 -7.316 0.115 0.084 1.307 -0.482

Post C-Lasso Group 2 0.078 0.035 2.138 -0.107 0.074 -1.351 0.070

Group 3 0.341 0.051 5.976 0.380 0.063 5.983 0.550

Group 1 -0.496 0.077 -6.480 0.223 0.099 2.251 -0.638

C-Lasso Group 2 0.053 0.025 2.100 -0.365 0.102 -3.576 0.039

 = 1 Group 3 0.264 0.043 6.155 0.357 0.057 6.276 0.411

Group 1 -0.363 0.057 -4.740 0.139 0.089 1.405 -0.422

Post C-Lasso Group 2 0.021 0.022 0.828 -0.240 0.074 -2.352 0.017

Group 3 0.286 0.041 6.677 0.350 0.057 6.157 0.440

Note: CIE stands for cumulative income effect, which is defined as (1 (1− 2)) 

Table 6: Correlation between  and −1 for selected countries

Panel A: Representative countries Panel B: China v.s. U.S.

Time period  Malaysia Indonesia Nepal China U.S.

         

1 0.800 7.823 0.100 6.798 0.290 6.652 0.160 6.643 0.920 9.595

2 0.833 7.967 0.333 6.992 0.167 6.704 0 6.703 1 9.702

3 0.667 8.186 0.333 7.257 0.167 6.785 0 6.811 1 9.800

4 0.667 8.492 0.333 7.547 0.667 6.756 0.167 6.974 1 9.968

5 0.667 8.603 0.333 7.731 0.667 6.908 0.167 7.296 1 10.070

6 0.333 8.783 0.167 7.955 0.500 6.991 0 7.488 1 10.183

7 0.500 9.072 0.000 8.201 0.667 7.125 0 7.944 1 10.255

8 0.333 9.202 0.667 8.200 0.667 7.286 0 8.229 1 10.413

Correlation between

 and −1 ( = 2  8) -0.863 0.069 0.658 -0.330 N.A.
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Table 7: Classification of countries

Group 1 (“negative effect” group) (1 = 19)

Burkina Faso Central African Rep. Colombia Guatemala Iran

Kenya Sri Lanka Madagascar Mauritania Malaysia

Niger Nicaragua Sierra Leone El Salvador Syrian Arab Rep.

Chad Togo Turkey South Africa

Group 2 (“small effect” group) (2 = 30)

Argentina Austria Burundi China Cote d’Ivoire

Cameroon Congo Rep. Costa Rica Dominican Rep. Egypt Arab Rep.

France Gabon United Kingdom Ghana Indonesia

Ireland Italy Japan Luxembourg Mexico

Nigeria Rwanda Singapore Sweden Thailand

Tunisia Uganda United States Congo Dem. Rep. Zambia

Group 3 (“large effect” group) (3 = 33)

Benin Bolivia Brazil Chile Cyprus

Algeria Ecuador Spain Finland Guinea

Greece Guyana Honduras India Israel

Jamaica Jordan Korea Rep. Morocco Mali

Malawi Nepal Panama Peru Philippines

Portugal Paraguay Romania Trinidad and Tobago Taiwan

Tanzania Uruguay Venezuela RB

Table 8: Summary statistics by groups

Group 1 Group2 Group 3

“negative effect” “small effect” “large effect”

variables variable description mean s.d. mean s.d. mean s.d.

edu65 education level in 1965 1.678 1.160 3.967 2.713 3.232 1.634

inc65 logarithm of real GDP 7.568 0.582 7.903 1.073 7.852 0.783

per capita in 1965

dem65 measure of democracy in 1965 0.542 0.233 0.625 0.290 0.585 0.278

constraint constraints on the executive 0.353 0.343 0.295 0.338 0.335 0.367

at independence

indcent year of independence/100 19.094 0.690 18.889 0.735 18.951 0.685

democ 500 year democracy change 0.616 0.274 0.661 0.303 0.826 0.211

growth 500 year income per 1.288 0.931 2.157 1.237 2.091 1.014

capita change
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Table 9: Determinants of the group pattern

Group 1 (“negative effect” group)

edu65 -0.566*** -0.847** -1.013*** -1.294*** -1.491*** -1.249*** -0.990**

(0.199) (0.339) (0.347) (0.388) (0.418) (0.415) (0.423)

inc65 - 0.861 0.869 1.363 * 1.249 1.144 1.817*

- (0.718) (0.727 ) (0.778) (0.845) (0.873) (0.962)

dem65 - - 1.740 0.781 0.549 0.068 -0.356

- - (1.606 ) (1.718) (1.717) (1.720) (1.904)

constraints - - - 2.116 3.303** 4.282** 4.838***

- - - (1.313) (1.487) (1.704) (1.716)

indcent - - - - -0.906 -1.723* -1.963**

- - - - (0.694) (0.978) (0.971)

demco - - - - - -5.099* -5.627**

- - - - - (2.766) (2.778)

growth - - - - - - -1.074

- - - - - - (0.684)

Group 2 (“small effect” group)

edu65 0.167 0.260 0.249 0.299 0.301 0.795** 0.780**

(0.141) (0.225) (0.260) (0.259) (0.262) (0.334) (0.364)

inc65 - -0.295 -0.298 -0.427 -0.380 -0.714 -0.906

- (0.606) (0.601) (0.618) (0.674) (0.730) (0.788)

dem65 - - 0.142 0.535 0.495 -0.157 0.145

- - (1.401) (1.580) (1.583) (1.760) (1.784)

constraints - - - -0.862 -0.939 -0.340 -0.245

- - - (0.839) (1.099) (1.211) (1.216)

indcent - - - - 0.084 -0.983 -1.123

- - - - (0.653) (0.753) (0.788)

democ - - - - - -7.445*** -7.529***

- - - - - (2.572) (2.532)

growth - - - - - - 0.105

- - - - - - (0.540)

Note: *, ** and *** denote significance at the 10%, 5% and 1% levels, respectively. The results are based

on a multinomial logit regression where Group 3 (“large effect” group) is taken as the reference group. The

standard errors are calculated without taking into account the fact that the dependent variables are estimated.
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APPENDIX

In this appendix we prove the main results in the paper. The proof relies on some technical lemmas

given in Appendix B.

