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Introduction

Hansen (1999) develops a static panel threshold model.

González et al. (2005) develop a panel smooth transition
regression model.

However, these approaches are static, the validity of which has
not yet been established in dynamic panels.

Surprisingly, there has been no rigorous study investigating an
important issue of nonlinear asymmetry in dynamic panels,
though there is a huge literature on GMM estimation of linear
dynamic panels.
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Endogeniety Issue

The main limitation is the assumption of exogeneity of the
regressors and/or the threshold variable.

The standard least squares approach (e.g. Hansen, 2000)
requires exogeneity in all the covariates.

Caner and Hansen (2004) allow for endogenous regressors,
still assuming the threshold variable to be exogenous.

See Hansen (2011) for an extensive survey.
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Dynamic Threshold Panel Data Modelling

Dang et al. (2012) propose the GMM for dynamic threshold
models in short panels with unobserved individual effects,
which can provide consistent estimates and a valid testing
procedure for threshold effects.
Ramirez-Rondan (2013) extends the Hansen’s (1999) work to
allow the threshold mechanism in dynamic panels, and
proposed the MLE, following Hsiao et al. (2002).
Kremer et al. (2013) consider a hybrid dynamic version by
combining forward orthogonal deviations transformation by
Arellano and Bover (1995) and the IV estimation of
cross-section model by Caner and Hansen (2004).
However, the crucial assumption is that regressors or the
transition variable or both are exogenous.
Endogeneity in the threshold variable can occur in various
examples, e.g., Kourtellos et al. (2009) and Yu (2013).
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Motivations and Contributions

We fill this gap by explicitly addressing an important issue as
how best to model nonlinear asymmetric dynamics and
cross-sectional heterogeneity, simultaneously.

We extend Hansen (1999, 2000) and Caner and Hansen
(2004) to dynamic panels with endogenous regressors and
threshold variable.

We propose two estimation methods based on FD
transformation and evaluate their properties by the
diminishing threshold effect asymptotics of Hansen (2000).

Our approach will overcome the main limitedness in the
existing literature, the assumption of exogeneity of regressors
and the transition variable.
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Motivations and Contributions

We first develop the FD-GMM method in which the
(time-varying) threshold variable is allowed to be endogenous.

Next, we propose a more effi cient FD-2SLS estimator in the
special case where the threshold variable is strictly exogenous,
but regressors are still allowed to be endogenous.

The FD-2SLS approach generalizes the Caner and Hansen’s
the cross-section estimation to the dynamic panel data
modelling.
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Asymptotic Theory for FD-GMM

FD-GMM estimator is shown to be asymptotically normal.

The standard inference based on the Wald statistic is feasible,
though convergence rate is slower than

√
n.

Importantly, the asymptotic normality holds true irrespective
of whether the regression function is continuous or not.

This is in contrast to the LS approach, where the discontinuity
changes the asymptotic distribution in a dramatic way.

Hence, inference on the threshold parameter can be carried
out in the standard manner.
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Asymptotic Theory for FD-2SLS

FD-2SLS estimator satisfies the oracle property where the
threshold estimate and the slope estimate are asymptotically
independent.

We allow for general continuous or discontinuous nonlinear
regression models for the reduced form, and provide the
corrected asymptotic variance formula for the slope
coeffi cients.

FD-2SLS of the threshold parameter is super-consistent, but
its inference is non-standard and can be easily conducted by
inverting an LR statistic, which follows a known pivotal
asymptotic distribution (Hansen, 2000).
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Testing for Linearity and Endogeneity

We provide testing procedures for identifying the threshold
effect, using the supremum type statistics that follow
non-standard asymptotic distributions due to the loss of
identification under the null of no threshold effect.

Critical values or the p-values can be easily evaluated by the
bootstrap.

Furthermore, we develop the exogeneity test of the threshold
variable, following the general principle of the Hausman
(1978) test, e.g. Kapetanios (2010) develops the exogeneity
test of the regressors in threshold regression.

This is a straightforward by-product by combining asymptotic
results of FD-GMM and FD-2SLS.
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Monte Carlo Studies

Overall simulation results, focusing on the bias, standard
error, and mean square error of the two-step FD-GMM
estimator, provide support for our theoretical predictions.

As there are many different ways to compute the weight
matrix in the first step, we propose an averaging of a class of
the two-step FD-GMM estimators obtained by randomising
the weight matrix.

This turns out to be successful in reducing sampling errors, so
we recommend the use of the averaging method in practice.
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Two Empirical Applications

We provide 2 empirical applications investigating an
asymmetric sensitivity of investment to cash flows and an
asymmetric dividend smoothing.

First, employing a balanced panel dataset of 560 UK firms
over 1973-1987, we find that cash flow sensitivity of
investment is stronger for cash-constrained, high-growth and
high-leveraged firms, a consistent finding with Farazzi et al.
(1988) that the sensitivity of investment to cash flows is an
indicator of the degree of financial constraints.

Next, using the balanced panel dataset of 246 US firms over
1990 - 2001, we find that dividend smoothing is relatively
stronger for firms that tend to pay the higher (target)
dividend payout, a finding generally consistent with the survey
evidence in Brav et al. (2005).



Dynamic Panels with Threshold Effect and Endogeneity

The Model

The Model

Consider the dynamic panel threshold regression model:

yit =
(
1, x′it

)
φ11 (qit ≤ γ) +

(
1, x′it

)
φ21 (qit > γ) + εit, (1)

for i = 1, ..., n; t = 1, ..., T, where yit is a scalar stochastic
variable, xit is the k1 × 1 vector of time-varying regressors,
1 (·) is an indicator function, and qit is the transition variable.
γ is the threshold parameter, and φ1 and φ2

regime-dependent slope parameters.