A Proof of the main results

Proof of Theorem 3.1. Let ̂ = (̂1  ̂ )
0 and ̄

= (
0
0)

−1 0
 Then by (2.4),

̂ =0 +0(
0
 − ̂) (A.1)

andp
 (0) = −12
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=1

h
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³
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´i0
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h
 +

³
0 − ̂

´i
−

=

Ã
−12

X
=1

00̄
0 −

!
+−12

X
=1

³
0 − ̂

´0
 0
0

³
0 − ̂

´
+2−12

X
=1

00

³
0 − ̂

´
≡ (1 − ) +2 + 23 , say, (A.2)

by the fact that ̄
0 =  We complete the proof by showing that under H0 (0), (i) 1 −


→  (0 0)  (ii) 2 =  (1)  and (iii) 3 =  (1). We prove (i)-(iii) in Propositions

A.1-A.3 below.

Proposition A.1 1 −
→  (0 0) under H0 (0) 

Proof. Recall that  = 0̄
0 and that  denotes the ( )’th element of  :  =

−1
P

=1

P
=1   0



¡
−1 0
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¢−1
 where  = 1 − −1 and 1 = 1 { = }  Let

̄ ≡ −1
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=1

P
=1  

0
Ω
−1
  Observe that

1 − = 2−12
X
=1

X
1≤≤
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≡ 11 +12 say.

It suffices to show that: (i) 11
→  (0 0) and (ii) 12 =  (1) 

First, we show (i). Using  = 1 − −1 we have
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≡ 111 +112 +113 +114 +115 say.

By Lemma B.4(ii)-(v), 112 + 113 + 114 + 115 =  (1)  We are left to show that

111
→  (0 0)  Observe that
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That is, { F} is an m.d.s. By the martingale CLT (e.g., Pollard (1984, p. 171)), it suffices to

show that

Z ≡
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where F−1 denotes expectation conditional on F−1 Observing that Z ≥ 0 it suffices to show
that Z =  (1) by showing that  (Z) =  (1) by Markov inequality. By Assumptions A.1(iv)-(v),
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For the moment we assume that  = 1 so that we can treat the ×1 vector ̄ as a scalar. (The general
case follows from Slutsky lemma and the fact that ̄0̄̄

0
̄ =

P
=1

P
=1 ̄ ̄ ̄̄ where ̄

denotes the ’th element of ̄) To bound the summation in (A.4), we consider three cases for the time

indices in  ≡ {    − 1} : (a) # = 5 (b) # = 4 and (c) # ≤ 3 We use 1 1 and
1 to denote the corresponding summations when the time indices are restricted to cases (a), (b),

and (c) respectively. In case (a), applying Davydov inequality (e.g., Hall and Heyde (1980, p. 278))

yields ¯̄

¡
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where  ∨  ≡ max ( ) and 1 ≡ max
°°̄̄°°4+2 °°̄22°°4+2  A similar inequality
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2
) By the repeated use of Cauchy-Schwarz’s and Jensen’s inequalities

and Assumption A.1(i),
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for some 1 ∞ With this, we can readily show that under A.1(iii),
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In case (b), we consider two subcases: (b1) one and only one of     equals −1 (b2)# {   } = 3
We use 11 and 12 to denote the corresponding summations when the individual indices are

restricted to subcases (b1) and (b2), respectively. In subcase (b1), wlog we assume that  = − 1 and
apply ¯̄


¡
̄̄ ̄̄−1−12

¢¯̄ ≤ 82 (− 1− )
(1+)(2+)

for 2 ≡
°°̄°°8+4D °°̄2̄−1−12°°(8+4)3D ≤ 2 for some 2  ∞ and (A.6)-(A.7) to

obtain

11 ≤ 6412
 3

X
=2

⎧⎨⎩ 1 X
1≤≤−1

 (− 1− ( ∨ ))(1+)(2+)
⎫⎬⎭
⎧⎨⎩ X
1≤≤−1

 (− 1− )(1+)(2+)

⎫⎬⎭
= 

¡
−2

¢


In subcase (b2), wlog we assume that  =  and      − 1 We consider two subsubcases: (b21)
either − 1−   ∗ or −   ∗, and (b22) − 1−  ≤ ∗ and −  ≤ ∗ In the first case, we have

¯̄

¡
̄̄̄̄

2


¢¯̄ ≤ ( 83 (∗)
(1+)(2+)

if − 1−   ∗
84 (  ) (∗)

(1+)(2+)
if −   ∗



where 3 ≡
°°̄̄2°°4+2 °°̄̄°°4+2 ≤ 3  ∞ and 4 ≡

°°̄̄̄2°°(8+4)3°°̄°°8+4 ≤ 4  ∞ These results, in conjunction with the fact that the total number of terms in
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the summation in subcase (b22) is of order 
¡
2 32∗

¢
and Assumption A.1(iii), imply that

12 ≤ 
h
 2 (∗)

(1+)(2+)
+ −4−22 32∗

i
= 

³
 2 (∗)

(1+)(2+)
+ −12∗

´
=  (1) .

Consequently, 1 =  (1)  In case (c), we have 1 = 
¡
−1

¢
as the number of terms in the

summation is 
¡
2 3

¢
and each term in absolute value has a bounded expectation. It follows that

Z1 =  (1) 

To bound Z2 we consider two cases for the set of indices  ≡ {    − 1}: (a) # = 5, and (b)
all the other cases. We use 2 and 2 to denote the corresponding summations when the individual

indices are restricted to subcases (a) and (b), respectively. In the first case, letting  = max(   )

we have ¯̄

¡
̄4̄̄ ̄ ̄

4


¢¯̄ ≤ 85 (    ) (− 1− )(2+) 

where 5 ≡
°°̄̄ ̄ ̄°°2+ °°̄44°°2+ ≤ 5  ∞ Then 2 ≤ 8−1

P
=1

 ()(2+) = 
¡
−1

¢
 In case (b), we have 2 = 

¡
−1

¢
 It follows that Z2 = 

¡
−1

¢
and thus

Z =  (1)  Consequently the first part of (A.3) follows.

For the second part of (A.3), by Assumptions A.1(iv)-(v) we have

X
=2

(2) = 4−2−1
X
=2



"
X
=1

−1X
=1

̄
0
̄

#2

= 4−2−1
X
=2

X
=1

−1X
=1

−1X
=1

(2 ̄
0
̄̄

0
̄) =  

In addition, we can show by straightforward moment calculations that (
P

=2 
2
)

2 =  2
 +  (1) 

Thus Var(
P

=2 
2
) =  (1) and the second part of (A.3) follows. This completes the proof of (i).

In addition, by Lemma B.4(i), 12 =  (1) 

Proposition A.2 2 =  (1) under H0 (0) 

Proof. Noting that 1{ ∈ 0} = 1{ ∈ ̂} + 1{ ∈ 0\̂} − 1{ ∈ ̂\0} under H0 (0) we

have

2 = −12
0X
=1

X
∈0



³
0 − ̂

´0
 0
0

³
0 − ̂

´

= −12
0X
=1

X
∈̂

¡
0 − ̂

¢0
 0
0

¡
0 − ̂

¢
+−12

0X
=1

X
∈0


\̂

³
0 − ̂

´0
 0
0

³
0 − ̂

´

−−12
0X
=1

X
∈̂\0



¡
0 − ̂

¢0
 0
0

¡
0 − ̂

¢
≡ 21 +22 −23 say.
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Let k·ksp denote the spectral norm. Note that kk ≤rank() kksp and kksp ≤ kk for any matrix 
By these properties, the submultiplicative property of the spectral norm, and the fact that k0ksp = 1

21 ≤ −12
0X
=1

°°0 − ̂
°°2 X

∈̂

k 0
0k ≤ −12

0X
=1

°°0 − ̂
°°2 X

∈̂

kk2

= −12

¡
( )−1 + −2

¢
 ( ) = −12

¡
1 +−1

¢
=  (1) 

Define

 =
n
 ∈ ̂ |  ∈ 0

o
and ̂ =

n
 ∈ 0 |  ∈ ̂

o
 (A.8)

where  = 1  and  = 1 0 Let ̂ = ∪∈0

̂ and ̂ = ∪∈̂

̂ Then by the

proof of Theorem 2.2 in SSP, for any   0

 (22 ≥ ) ≤ 
³
∪0

=1̂

´
→ 0 and  (23 ≥ ) ≤ 

³
∪0

=1̂

´
→ 0

It follows that 22 =  (1) and 23 =  (1)  Consequently 2 =  (1) under H0 (0) 

Proposition A.3 3 =  (1) under H0 (0) 

Proof. As in the proof of Proposition A.2, we make the following decomposition:

3 = −12
0X
=1

X
∈0



00(
0
 − ̂)

= −12
0X
=1

X
∈̂

00

¡
0 − ̂

¢
+−12

0X
=1

X
∈0


\̂

00(
0
 − ̂)

−−12
0X
=1

X
∈̂\0



00

¡
0 − ̂

¢
≡ 31 +32 −33 say.

Using the same arguments as those used in the study of 22 and 23 we can show that 32 =

 (1) and 33 =  (1)  Noting that 
0
 − ̂ = 

¡
( )−12 + −1

¢
for  = 1 0 under

H0 (0)  it suffices to prove that 31 =  (1) by showing that

̄31 ≡ −12
X
∈̂

 0
0 = 

³
min(( )12  )

´
for  = 1 0

By the fact that 1{ ∈ ̂} = 1{ ∈ 0} + 1{ ∈ ̂\0} − 1{ ∈ 0\̂} and the arguments used
in the study of 22 and 23 we can show that ̄31 ≡ ̇31 +  (1)  where ̇31 =
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−12
P

∈0

 0
0 Using 

0
0 =

P
=1( − ̄) we can decompose ̇31 as follows

̇31 = −12
X
∈0



X
=1

 −−12−1
X
∈0



X
=1

X
=1



=
¡
1− −1

¢
−12

X
∈0



X
=1

 −−12−1
X
∈0



X
1≤≤

 −−12−1
X
∈0



X
1≤≤



≡ ̇311 − ̇312 − ̇313 say.

Using Chebyshev inequality, we can readily show that ̇311 = 

¡
 12

¢
under Assumptions A.1(i),

(iv) and (v). Let  = (1  )
0 be an arbitrary  × 1 nonrandom vector with kk = 1 By

Assumptions A.1(i), (iv) and (v), and Jensen inequality,



∙³
0̇312

´2¸
= −1−2

X
∈0



X
∈0



X
1≤≤

X
1≤≤


¡
0

0


¢
= −1−2

X
∈0



X
1≤≤

X
1≤≤


¡
0

0


¢
= −1−2

X
∈0



X
1≤≤


¡
0

0


2


¢
=  ( ) 

Then ̇312 = 

¡
 12

¢
by Chebyshev inequality. Next,



∙³
0̇313

´2¸
= −1−2

X
∈0



X
1≤≤

X
1≤≤


¡
0

0


¢
+−1−2

X
∈0



X
∈0


 6=

X
1≤≤

X
1≤≤


¡
0

¢

¡
0

¢
≡  +  say.

Let  ≡ {   }  To bound  we consider two cases: (a) # = 4 and (b) # ≤ 3 and denote the
corresponding summations as  and  such that  =  +  Apparently,  = ( ) For  wlog we

consider three subcases: (a1)        (a2)        (a3)       , and denote the

corresponding summations as 1 2 and 3 respectively. (Note  = 2(1 + 2 + 3)) In subcase

(a1), we apply Davydov inequality to obtain

|1| ≤ 8−1−2
X
∈0



X
1≤≤

 (− )(1+)(2+) ≤ 8
∞X
=1

 ()(1+)(2+) =  ( ) 

where  = kk8+4
°°0

0


°°
(8+4)3

≤  ∞ by Assumption A.1(i) and Jensen inequal-

ity. Analogously, we can show that 2 =  ( ) and 3 = ( ) It follows that  = ( ) For  we

apply Davydov inequality to obtain

|| ≤ −1−2

⎧⎨⎩X
∈0



X
1≤≤

¯̄

¡
0

¢¯̄⎫⎬⎭
2

≤ −1−2

⎧⎨⎩X
∈0



X
1≤≤

 (− )(3+2)(4+2)

⎫⎬⎭
2

= −1−2
¡
2 2

¢
=  () 
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where  =
°°0

°°
8+4

°°0

°°
8+4

≤  ∞ by Assumption A.1(i). Consequently, {[0̇311 (3)]
2]}

=  ( +  ) and ̇313 = 

¡
12 +  12

¢
 In sum, we have ̇31 = 

¡
12 +  12

¢
 It fol-

lows that ̄31 = 

¡
12 +  12

¢
=  (min(( )12  ))

Proof of Theorem 3.2. By Theorem 3.1 and the Slutsky lemma, it suffices to prove the first two

parts of the theorem.