εit consists of the error components:

εit = αi + vit, (2)

where αi is an unobserved individual fixed effect and vit is a
zero mean idiosyncratic random disturbance.
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vit is assumed to be a martingale difference sequence,

E (vit|Ft−1) = 0,

where Ft is a natural filtration.
We do not assume xit or qit to be measurable wrt Ft−1, thus
allowing endogeneity in both.

With large n and fixed T, the MDS assumption is just for
expositional simplicity.

A leading example is the SETAR (Tong, 1990), in which case
we have xit consisting of the lagged yit’s and qit = yi,t−1.

We allow for both “fixed threshold effect”and “diminishing
threshold effect” for γ by defining (e.g. Hansen, 2000):

δ = δn = δ0n
−α for 0 ≤ α < 1/2. (3)
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The fixed effects estimator of the AR parameters is biased
downward (e.g. Nickell, 1981).

To deal with the correlation of regressors with individual
effects, we consider the FD transformation of (1):

∆yit = β′∆xit + δ′X ′it1it (γ) + ∆εit, (4)

where β
k1×1

=
(
φ12, ..., φ1,k1+1

)′, δ
(k1+1)×1

= φ2 − φ1, and

Xit
2×(1+k1)

=

(
(1, x′it)(
1, x′i,t−1

) ) and 1it (γ)
2×1

=

(
1 (qit > γ)
−1 (qit−1 > γ)

)
.

Let θ =
(
β′, δ′, γ

)′ and assume that θ belongs to a compact
set, Θ = Φ× Γ ⊂ Rk, with k = 2k1 + 2.
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The transformed model, (4) consists of 4 regimes, which are
generated by two threshold variables, qit and qit−1.

OLS from (4) is not unbiased since transformed regressors are
correlated with ∆εit.

To fix this problem we need to find an l × 1 vector of IVs,(
z′it0 , ...., z

′
iT

)′ for 2 < t0 ≤ T, such that either

E
(
z′it0∆εit0 , ..., z

′
iT∆εiT

)′
= 0, (5)

or, for each t = t0, ..., T,

E (∆εit|zit) = 0. (6)

zit may include lagged values of (xit, qit) and lagged
dependent variables.

The number of IVs may be different for each time t.
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Two Step FD-GMM for endogenous q

We consider the l× 1 vector of the sample moment conditions:

ḡn (θ) =
1

n

n∑
i=1

gi (θ) ,

gi (θ) =

 zit0
(
∆yit0 − β′∆xit0 − δ′X ′it01it0 (γ)

)
...

ziT
(
∆yiT − β′∆xiT − δ′X ′iT1iT (γ)

)
 . (7)

Let gi = gi (θ0) =
(
z′it0∆εit0 , ..., z

′
iT∆εiT

)′ and Ω = E (gig
′
i).

For a pd matrix, Wn such that Wn
p−→ Ω−1, let

J̄n (θ) = ḡn (θ)′Wnḡn (θ) . (8)

The GMM estimator of θ is given by

θ̂ = arg min
θ∈Θ

J̄n (θ) . (9)
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FD-GMM

The model is linear in φ for each γ and J̄n (θ) is not
continuous in γ, so the grid search algorithm is practical. Let

ḡ1n =
1

n

n∑
i=1

g1i, and ḡ2n (γ) =
1

n

n∑
i=1

g2i (γ) ,

g1i
l×1

=

 zit0∆yit0
...

ziT∆yiT

 , g2i (γ)
l×(k−1)

=

 zit0
(
∆xit0 ,1it0 (γ)′Xit0

)
...

ziT
(
∆xiT ,1iT (γ)′XiT

)
 .

GMM estimator of β and δ, for a given γ, is given by(
β̂ (γ)′ , δ̂ (γ)′

)′
=
(
ḡ2n (γ)′Wn ḡ2n (γ)

)−1
ḡ2n (γ)′Wn ḡ1n.

We obtain the GMM estimator of θ by

γ̂ = argmin
γ∈Γ

Ĵn (γ) , and
(
β̂
′
, δ̂
′)′

=
(
β̂ (γ̂)′ , δ̂ (γ̂)′

)′
.
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FD-GMM

The two-step optimal GMM estimator

1 Estimate the model by minimising J̄n (θ) with Wn = Il or

Wn=


2
n

∑n
i=1 zit0z

′
it0

−1
n

∑n
i=1 zit0z

′
it0+1 0 · · ·

−1
n

∑n
i=1 zit0+1z

′
it0

2
n

∑n
i=1 zit0+1z

′
it0+1

. . . . . .

0
. . . . . . −1

n

∑n
i=1 ziT−1z

′
iT

...
. . . −1

n

∑n
i=1 ziT z

′
iT−1

2
n

∑n
i=1 ziT z

′
iT


−1

(10)
and collect residuals, ∆̂εit.

2 Estimate the parameter θ by minimising J̄n (θ) with

Wn =

(
1

n

n∑
i=1

ĝiĝ
′
i −

1

n2

n∑
i=1

ĝi

n∑
i=1

ĝ′i

)−1

, (11)

where ĝi =
(

∆̂εit0z
′
it0
, ..., ∆̂εiT z

′
iT

)′
.



Dynamic Panels with Threshold Effect and Endogeneity

Estimation

FD-2SLS

FD-2SLS

Consider the case where qit are exogenous and the conditional
moment restriction (6) holds.

The threshold estimate, γ̂ can achieve effi cient rate of
convergence, as in the classical regression (Hansen, 2000),
and the slope estimate, φ̂ can achieve the semi-parametric
effi ciency bound under conditional homoskedasticity.

This strong result can be obtained since the two sets of
estimators are asymptotically independent.
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FD-2SLS

We consider two cases for the RF regression:

The first is a general non-linear regression where unknown
parameters can be estimated by the standard

√
n rate;

The second is the threshold regression with a common
threshold. This was also considered by Caner and Hansen
(2004, CH), albeit in the single equation.