Step 1. We prove (i) ̂ (0) = + (1) under H0 (0)  Let  denote a ×1 vector with 1
in the ’th position and zeros everywhere else. Then  = 00̄

0 =
P

=1

P
=1 

0
 (0)

−1

 Using ̂
2
 − 2 = (̂ − )

2 + 2 (̂ − ) we decompose ̂ − as follows:

̂ (0)− =
1√


X
=1

X
=1

(̂ − )
2
+

2√


X
=1

X
=1

(̂ − ) ≡ ̂1+2̂2 say.

Noting that diag() is p.s.d., we have by (A.1) and Cauchy-Schwarz inequality

̂1 = −12
X
=1

(̂ − )
0
diag () (̂ − )

≤ 2−12
X
=1

00diag ()0 + 2
−12

X
=1

(̂ − 0 )
0 0

0diag ()0(̂ − 0 )

≡ 2̂11 + 2̂12 say.

We will show that ̂1 =  (1) for  = 1 and 2 By the fact that
P

=1 
0
 =  and 0 is

idempotent, we have

i0diag () i = tr [i0diag () i ] =
X
=1

tr
¡
00̄

0
¢
= tr

¡
0̄

0

¢
= tr

¡
0(

0
0)

−1 0
0

¢
= 

This, in conjunction with Davydov inequality, implies that


¯̄̄
̂11

¯̄̄
= −2−12

X
=1

 [0i (i
0
diag () i ) i

0
] = −2−12

X
=1

 (0i i
0
)

= −2−12
X
=1

X
=1


¡
2
¢
+ 2−2−12

X
=1

X
1≤≤

 ()

= (12−1) +(12−1) = (12−1).

Consequently ̂11 =  (
12−1) =  (1) by Markov inequality. Using 1{ ∈ 0} = 1{ ∈

̂} + 1{ ∈ 0\̂} − 1{ ∈ ̂\0} and following similar arguments as those used in the proof of
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Proposition A.2, we can show that under H0 (0) 

̂12 = −12
0X
=1

X
∈̂

(̂ − 0)
0 0

0diag ()0(̂ − 0) +  (1)

≤ −12
0X
=1

°°̂ − 0
°°2 X

∈̂

k 0
0diag ()0k+  (1)

= −12

³
( )

−1
+ −2

´
 () +  (1) =  (1) 

based on the fact that 00 ≤  for any p.s.d. matrix  and

X
∈̂

k 0
0diag ()0k ≤

X
∈̂

k 0
diag ()k ≤

X
∈̂

X
=1

°° 0

0
0̄

0

°°
≤

X
∈̂

X
=1

°° 0

0
̄



°° = X
∈̂

X
=1

°°° 0
 (

0
0)

−1
 0


°°°
≤ max

1≤≤

°°°Ω̂−1 °°°−1 X
∈̂

X
=1

kk4 =  () 

Consequently, we have shown that ̂1 =  (1) 

For ̂2 we first apply (A.1) to decompose it as follows

̂2 =
1√


X
=1

(̂ − )
0
diag()

=
1√


X
=1

00diag() +
1√


X
=1

(̂ − 0 )
0 0

0diag() ≡ ̂21 + ̂22 say.

Observe that

̂21 =
1

 2
√


X
=1

X
=1

X
=1


0
0Ω̂

−1
  0

0

=
1

 2
√


X
=1

X
=1

X
=1


0
0Ω

−1
  0

0

+
1

 2
√


X
=1

X
=1

X
=1


0
0

h
Ω̂−1 −Ω−1

i
 0
0 ≡ ̂211 + ̂212 say.

Noting that k00k ≤ k0k = kk  we apply Lemma B.3 to obtain
¯̄̄
̂212

¯̄̄
≤ max

1≤≤

°°°Ω̂−1 −Ω−1 °°° 1

 2
√


X
=1

¯̄̄̄
¯
X
=1



¯̄̄̄
¯

X
=1

kk2 kk

=  ( )

³
12−12

´
=  (1) 
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For ̂211 we have

̂211 =
1

 2
√


X
=1

X
=1

X
=1

X
=1

X
=1


0
Ω
−1
 

=
1

 2
√


X
=1

X
=1

X
=1


0
Ω
−1
  − 2

 3
√


X
=1

X
=1

X
=1

X
=1


0
Ω
−1
 

+
1

 4
√


X
=1

X
=1

X
=1

X
=1

X
=1


0
Ω
−1
 

≡ ̂211 − 2̂211 + ̂221 say.

We further decompose ̂211 as follows ̂211 =
1

 2
√


P
=1

P
=1

 0
Ω
−1
 

2
+

1
2
√


P
=1

P
1≤≤



× 0
Ω
−1
  +

1
2
√


P
=1

P
1≤≤


0
Ω
−1
  = ̂211 (1)+̂211 (2)+̂211 (3)  Ap-

parently, ̂211 (1) = 

¡
12−1

¢
by Markov inequality. Noting that [̂211 (2)] = 0 by

Davydov inequality we can readily show that


h
̂211 (2)

i2
=

1

 4

X
=1

X
1≤≤

X
1≤≤


£


0
Ω
−1
  

0
Ω
−1
 

¤
= 

¡
−1

¢


It follows that ̂211 (2) = 

¡
−12

¢
 Similarly, ̂211 (3) = 

¡
−12

¢
 Then ̂211 =



¡
12−1 + −12

¢
=  (1)  Analogously, we can show that ̂211 =  (1) for  =   Then

we have ̂211 =  (1) and ̂21 =  (1) 

For ̂22 using the same arguments as those used in the proof of Proposition A.2, we can show

that under H0 (0) 

̂22 =
1√


0X
=1

(̂ − 0)
0 X
∈̂

 0
0diag() +  (1)

=
1√


0X
=1

(̂ − 0)
0 X
∈0



 0
0diag() +  (1) ≡ ̄22 +  (1) 

Let =
1√


P
∈0



 0
0diag() Then as in the proof of Proposition A.2 and analysis of ̂211 (2),

we can show that

 =
1


√


X
∈0



X
=1

X
=1

0Ω̂
−1
  0

0

=
1


√


X
∈0



X
=1

X
=1

0Ω
−1
  0

0 +  (1)

=
1


√


X
∈0



X
=1

X
=1

X
=1

X
=1


0
Ω
−1
  +  (1) = 

³
12 +  12

´

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It follows that ̂22 = 

¡
( )−12 + −1

¢


¡
12 +  12

¢
=  (1)  This completes the proof

of (i1).