CH consists of three steps; the first two steps yield the
threshold estimate and the third step performs the GMM
within each subsample.

This split-sample GMM approach does not work with panels
with a time varying threshold variable, qit, because it
generates multiple regimes with cross regime restrictions.

Their approach is not fully effi cient. We will develop a more
effi cient estimation algorithm.
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Estimation

FD-2SLS

We consider general non-linear RF regressions and provide
asymptotic variance formula that corrects estimation error
stemming from RF.

This is practically relevant since the linear projection in the
RF invalidates consistency of θ̂ when the SF is threshold
regression, e.g. Yu (2013) .

The FD model, (4) with conditional moment condition, (6)
and exogeneity of q, implies the following regression of ∆yit
on zit:

E (∆yit|zit) = β′E (∆xit|zit) + δ′E
(
X ′it|zit

)
1it (γ) . (12)
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FD-2SLS

Assume that the RF regressions are given by

E

(
1, x′it

1, x′it−1
|zit
)

=

(
1, F ′1t (zit; b1t)
1, F ′2t (zit; b2t)

)
= Ft (zit; bt)

2×(1+k1)

,

(13)
where bt = (b′1t, b

′
2t)
′ is an unknown parameter vector and Ft

is a known function. Let

Ht (zit; bt) = E (∆xit|zit) = F1t (zit; bt)− F2t (zit; bt) .

Caner and Hansen (2004) consider the linear regression and
the threshold regression for Ft.

If xit−1 ∈ zit, then F2t = x1t−1.

There are two regressions for xit due to the FD
transformation and the possibility that zit varies over time.

It is not suffi cient to consider regression, E (∆xit|zit) only,
due to threshold effect in the SF (12) .
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FD-2SLS

(12) and (13) motivates two-step estimation procedure:

1 For each t, estimate the RF, (13) by the LS, and obtain

b̂t, t = t0, ..., T, and fitted values, F̂it = Ft

(
zit; b̂t

)
.

2 Estimate θ by

min
θ∈Θ

M̂n (θ) =
1

n

n∑
i=1

T∑
t=t0

eit

(
θ, b̂t

)2
, (14)

eit (θ, bt) = ∆yit − β′Ht (zit; bt)− δ′Ft (zit; bt)
′ 1it (γ) .

3 This step can be done by the grid search. Thus, β̂ (γ) and
δ̂ (γ) can be obtained from OLS of ∆yit on Ĥit and
F̂ ′it1it (γ) , and γ̂ is defined as the minimiser of the profiled
sum of squared errors, M̂n (γ) .



Dynamic Panels with Threshold Effect and Endogeneity

Estimation

FD-2SLS

This produces a rate-optimal estimator for γ, implying that β
and δ can be estimated as if γ0 were known.

The two-step estimation yields the optimal estimate for β and
δ if the model is conditionally homoskedastistic, i.e.,
E
(
∆ε2

it|zit
)

= σ2, see Chamberlain (1987).

While it requires to estimate the conditional heteroskedasticity
to fully exploit the implications of the conditional moment
restriction, (6), it is reasonable to employ our two-step
estimator and robustify standard errors for heteroskedasticity.
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FD-2SLS

Threshold Regression in Reduced Form

Suppose that zit includes 1 and xit−1, zit, and

xit = Γ1tzit1 {qit ≤ γ}+Γ2tzit1 {qit > γ}+ηit, E (ηit|zit) = 0.

This implies that

∆yit = λ′1tzit1 {qit ≤ γ}+ λ′2tzit1 {qit > γ} (15)

−λ′3tzit1 {qit−1 ≤ γ} − λ′4tzit1 {qit−1 > γ}+ eit,

where E (eit|zit) = 0 and λ′1t =
(
0, β′Γ1t

)
, λ′2t =

(
δ1, φ

′
22Γ2t

)
,

λ′3tzit = β′xit−1, λ′4tzit = φ′22xit−1 − δ1.

Also, eit = ∆εit + η′it (β + 1 {qit > γ} δ2).

Since estimates of λ and γ are asymptotically independent, we
do not impose these constraints on λ to estimate γ.
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FD-2SLS

Thus, we estimate the model as follows:

1 Estimate γ by the pooled OLS of (15), which can be done by
the grid search, and denote the estimate by γ̃.

2 Fix γ at γ̃ and estimate Γjt, j = 1, 2 by OLS, for each t.
3 Estimate β and δ in (12) by the OLS with γ and the reduced
form parameters fixed at the estimates obtained from the
preceding steps. Denote these estimates by β̃ and δ̃.
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FD-2SLS

Our approach is different from Caner and Hansen, who
estimate the threshold parameter separately in the reduced
and the structural form.

Their approach introduces dependence between separate
threshold estimates, which invalidates their asymptotic
distribution.

Intuitively, the estimation error in the first step affects the
second step estimation of γ since the true thresholds are
restricted to be the same in both reduced and structural forms.
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Asymptotic Distributions

There are two frameworks.

One is Hansen’s (2000) diminishing threshold assumption;

The other is fixed threshold assumption as in Chan (1993).

For GMM we present an asymptotics that accommodates
both setups;

For 2SLS we develop the asymptotic distribution only under
Hansen’s framework.
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FD-GMM

Partition θ =
(
θ′1, γ

)′, where θ1 =
(
β′, δ′

)′.
As the true value of δ is δn, true values of θ and θ1 are
denoted by θn and θ1n.
Define

Gβ
l×k1

=

 −E
(
zit0∆x

′
it0

)
...

−E (ziT∆x′iT )

 , Gδ
l×(k1+1)

(γ) =

 −E
(
zit01it0 (γ)′Xit0

)
...