Step 2. We prove (ii) ̂ (0) = + (1) Observe that ̂ (0)− = 41+42

where

1 = −2−1
X
=2

X
=1

⎧⎨⎩
"
̂̂

0


−1X
=1

̂̂

#2
−
"
̄

0


−1X
=1

̄

#2⎫⎬⎭  and

2 = −2−1
X
=2

X
=1

⎧⎨⎩
"
̄

0


−1X
=1

̄

#2
−

"
̄

0


−1X
=1

̄

#2⎫⎬⎭ 

Noting that  (2) = 0 and Var(2) =  (1) by direct moment calculations, we have 2 =

 (1) by Chebyshev’s inequality. Thus we are left to show that 1 =  (1)  Again, using 
2− 2 =

(− )
2
+ 2 (− )  yields

1 = −2−1
X
=2

X
=1

"
̂̂

0


−1X
=1

̂̂ − ̄
0


−1X
=1

̄

#2

+2−2−1
X
=2

X
=1

"
̂̂

0


−1X
=1

̂̂ − ̄
0


−1X
=1

̄

#
̄

0


−1X
=1

̄

≡ 11 + 212

Let ̄12 ≡ −2−1
P

=2

P
=1[̄

0


P−1
=1 ̄]

2 By Cauchy-Schwarz inequality 12 ≤ {11}12©
̄12

ª12
 It is straightforward to show that ̄12 =  (1) so that we can prove that 1 =

 (1) by showing that 11 =  (1)  Using ̂̂ = (̂̂ − ̄) + ̄ and Cauchy-Schwarz

inequality,

11 ≤ 3−2−1
X
=2

X
=1

"³
̂̂ − ̄

´0 −1X
=1

̄

#2
+ 3−2−1

X
=2

X
=1

"
̄

0


−1X
=1

³
̂̂ − ̄

´#2

+3−2−1
X
=2

X
=1

"³
̂̂ − ̄

´0 −1X
=1

³
̂̂ − ̄

´#2
≡ 3111 + 3112 + 3113

We complete the proof of (ii) by showing that (ii1) 111 =  (1)  (ii2) 112 =  (1)  and (ii3)

113 =  (1) 

We first show (ii1) 111 =  (1). Using ̂̂ − ̄ = (̂ − ) ̄ + (̂ − ̄) +

(̂ − ) (̂ − ̄) and Cauchy-Schwarz inequality, we have

111 ≤ 3−2−1
X
=2

X
=1

"
(̂ − ) ̄

0


−1X
=1

̄

#2
+ 3−2−1

X
=2

X
=1

"


³
̂ − ̄

´0 −1X
=1

̄

#2

+3−2−1
X
=2

X
=1

"
(̂ − )

³
̂ − ̄

´0 −1X
=1

̄

#2
≡ 3111 + 3111 + 3111
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By Markov and Davydov inequalities we can show that −2−1
P

=2

P
=1[̄

0


P−1
=1 ̄]

2 =  (1) 

By Boole inequality, Doob inequality (e.g., Hall and Heyde (1980, pp.14-15)) for m.d.s., and then

Davydov inequality, for any   0 we have



Ã
max
1≤≤

max
2≤≤

°°°°°−12
−1X
=1

̄

°°°°°  18

!
≤

X
=1



Ã
max
2≤≤

°°°°°−12
−1X
=1

̄

°°°°°  18

!

≤ 1

 48

X
=1



°°°°°
−1X
=1

̄

°°°°°
8

=  (1) 

It follows that

max
1≤≤

max
2≤≤

°°°°°
−1X
=1

̄

°°°°° = 

³
 1218

´
 (A.9)

The same conclusion follows when one replaces ̄ by  or 1. Let ̄ =diag(
°°̄1°°2  °°̄°°2) By

(A.1), we can readily show that

−1
X
=1

k̂ − k2 ≤ 2−1
X
=1

k0k2 + 2−1
X
=1

°°°0(
0
 − ̂)

°°°2
=  (1) +  (1) =  (1)  (A.10)

and

−1
X
=2

X
=1

(̂ − )
2 °°̄°°2 = −1

X
=1

(̂ − )
0
̄ (̂ − )

≤ 2−1
X
=1

00̄0 + 2
−1

X
=1

(0 − ̂)
0 0

0̄0(
0
 − ̂)

=  (1) +  (1) =  (1)  (A.11)

By (A.9), (A.11), and Assumption A.3,

111 = −2−1
X
=2

X
=1

(̂ − )
2

"
̄0

−1X
=1

̄

#2

≤ −2 max
1≤≤

max
2≤≤

°°°°°
−1X
=1

̄

°°°°°
2(

−1
X
=2

X
=1

(̂ − )
2 °°̄°°2)

= −2

³
14

´
 (1) =  (1) 

To determine the probability order of 111 and 111 we use the uniform probability order of

̂ − ̄ We decompose ̂ − ̄ as follows:

̂ − ̄ = Ω̂
−12


"
 − −1

X
=1



#
−Ω−12

"
 − −1

X
=1

 ()

#

=  − 
−1

X
=1

 −Ω−12 −1
X
=1

[ − ()] ≡ 1 − 2 − 3, (A.12)

36



where  ≡ Ω̂−12 −Ω−12  By Lemma B.3 and the fact thatmax1≤≤ max1≤≤ kk =  (( )
1(8+4)

)

by Boole and Markov inequalities, we have max1≤≤ max1≤≤ k1k =  ( ( )
1(8+4)

) Fol-

lowing the proof of Lemma B.3(v), we can show that

max
1≤≤

°°°°°−1
X
=1



°°°°° ≤ max
1≤≤

°°°°°−1
X
=1

[ − ()]

°°°°°+ max
1≤≤

°°°°°−1
X
=1

 ()

°°°°°
= 

³
max{( )1(8+4) log ( )  (log ( )  )12}

´
+ (1)

= (1) (A.13)

It follows that max1≤≤ max1≤≤ k2k =  ( ) Also, max1≤≤ max1≤≤ k3k =  ( )

Thus max1≤≤ max1≤≤
°°°̂ − ̄

°°° =  ( ( )1(8+4)) In addition, using (A.12) and the above

bounds, we have

−1−1
X
=2

X
=1

2

°°°̂ − ̄

°°°2
≤ 3−1−1

X
=2

X
=1

2 k1k2 + 3−1−1
X
=2

X
=1

2 k2k2 + 3−1−1
X
=2

X
=1

2 k3k2

≤ 3−1−1
X
=2

X
=1

2 k1k2 + (
2
 ) + (

2
 ) =  (

2
 )

where the last equality follows from the fact that −1−1
P
=2

P
=1

2 k1k2 ≤ max1≤≤ kk2 −1−1
P
=2

P
=1

2 kk2 =  (
2
 ) Then by Assumption A.3,

111 = −2−1
X
=2

X
=1

"


³
̂ − ̄

´0 −1X
=1

̄

#2

≤ −1 max
1≤≤

max
1≤≤

"
−1X
=1

̄

#2 "
−1−1

X
=2

X
=1

2

°°°̂ − ̄

°°°2 #
= −1

³
14

´
 (

2
 ) =  (

142 ) =  (1) 

and

111 = −2−1
X
=2

X
=1

"
(̂ − )

³
̂ − ̄

´0 −1X
=1

̄

#2

= −2 max
1≤≤

max
1≤≤

°°°̂ − ̄

°°°2 max
1≤≤

max
1≤≤

°°°°°
−1X
=1

̄

°°°°°
2

−1
X
=2

X
=1

(̂ − )
2

= −2 (2 ( )1(4+2)) 

³
14

´
 (1) =  (

142 ) =  (1) 

It follows that 111 =  (1) 
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To show (ii2) and (ii3), we find that it is convenient to bound  ≡ −12
P−1

=1(̂̂ − ̄)

Using ̂̂ − ̄ = (̂ − ̄) + (̂ − ) ̄ + (̂ − ) (̂ − ̄), we have

 ≡ −12
−1X
=1

(̂ − ̄) + −12
−1X
=1

(̂ − ) ̄ + −12
−1X
=1

(̂ − ) (̂ − ̄)

≡ 1 + 2 + 3 say.

By (A.12), 1 = −12
P−1

=1  (1 − 2 − 3) ≡ 11 − 12 − 13 say. By the remark after

(A.9), (A.13), and Lemma B.3,

max
1≤≤

max
1≤≤

k11k ≤ max
1≤≤

kk max
1≤≤

max
1≤≤

°°°°°−12
−1X
=1



°°°°° =  ( ) (
14) =  (1) 

max
1≤≤

max
1≤≤

k12k ≤ max
1≤≤

kk max
1≤≤

°°°°°−1
X
=1



°°°°° max1≤≤
max
1≤≤

°°°°°−12
−1X
=1



°°°°°
=  ( ) (1) (

18) =  (1) 

and

max
1≤≤

max
1≤≤

k13k ≤ max
1≤≤

°°°Ω−12

°°° max
1≤≤

°°°°°−1
X
=1

[ − ()]

°°°°° max1≤≤
max
1≤≤

°°°°°−12
−1X
=1



°°°°°
=  (1) ( ) (

18) =  (1) 

It follows thatmax1≤≤ max1≤≤ k1k =  (1)  Similarly we can show thatmax1≤≤ max1≤≤ k2k
=  (1) and max1≤≤ max1≤≤ k3k =  (1). Hence max1≤≤ max1≤≤ kk =  (1)  It fol-

lows that

112 = −2−1
X
=2

X
=1

"
̄

0


−1X
=1

³
̂̂ − ̄

´#2

≤
½
max
1≤≤

max
1≤≤

kk2
¾(

−1−1
X
=2

X
=1

°°̄0°°2
)
=  (1) (1) =  (1) 

and

113 = −2−1
X
=2

X
=1

"³
̂̂ − ̄

´0 −1X
=1

³
̂̂ − ̄

´#2

≤
½
max
1≤≤

max
1≤≤

kk2
¾(

−1−1
X
=2

X
=1

°°°̂̂ − ̄

°°°2) =  (1)  (1) =  (1) 

as one can readily show that −1−1
P

=2

P
=1

°°°̂̂ − ̄

°°°2 =  (1). Thus 11 =  (1) 

This completes the proof of ()  ¥
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Proof of Theorem 3.3. Observe that

q
̂ (0)̂ (0) = 1 − ̂ (0) + 2 + 23 

where 1  2  and 3 are as defined in (A.2). We study the probability order of each term in the

last expression. Noting that k 0
0k2 ≤ 2 k 0

k2+2 k 0
0k2  we have−1−2

P
=1 k 0

0k2 ≤
21+22 where 1 = 2

−1−2
P

=1

P
=1

P
=1 

0
 and 2 = −1−4

P
=1

P
=1

P
=1

P
=1P

=1 
0
 By Assumption A.1 and Markov inequality, we can readily show that 1 =  (

−1)

and 2 =  (
−1) It follows that −1−2

P
=1 k 0

0k2 =  (
−1) Then by Lemma B.3(v),

−12−11 = −1−1
X
=1

00̄
0 ≤ max

1≤≤
max

³
̂

´
−1−2

X
=1

00
0
0

=  (1)

¡
−1

¢
= 

¡
−1

¢


By (A.1) and Cauchy-Schwarz inequality

−12−1̂ = −1−1
X
=1

X
=1

̂2 = −1−1
X
=1

̂0diag () ̂

≤ 2−1−1
X
=1

00diag ()0

+2−1−1
X
=1

(0 − ̂)
0 0

0diag ()0(
0
 − ̂)

≡ 21 + 22 say.