−E
(
ziT1iT (γ)′XiT

)


Gγ
l×1

(γ) =


{

Et0−1

[
zit0 (1, xit0−1)′ |γ

]
pt0−1 (γ)− Et0

[
zit0 (1, xit0)

′ |γ
]
pt0 (γ)

}
δ0

...{
ET−1

[
ziT (1, xiT−1)′ |γ

]
pT−1 (γ)− ET

[
ziT (1, xiT )′ |γ

]
pT (γ)

}
δ0

 ,
where Et [·|γ] stands for the conditional expectation given
qit = γ and pt (·) denotes the density of qit.
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FD-GMM

Assumption 1.The true value of β is fixed at β0 while that of
δ depends on n, for which we write δn = δ0n

−α for some
0 ≤ α < 1/2 and δ0 6= 0, and all θn are interior points of Θ.
Furthermore, Ω is finite and positive definite.

Assumption 2.(i) The threshold variable qit has a continuous
and bounded density, pt, such that pt (γ0) > 0, for all

t = 1, ..., T ; (ii) Et

(
zit

(
x′it, x

′
i,t−1

)
|γ
)
is continuous at γ0,

where Et (·|γ) = E (·|qit = γ), and

Et

(
zit

(
x′it, x

′
i,t−1

)
|γ
)
δ0 6= 0 for some t.

We do not require the discontinuity of the regression function
at the change point. This is a novel feature of the GMM.
Assumption 3.Let G = (Gβ, Gδ (γ0) , Gγ (γ0)), and G is of
the full column rank.
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FD-GMM

Theorem 1.Under Assumptions 1-3, as n→∞, √n( β̂ − β0

δ̂ − δn

)
n1/2−α (γ̂ − γ0)

 d−→ N
(

0,
(
G′Ω−1G

)−1
)
.

The asymptotic variance matrix contains δ0, and the
convergence rate of γ̂ hinges on unknown α.

These two cannot be consistently estimated in separation, but
they cancel out in the construction of t-statistic.

Thus, confidence intervals for θ can be constructed in the
standard manner.
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FD-GMM

Let

Ω̂ =
1

n

n∑
i=1

ĝiĝ
′
i −
(

1

n

n∑
i=1

ĝi

)(
1

n

n∑
i=1

ĝ′i

)
,

where ĝi = gi

(
θ̂
)
and

Ĝβ =

 −
1
n

∑n
i=1 zit0∆x

′
it0

...
− 1
n

∑n
i=1 (ziT∆x′iT )

 , Ĝδ =

 −
1
n

∑n
i=1

(
zit01it0 (γ̂)′Xit0

)
...

− 1
n

∑n
i=1

(
ziT1iT (γ̂)′XiT

)
 .

Gγ estimated by the Nadaraya-Watson kernel estimator:

Ĝγ=


1
nh

∑n
i=1 zit0

[
(1, xit0−1)′K

(
γ̂−qit0−1

h

)
− (1, xit0)

′K
(
γ̂−qit0
h

)]
δ̂

...
1
nh

∑n
i=1 ziT

[
(1, xiT−1)′K

(
γ̂−qiT−1

h

)
− (1, xiT )′K

(
γ̂−qiT
h

)]
δ̂

 .
(16)

See Hardle and Linton (1994) for the choice of kernel K and
bandwidth h.
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FD-GMM

Let V̂s = Ω̂−1/2
(
Ĝβ, Ĝδ

)
and V̂γ = Ω̂−1/2Ĝγ .

The asymptotic variance matrix for θ1 can be consistently
estimated by (

V̂ ′s V̂s − V̂ ′s V̂γ
(
V̂ ′γ V̂γ

)−1
V̂ ′γ V̂s

)−1

The t-statistic for γ = γ0 defined by

t =

√
n (γ̂ − γ0)

V̂ ′γ V̂γ − V̂ ′γ V̂s
(
V̂ ′s V̂s

)−1
V̂ ′s V̂γ

,

converges to the standard normal distribution.

Alternatively, nonparametric bootstrap can be employed to
construct confidence intervals.
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FD-2SLS

We collect all distinct RF functions, Ft, t = t0, ..., T, that are
not identities, and denote it as F (zi, b) , where zi and b are
the collections of all distinct elements of zit and bt.

Denote the collection of the corresponding elements of xit’s
by §i.
Write the RF as the multivariate regression in the cross
section:

§i = F (zi, b) + ηi, E (ηi|zi) = 0.

Let b̂ denote the LSE.

We follow the convention that Fi (b) = F (zi, b),

Fi = F (zi, b0), F̂i = F
(
zi, b̂

)
, etc, where b0 is true value.
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FD-2SLS

Reduced Form

We directly assume asymptotic normality of b̂ and existence of
a matrix-valued influence function, F below.
Assumption 4.There exists a matrix-valued function F (zi, b)
such that E |Fi|2 <∞ and

√
n
(
b̂− b0

)
=
(
EFiF′i

)−1 1√
n

n∑
i=1

Fiηi + op (1) .

We begin with this high-level assumption because our goal is
to illustrate how the estimation error in the first step affects
asymptotic distribution of the estimator of β, δ and γ in the
second step.
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FD-2SLS

For each t, let

Ξit (γ, bt)
(2k1+1)×1

=

[
Hit (bt)

Fit (bt)
′ 1it (γ)

]
,

Ξi (γ, b)
(2k1+1)×(T−t0+1)

= (Ξit0 (γ, bt0) , ...,ΞiT (γ, bT )) .

Let ei be the vector stacking{
∆εit + β′0 (∆xit − E (∆xit|zit))

}T
t=t0

.