By Cauchy-Schwarz inequality, 1 ≤ 2−1−1
P

=1 
0
diag() + 2

−1−1
P

=1 
0
0diag()0

≡ 211 + 212 say. By the fact  = 0̄
0 ≤ [min(̂)]

−1−10
0
0 and Lemma B.3(v),

we have

11 ≤ [min(̂)]
−1−1−2

X
=1

0diag (0
0
0)

= [min(̂)]
−1−1−2

X
=1

X
=1

X
=1

X
=1


0
 = 

¡
−1

¢


as we can readily show that −1−2
P

=1

P
=1

P
=1

P
=1 

0
 = 

¡
−1

¢
based on

the fact that  = 1 { = }−−1 and Markov inequality. As in the analysis of ̂11 we can readily

apply the fact that i0diag() i =  to obtain

12 = −1−3
X
=1

0i i
0
diag () i i

0
 = −1−3

X
=1

0i i
0


= −1−3
X
=1

X
=1

X
=1

 = 

¡
−2

¢


It follows that 1 = 

¡
−1

¢
 By Cauchy-Schwarz inequality, 2 ≤ 2−1−1

P
=1(

0
 − ̂)

0 0


diag()(
0
 − ̂)+2−1−1

P
=1(

0
 − ̂)0 0

0diag()0(
0
 − ̂) ≡ 221+222 say. Noting
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that diag(0
0
0) ≤diag(

0
)  we have

21 ≤ [min(̂)]
−1−1−2

X
=1

(0 − ̂)
0 0

diag (0
0
0)(

0
 − ̂)

≤ [min(̂)]
−1−1−2

X
=1

(0 − ̂)
0 0

diag (
0
)(

0
 − ̂)

= [min(̂)]
−1−1−2

X
=1

(0 − ̂)
0

0


0
(

0
 − ̂)

≤ −1[min(̂)]
−1 max

1≤≤
−1

X
=1

kk4−1
X
=1

°°°0 − ̂

°°°2
= −1 (1) (1) (1) = 

¡
−1

¢


Using i0diag() i =  we have

22 = −1−3
X
=1

(0 − ̂)
0 0

i i
0
diag () i i

0
(

0
 − ̂)

= −1−3
X
=1

(0 − ̂)
0
i i

0
(

0
 − ̂)

≤ max
1≤≤

°°̄

°°2−1−1 X
=1

°°°0 − ̂

°°°2 = 

¡
−1

¢


It follows that 2 = 

¡
−1

¢
and −12−1̂ (0) = 

¡
−1

¢


By Assumption A.4(ii) and Lemma B.3(v), w.p.a.1

−12−12 = −1−1
X
=1

³
0 − ̂

´0
 0
0

³
0 − ̂

´
≥ min

³
̂

´
−1

0X
=1

X
∈̂

°°0 − ̂
°°2 ≥ 1

2
min () 0



Now, we decompose −12−13 as follows: −12−13 = −1−1
P

=1 
0
(

0
 − ̂) −

−1−2
P

=1 
0
i i

0
(

0
 − ̂) ≡ 31 +32 say. For the first term, we have

|31| ≤ max
1≤≤

°°−1 0

°°−1 X

=1

°°°0 − ̂

°°°
≤ max

1≤≤
°°−1 0


°°⎧⎨⎩−1

0X
=1

X
∈̂

°°0 − ̂
°°2⎫⎬⎭

12

=  ( ) (1) =  (1) 

40



where we use the fact that max1≤≤
°°−1 0


°° =  ( ) by using similar arguments as those used

in the proof of Lemma B.3(iii). Similarly,

|32| ≤ max
1≤≤

°°−10i°° max
1≤≤

°°−1 0
i
°°−1 X

=1

°°°0 − ̂

°°°
≤ max

1≤≤
°°−10i°° max

1≤≤
°°−1 0

i
°°⎧⎨⎩−1

0X
=1

X
∈̂

°°0 − ̂
°°2⎫⎬⎭

12

=  ( ) (1) (1) =  (1) 

It follows that −12−13 =  (1) 

In sum, we have −12−1
q
̂ (0)̂ (0) ≥ 1

2min () 0
+  (1) w.p.a.1. In addition, we

can show that ̂ (0) has a positive probability limit under H1 (0)  It follows that under H1 (0) 

 (̂ (0) ≥  )→ 1 as ( )→∞ for any  = 
¡
12

¢
 ¥

Proof of Lemma 3.4. Observe that

∗ (0) ≡ lim
( )→∞

 (Case () or Case () occurs | H0 (0))

≤ lim
( )→∞

 (Case () occurs | H0 (0)) + lim
( )→∞

 (Case () occurs | H0 (0))

= lim
( )→∞

 (Case () occurs | H0 (0))

≤ lim
( )→∞

 (Reject H0 (0) | H0 (0)) ≡  (0) 

where the equality follows from the fact that lim( )→∞  (Reject H0 () | H0 (0)) = 1 for all   0

by applying Theorem 3.3 to the case of testing H0 () with   0. On the other hand,

∗ (0) ≡ lim
( )→∞

 (Case () or Case () occurs | H0 (0))

≥ lim
( )→∞

 (Case () occurs | H0 (0))

≥ 1− lim
( )→∞

0X
=1

 (Fail to reject H0 () | H0 (0))

= 1− lim
( )→∞

 (Fail to reject H0 (0) | H0 (0))

= lim
( )→∞

 (reject H0 (0) | H0 (0)) ≡  (0) 

where the first equality follows again from the fact that lim( )→∞  (Reject H0 () | H0 (0)) = 1 for

all   0 Combining the two results above yields 
∗ (0) =  (0)  ¥
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B Some technical lemmas

Define theth order U-statistic U =
Ã





!−1P
1≤1≤ 

¡
1   

¢
where  is symmetric in

its arguments. Let  (·) denote the distribution function of  Let (0) =
R · · · R  (1   )Π=1 () 

and () (1  ) =
R · · · R (1   +1   ) Π=+1 () for  = 1  Let (1) () =

(1) ()−(0) and () (1  ) = () (1  )−
P−1

=1

P
() 

()
¡
1   

¢−(0) for  = 2 

where the sum
P

() is taken over all subsets 1 ≤ 1  2  · · ·   ≤  of {1 2  }  Let

H()
 =

Ã




!−1 P
1≤1≤ ()

¡
1   

¢
 Then by Theorem 1 in Lee (1990, p. 26), we have

the following Hoeffding decomposition:

U = (0) +
X
=1

Ã




!
H()
  (B.1)

To study the second moment of H()
 for 3 ≤  ≤  we need the following lemma.

Lemma B.1 Let {  ≥ 1} be an -dimensional strong mixing process with mixing coefficient  (·)
and distribution function  (·)  Let the integers (1  ) be such that 1 ≤ 1  2  · · ·   ≤
 Suppose that max{

R | (1  )|1+̃ 1 (1  ) 
R | (1  )|1+̃ 1 (1  )

+1 (+1  )} ≤  for some ̃  0 , where, e.g., 1 (1  ) denotes the distribution

function of
¡
1   

¢
. Then¯̄̄̄Z

 (1  ) 1 (1  )−
Z

 (1  ) 
(1)
1

(1  ) +1 (+1  )

¯̄̄̄
≤ 41(1+̃) (+1 − )

̃(1+̃)


Proof. See Lemma 2.1 in Sun and Chiang (1997).