Define

M1 (γ)
(2k1+1)×(2k1+1)

= E
[
Ξi (γ) Ξi (γ)′

]
, V1 (γ)
(2k1+1)×(2k1+1)

= A (γ) Ω (γ, γ)A (γ)′ ,

Ω (γ1, γ2)
((2k1+1)+kb)×((2k1+1)+kb)

= E

[(
Ξi (γ1) ei,
Fiηi

)(
e′iΞ
′
i (γ2) , η′iF′i

)]

A (γ)
(2k1+1)×((2k1+1)+kb)

=

(
I(2k1+1),−E

[
∂

∂b′

T∑
t=t0

(
H ′itβ0

)
Ξit (γ)

] (
EFiF′i

)−1

)
.
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For the asymptotic distribution of γ̂, introduce

M2 (γ) =

T∑
t=t0

 Et

[((
1, F ′1,it

)
δ0

)2
|γ
]
pt (γ)

+Et−1

[((
1, F ′2,it

)
δ0

)2
|γ
]
pt−1 (γ)

 ,

V2 (γ) =

T∑
t=t0

 Et

[(
eit

(
1, F ′1,it

)
δ0

)2
|γ
]
pt (γ)

+Et−1

[(
eit

(
1, F ′2,it

)
δ0

)2
|γ
]
pt−1 (γ)


+2

T−1∑
t=t0

Et
[
eiteit+1

(
1, F ′1,it

)
δ0

(
1, F ′2,it+1

)
δ0|γ

]
pt (γ) .

We write Vj = Vj (γ0) and Mj = Mj (γ0) for j = 1, 2.
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Assumption 5.The true value of β is fixed at β0 while that of
δ depends on n, for which we write δn = δ0n

−α for some
0 < α < 1/2 and δ0 6= 0.
Assumption 6.(i) The threshold variable qit has a continuous
and bounded density, pt, such that pt (γ0) > 0, for all
t = 1, ..., T ; (ii) Et (wit|γ) is continuous at γ0 for all t, and
non-zero for some t, where wit is either(
eit

(
1, F ′1,it

)
δ0 + eit+1

(
1, F ′2,it+1

)
δ0

)2
,
((

1, F ′1,it

)
δ0

)2
,

or
((

1, F ′2,it

)
δ0

)2
.

Assumption 7.For some ε > 0 and some ζ > 0,
E
(

supt≤T,|b−b0|<ε |eitFt (zit, bt)|2+ζ
)
<∞ and for all ε > 0

E
(

supt≤T,|b−b0|<ε |eit (Ft (zit, bt)− Ft (zit))|2+ζ
)

= O
(
ε2+ζ

)
.

Assumption 8.The minimum eigenvalue of the matrix
EΞit (γ) Ξ′it (γ) is bounded below by a positive value for all
γ ∈ Γ and t = 1, ..., T .
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Asymptotic confidence intervals for γ0 can be constructed by
inverting an LR test statistic (Hansen, 2000):

LRn (γ) = n
M̂n (γ)− M̂n (γ̂)

M̂n (γ̂)
.

Theorem 2.Let Assumptions 4-8 hold. Then,

√
n

(
β̂ − β0

δ̂ − δn

)
d−→ N

(
0,M−1

1 V1M
−1
1

)
, (17)

n1−2αM
2
2

V2
(γ̂ − γ0)

d−→ argmin
r∈R

(
|r|
2
−W (r)

)
, (18)

where W (r) is a two-sided standard Brownian motion and it
is independent of the limit variate in (17). Furthermore,

M2σ
2
e

V2
LR (γ0)

d−→ inf
r∈R

(|r| − 2W (r)) ,

where σ2
e = E

(
e2
it

)
.
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The first step estimation error does not affect the asymptotic
distribution of γ̂, while it contributes the asymptotic variance
of β̂ and δ̂ through Ω.

Estimation of the asymptotic variances of β̂ and δ̂ is standard
due to the asymptotic independence.

The asymptotic distribution for γ̂ is symmetric and has a
known distribution function,

1 +
√
x/2π exp (−x/8) + (3/2) exp (x) Φ

(
−3
√
x/2
)

− ((x+ 5) /2) Φ
(√
x/2
)
,

for x ≥ 0, where Φ is the standard normal distribution.
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The unknown norming factor n2αV −1
2 M2

2 can be estimated by
V̂ −1

2 M̂2
2 , where

M̂2 =

T∑
t=t0

1

nh

n∑
i=1

 ((
1, F̂ ′1,it

)
δ̂
)2
k
(
qit−γ̂
h

)
+
((

1, F̂ ′2,it

)
δ̂
)2
k
(
qit−1−γ̂

h

)
 ,

V̂2 =

T∑
t=t0

1

nh

n∑
i=1

 (
êit

(
1, F̂ ′1,it

)
δ̂
)2
k
(
qit−γ̂
h

)
+
(
êit

(
1, F̂ ′2,it

)
δ̂
)2
k
(
qit−1−γ̂

h

)


+2

T−1∑
t=t0

1

nh

n∑
i=1

êitêit+1

(
1, F̂ ′1,it

)
δ̂
(

1, F̂ ′2,it+1

)
δ̂k

(
qit − γ̂
h

)
.
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The normalization factor, V −1
2 M2σ

2
e for the LR statistic can

be estimated by V̂ −1
2 M̂2σ̂

2
e, where

σ̂2
e = (n (T − t0 + 1))−1∑n

i=1

∑T
t=t0

ê2
it.

Notice that it becomes 1 under the leading case of conditional
homoskedasticity and the MDS assumption for eit.

Hansen (2000) provides the distribution function of the
asymptotic distribution of the LRn statistic, which is(
1− e−x/2

)2
.
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Threshold Regression in Reduced Form

θ̂ is obtained from the three-step procedure.

Corollary 3.Let Assumption 5 hold and let
λj =

(
λ′jt0 , ..., λ

′
jT

)′
, j = 1, ..., 4, and assume that

λ1 − λ2 = n−αδ1 for some non-zero vector δ1 and that
Assumption 6 and 8 hold with
F1,it = Γ1tzit1 {qit ≤ γ}+ Γ2tzit1 {qit > γ} and
F2,it = xit−1. Furthermore, assume that E |zit|4 <∞ and
Ee4

it <∞ and M1, M2, V1 and V2 are defined with
Fi =

(
z′it0 , ..., z

′
iT

)′
. Then, the asymptotic distribution of θ̃ is

the same as in Theorem 2.
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Testing for Linearity

The test for threshold effects requires to develop the different
asymptotic theory due to the presence of unidentified
parameters under the null hypothesis (e.g. Davies, 1977).
Specifically, we consider the null hypothesis:

H0 : δ0 = 0, for any γ ∈ Γ, (19)

against the alternative

H1 : δ0 6= 0, for some γ ∈ Γ.

Then, a natural test statistic for H0 is

supW = sup
γ∈Γ

Wn (γ) ,

where Wn (γ) is the Wald statistic for fixed γ,

Wn (γ) = nδ̂ (γ)′ Σ̂δ (γ)−1 δ̂ (γ) ,

where δ̂ (γ) is the estimate of δ, given γ by FD-GMM or
FD-2SLS.
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Testing for Linearity

Σ̂δ (γ) is consistent asymptotic variance estimator for δ̂ (γ) .

For FD-GMM we employ Σ̂δ (γ) = R
(
V̂s (γ) V̂s (γ)

)−1
R′,

where V̂s (γ) is computed as in Section 4 with γ̂ = γ and
R =

(
0(k1+1)×k1 ,Ik1+1

)
.

For FD-2SLS we can use the same formula for the estimation
of the asymptotic variance of δ̂ (γ) since the estimation error
in γ does not affect the estimation of δ.

The supremum type statistic is an application of the
union-intersection principle commonly used in the literature.

For FD-2SLS, the limit is the supremum of the square of a
Gaussian process with some unknown covariance kernel,
yielding non-pivotal asymptotic distribution.

In case of the FD-GMM, the Gaussian process is given by a
simpler covariance kernel, though it seems not easy to
pivotalise the statistic.
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Theorem 4.(i) Consider the FD-GMM estimation. Let
G (γ) = (Gβ, Gδ (γ)) and D (γ) = G (γ)′Ω−1G (γ). Suppose
that infγ∈Γ det (D (γ)) > 0 and Assumption 2(i) holds. Then,
under the null (19),

supW
d−→ sup

γ∈Γ
Z ′G (γ)′D (γ)−1R′

[
RD (γ)−1R′

]−1
RD (γ)−1G (γ)Z,

where Z ∼ N
(
0,Ω−1

)
.

(ii) Consider the 2SLS estimation. Suppose that Assumptions,
10, 11, 6(i) , 7, and 8, hold. Then, under the null (19) ,

supW
d−→ sup

γ∈Γ
B (γ)′M1 (γ)−1R′

[
RM1 (γ)−1 V1 (γ)M1 (γ)−1R′

]−1
RM1 (γ)−1B (γ) ,

where B (γ) is a mean-zero Gaussian process with the
covariance kernel, A (γ1) Ω (γ1, γ2)A (γ2)′.
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Testing for Linearity

When the RF is a threshold regression, our test can be
performed based on the model, (15).

A null model might be that both RF and SF are linear for all t,

H′0 : λ1t−λ2t = λ3t−λ4t = 0, for all γ ∈ Γ and t = t0, ..., T.
(20)

The model, (15) is estimated by the pooled OLS and the
construction of supW statistic is standard.

These limiting distributions are not asymptotically pivotal. We
bootstrap or simulate the asymptotic critical values or
p-values.

Bootstrap procedure in details:



Dynamic Panels with Threshold Effect and Endogeneity

Testing

Testing for Linearity

Let θ̂ be FD-GMM or FD-2SLS estimator and construct

∆̂εit = ∆yit −∆x′itβ̂ − δ̂
′
X ′it1it (γ̂) ,

for i = 1, ..., n, and t = t0, ..., T . Then,

1 Let i∗ be a random draw from {1, ..., n}, and X∗it = Xi∗t,
q∗it = qi∗t, z∗it = zi∗t and ∆ε∗it = ∆̂εi∗t. Then, generate

∆y∗it = ∆x∗′it β̂ + ∆ε∗it for t = t0, ..., T.

2 Repeat step 1 n times, and collect
{(∆y∗it, X∗it, q∗it, z∗it) : i = 1, ..., n; t = t0, ..., T}.

3 Construct the supW∗ statistic from bootstrap samples.
4 Repeat steps 1-3 B times, and evaluate the bootstrap
p-values by the frequency of supW∗ that exceeds supW.
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Testing for Exogeneity

Test for the exogeneity of the threshold variable.

Kapetanios (2010) develops the exogeneity test of the
regressors in threshold regression models, following the
principle of the Hausman (1978) test.

Similarly, we can develop the Hausman type testing procedure
for the validity of the null that the threshold variable is
exogenous.

This is a straightforward by-product by combining FD-GMM
and FD-2SLS estimation methods and their asymptotic
results.
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We propose the t-statistic for the null that GMM estimate of
threshold, γ̂GMM , equals 2SLS estimate, γ̂2SLS :

tH =

√
n (γ̂GMM − γ̂2SLS)

V̂ ′γ V̂γ − V̂ ′γ V̂s
(
V̂ ′s V̂s

)−1
V̂ ′s V̂γ

Notice that

γ̂2SLS = γ0 + op

(
n−1/2

(
V̂ ′γ V̂γ − V̂ ′γ V̂s

(
V̂ ′s V̂s

)−1
V̂ ′s V̂γ

))
due to its super-consistency.