Lemma B.2 Let {  ≥ 1} be an -dimensional strong mixing process with mixing coefficient  (·) and
distribution function  (·)  Suppose that  () = 

¡
−3(2+)−

¢
 If there exists   0 such that

 ≡ max
½Z

| (1  · · ·  )|2+ Π=1 ()  
¯̄

¡
1   

¢¯̄2+¾ ≤ X
=1

 () 

and −1
P

=1

P
=1

 () =  (1)  then [H()
 ]

2 = 

¡
−3

¢
for 3 ≤  ≤ 

Proof. The proof is analogous to that of Lemma A.6 in Su and Chen (2013) who consider conditional

strong mixing processes instead.

Lemma B.3 Recall Ω̂ ≡  0
0 and Ω ≡ (Ω̂) Let Ω̂1 ≡  0

 and Ω1 ≡ (Ω̂1) Sup-

pose Assumptions A.1-A.3 hold. Then (i) max(Ω̂1) ≤ max (Ω1) + 

¡
−12

¢
 (ii) min(Ω̂1) ≥

min (Ω1) − 

¡
−12

¢
 (iii) max1≤≤

°°°Ω̂1 −Ω1°°° =  ( )  (iv) max1≤≤
°°°Ω̂−11 −Ω−11 °°° =
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 ( )  (v) max1≤≤
°°°Ω̂ −Ω°°° =  ( ) and max1≤≤

°°°Ω̂−1 −Ω−1 °°° =  ( )  where

 ≡ max{( )1(4+2) log ( )  (log ( )  )12}

Proof. The results in (i)-(ii) follow from Lemmas A.1(iv)-(v) in Su and Jin (2012). Su and Chen

(2013, Lemma A.7) prove (iii) for the conditional strong mixing process. The result also holds for strong

mixing processes with a simple application of the Bernstein-type inequality for strong mixing processes

(see, e.g., Lemma 2.2 in Sun and Chiang (1997)). (iv) follows from (i)-(iii) and the submultiplicative

property of the Frobenius norm.

Now we show (v). Using 0 =  − −1i i0 , we can decompose Ω̂ −Ω as follows:

Ω̂ −Ω = −1 [ 0
0 − ( 0

0)]

=
³
Ω̂1 −Ω1

´
− ̄̄

0
 +

¡
̄̄

0


¢
=

³
Ω̂1 −Ω1

´
− £̄ −

¡
̄

¢¤ £
̄ −

¡
̄

¢¤0 − £̄ −
¡
̄

¢¤

¡
̄ 0


¢
− ¡̄

¢ £
̄ −

¡
̄

¢¤0
+
£

¡
̄̄

0


¢−
¡
̄

¢

¡
̄ 0


¢¤


Following the proof of (iii), we can show that max1≤≤
°°̄ −

¡
̄

¢°° =  (1 )  where 1 ≡
max{( )

1(8+4)
log ( )  (log ( )  )12} = ( )max1≤≤

°° ¡̄

¢°° =  (1) by Assump-

tion A.1(i). Let  denote the ( )th element of 
¡
̄̄

0


¢ − 
¡
̄

¢

¡
̄ 0


¢
for   = 1   Then

by triangle inequality, Davydov inequality, and Assumption A.2(iii),

|| =
1

 2

¯̄̄̄
¯
X
=1

X
=1

cov ()

¯̄̄̄
¯ ≤ 1

 2

X
=1

|cov ()|+ 1

 2

X
1≤6=≤

|cov ()|

≤ 
¡
−1

¢
+
8


∞X
=1

 ()
(3+2)(4+2)

= 
¡
−1

¢


where  ≤ sup≥1max1≤≤ max1≤≤ kk8+4  Then by the triangle inequality, we havemax1≤≤°°°Ω̂ −Ω°°° =  ( )  (vi) follows from (v) and Assumption A.1(ii).

Lemma B.4 Let  and ̄ be as defined in the proof of Theorem 3.1. Suppose Assumptions A.1-A.3

hold. Then

(i) 1 ≡ −12
P

=1

P
1≤6=≤ 

¡
 − ̄

¢
=  (1) 

(ii) 2 ≡ −2−12
P

=1

P
1≤≤

P
=1  [ − ()]

0
Ω−1  =  (1) 

(iii) 3 ≡ −2−12
P

=1

P
1≤≤

P
=1 

0
Ω
−1
 [ − ()] =  (1) 

(iv) 4 ≡ −3−12
P

=1

P
1≤≤

P
=1

P
=1  [ − ()]

0
Ω−1 [ − ()] =

 (1) 

(v) 5 ≡ −3−12
P

=1

P
1≤≤

P
=1

P
=1  [ − ()]

0
Ω−1  () =  (1) 

Proof. The proof of (i) is analogous to that of Lemma A.8 in Su and Chen (2013) except that we

replace their Lemmas A.5-A.7 by Lemmas B.1-B.3. To show (ii), letting  ≡ [ − ()]
0
Ω−1 
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we can decompose 2 as follows

2 =
1

 2
√


X
=1

X
1≤≤

X
=1 6=

 +
1

 2
√


X
=1

X
1≤≤



+
1

 2
√


X
=1

X
1≤≤



≡ 21 +22 +23 say.

Let  = (
0
)
0
 0 (  ) =  and  (  ) = [0 (  )+0 (  )

+0 (  )+0 (  )+0 (  )+0 (  )]6 Let  ≡
Ã



3

!−1P
1≤≤

 (  )  Then 21 =
√


P
=1   where  = (−1)(−2)

2  By Assumption A.1 and

Lemma B.2, 
¡
2
21

¢
=

2


P
=1

¡
2

¢
= 2

¡
−3

¢
= 

¡
−1

¢
 It follows that 21 =



¡
−12

¢
. Noting thatD (22) = 0 and

¡
2
22

¢
= 1

 4

P
=1

P
1≤≤ (2) =



¡
−1

¢
 we have 22 = 

¡
−12

¢
 Similarly, 23 = 

¡
−12

¢
 Then (ii) follows. The

proof of (iii)-(v) is analogous to that of (ii) and thus omitted.
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