The asymptotic distribution of the t-statistic is the standard
normal under the null of strict exogeneity of the threshold
variable, qit.
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Monte Carlo Experiments

We explore finite sample performance of FD-GMM.

The GMM estimator is first to be examined in this general
context.

We thus focus on the GMM estimator.
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We consider the following two models:

yit = (0.7− 0.5yit−1) 1 {yit−1 ≤ 0}
+ (−1.8 + 0.7yit−1) 1 {yit−1 > 0}+ σ1uit,

yit = (0.52 + 0.6yit−1) 1 {yit−1 ≤ 0.8}
+ (1.48− 0.6yit−1) 1 {yit−1 > 0.8}+ σ2uit,

for t = 1, ..., 10, and i = 1, ..., n, where uit are iid N (0, 1).
The first model from Tong (1990) allows a jump in the
regression at the threshold point. The second is the
continuous model by Chan and Tsay (1998).
The threshold is located around the center of the distribution.
Unknown true parameter values: β = −0.5 and
δ = (−2.5, 1.2)′ in the first and β = 0.6 and δ = (0.96,−1.2)′

in the second.
All the past levels of yit are used as the instrumental variables.
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We also consider an averaging of a class of FD-GMM
estimators.

There are many different ways to compute the weight matrix
Wn in the first step, though there is no way to tell which is
optimal.

If the first step estimators are consistent, all the second step
estimators are asymptotically equivalent. Thus the averaging
does not change the first order asymptotic distribution.

We propose to randomize the weight matrix, Wn in the first
step as follows: We compute Wn in (11) with

ĝi =
(
∆ε̃it0z

′
it0 , ...,∆ε̃iT z

′
iT

)′
,

where ε̃its are randomly generated from N (0, 1) .
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We examine the bias, standard error (s.e.), and mean square
error (MSE) of FD-GMM estimator with 1,000 iterations.

For n = 50, 100 and 200, we set σ1 = 1 and σ2 = 0.5.

The simulation results are reported in Tables 1-3.

MSEs of FD-GMM generally decreases as the sample size
rises, but some parameters, particularly δ1 and δ2, are
estimated with much larger MSEs.

The continuous design yields higher MSEs which is consistent
with our theoretical finding.

We find that the averaging significantly reduces the MSEs.

As a rule of thumb, the reduction in MSEs by averaging
becomes larger when the original MSEs are rather big.
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Turning to biases and standard errors, we observe that the
averaging always reduces the stand errors, but it has a mixed
effect on the biases.

In particular, when the bias of the original FD-GMM estimator
is large (those of δ1 and δ2), then the averaging reduces it
and vice versa.

As a result, the average biases of FD-GMM estimator is
almost the same as that of the averaging whilst the standard
deviation of the former is always larger than the latter.

This implies that the averaging has some positive bias
reduction effect on FD-GMM estimator.
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Table: MSE of FD-GMM estimators

FD-GMM Averaging

DGP n γ β δ1 δ2 γ β δ1 δ2

Jump 50 0.063 0.077 0.179 0.498 0.115 0.096 0.185 0.566

100 0.089 0.075 0.207 0.600 0.087 0.066 0.172 0.517

200 0.066 0.068 0.174 0.536 0.067 0.056 0.144 0.474

Cont. 50 0.077 0.320 0.588 0.863 0.009 0.112 0.292 0.273

100 0.079 0.383 0.677 1.002 0.041 0.203 0.439 0.591

200 0.083 0.383 0.662 0.963 0.060 0.289 0.542 0.743

Table: Bias of FD-GMM estimators
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FD-GMM Averaging

DGP n γ β δ1 δ2 γ β δ1 δ2

Jump 50 −0.041 0.005 −0.044 0.100 −0.269 0.199 −0.151 −0.390
100 −0.047 0.007 −0.044 0.095 −0.106 0.073 −0.070 −0.093
200 −0.029 −0.011 −0.018 0.098 −0.060 0.016 −0.034 0.033

Cont. 50 0.057 0.180 -0.288 0.184 0.055 0.105 -0.198 0.163

100 0.064 0.145 -0.271 0.199 0.057 0.099 -0.231 0.210

200 0.074 0.190 -0.298 0.162 0.067 0.158 -0.270 0.170

Table: Standard Error of FD-GMM estimators
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FD-GMM Averaging

DGP n γ β δ1 δ2 γ β δ1 δ2

Jump 50 0.247 0.277 0.421 0.699 0.207 0.238 0.402 0.644

100 0.294 0.273 0.452 0.769 0.275 0.246 0.409 0.713

200 0.255 0.261 0.417 0.726 0.252 0.236 0.377 0.688

Cont. 50 0.272 0.537 0.711 0.911 0.080 0.317 0.503 0.497

100 0.274 0.601 0.777 0.981 0.194 0.440 0.621 0.739

200 0.279 0.589 0.757 0.968 0.236 0.514 0.685 0.845
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We have also performed the same experiment by fixing the
intercepts across the regimes:

yit = 0.7−0.5yit−11 {yit−1 ≤ 1.5}+0.7yit−11 {yit−1 > 1.5}+σ1uit,

yit = 0.52+0.6yit−11 {yit−1 ≤ 0.4}−0.6yit−11 {yit−1 > 0.4}+σ2uit

From Tables 4-6, we find that the averaging reduces MSEs
and standard errors even more substantially.

Biases are greatly reduced by the averaging for more than
70% of the cases.

Hence, we recommend the practitioner to apply the averaging
method to reduce sampling errors with the two-step FD-GMM
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Table: MSE of FD-GMM estimators (restricted)

FD-GMM Averaging

DGP n γ β δ γ β δ

Jump 50 0.105 0.102 0.124 0.050 0.095 0.132

100 0.106 0.116 0.142 0.075 0.097 0.122

200 0.095 0.080 0.102 0.076 0.070 0.088

Cont. 50 0.033 0.075 0.155 0.019 0.067 0.143

100 0.039 0.094 0.192 0.030 0.085 0.177

200 0.039 0.082 0.170 0.034 0.080 0.168

Table: Bias of FD-GMM estimators (restricted)
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FD-GMM Averaging

DGP n γ β δ γ β δ

Jump 50 0.009 0.051 -0.008 -0.029 -0.082 0.143

100 0.012 0.064 -0.047 0.021 0.031 -0.010

200 0.028 0.052 -0.047 0.025 0.041 -0.035

Cont. 50 0.013 -0.049 0.103 0.092 -0.008 0.038

100 0.021 -0.081 0.144 0.052 -0.053 0.098

200 0.014 -0.064 0.116 0.028 -0.051 0.094

Table: Standard Error of FD-GMM estimators (restricted)
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A dynamic threshold panel data model of investment

FD-GMM Averaging

DGP n γ β δ γ β δ

Jump 50 0.324 0.315 0.352 0.222 0.297 0.335

100 0.325 0.334 0.374 0.273 0.310 0.350

200 0.307 0.278 0.316 0.275 0.261 0.295

Cont. 50 0.182 0.270 0.380 0.102 0.259 0.376

100 0.196 0.295 0.414 0.164 0.286 0.409

200 0.197 0.279 0.396 0.183 0.278 0.399



Dynamic Panels with Threshold Effect and Endogeneity

Empirical Applications

A dynamic threshold panel data model of investment

A dynamic threshold panel data model of investment

Farazzi et al. (1988) find that investment spending by firms
with low dividend payments is strongly affected by availability
of cash flows.
Their empirical findings support the hypothesis that cash flow
has a significantly positive effect on investment for financially
constrained firms, suggesting that the sensitivity of investment
to cash flows is an indicator of financial constraints.
One of the main problems is that the distinction between
constrained and unconstrained firms is routinely based on an
arbitrary measure used to split the sample.
Furthermore, firms are not allowed to change groups over time
since the split-sample is fixed for the complete sample period.
Hence, we apply a threshold model of investment in dynamic
panels to address this problem.
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A dynamic threshold panel data model of investment

Most popular model takes the form of a Tobin’s Q model:

Iit = β1CFit + β2Qit + εit (21)

where Iit is investment, CFit cash flows, Qit Tobin’s Q, and
εit consists of the one-way error components, εit = αi + vit.

β1 represents the cash flow sensitivity of investment.

If firms are not financially constrained, β1 is expected to be
close to zero.

If firms were to face certain financial constraints, β1 would be
expected to be significantly positive.

Extensions of this Tobin’s Q model involve additional
financing variables such as leverage to control for the effect of
capital structure on investment (Lang et al., 1996) as well as
lagged investment to capture the accelerator effect of
investment (Aivazian et al., 2005).



Dynamic Panels with Threshold Effect and Endogeneity

Empirical Applications

A dynamic threshold panel data model of investment

Consider the augmented model:

Iit = φIit−1 + θ1CFit + θ2Qit + θ3Lit + εit, (22)

where Lit is leverage.

We extend (22) into the dynamic panel data with threshold
effects:

Iit = (φ1Iit−1 + θ11CFit + θ21Qit + θ31Lit) 1{qit≤γ} (23)

(φ2Iit−1 + θ12CFit + θ22Qit + θ32Lit) 1{qit>γ} + αi + vit,

where 1{qit≤c} and 1{qit>c} are an indicator function, qit is the
transition variable and γ the threshold parameter.



Dynamic Panels with Threshold Effect and Endogeneity

Empirical Applications

A dynamic threshold panel data model of investment

The data

We employ the same data set as in Hansen (1999) and
González et al. (2005).

It is a balanced panel of 565 US firms over 973-1987.

Following González et al. (2005), we exclude five companies
with extreme data values, and consider a final sample of 560
companies with 7840 company-year observations.

Investment is measured by investment to the book value of
assets;

Tobin’s Q the market value to the book value of assets;

Leverage long-term debt to the book value of assets;

Cash flow is cash flow to the book value of assets.
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A dynamic threshold panel data model of investment

Table 7 summarises the results for the dynamic threshold
model of investment, (23), with cash flow, leverage and
Tobin’s Q used as the transition variable, which are expected
to proxy the certain degree of financial constraints.

This choice is broader than Hansen (1999) who considers only
leverage and González et al. (2005) who employ leverage and
Tobin’s Q.

We only report the FD-GMM results which allow for both
(contemporaneous) regressors and the transition variable to
be endogenous.

The estimation results are reported respectively in the low and
high regimes.
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Cash flow used as the transition variable

Threshold estimate is 0.36 (about 80% of observations falling
into the lower cash-constrained regime).

The coeffi cient on lagged investment is significantly higher for
firms with low cash flows, suggesting that the accelerator
effect of investment is stronger for cash-constrained firms.

The coeffi cient on Tobin’s Q reveals an expected finding that
firms respond to growth opportunities more quickly when they
are cash-unconstrained.

We find the more negative impacts of the leverage when firms
are cash-constrained. This is consistent with our expectations
that the leverage should have a stronger negative impact on
investment for constrained firms, in line with the
overinvestment hypothesis (Jensen, 1986).
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A dynamic threshold panel data model of investment

Importantly, the sensitivity of investment to cash flow is
significantly higher for cash-constrained firms than for
cash-rich firms.

Firms with limited cash resources are likely to face some forms
of financial constraints (Kaplan and Zingales, 1997).

This finding supports evidence for the role of financial
constraints in the investment-cash flow sensitivity.
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A dynamic threshold panel data model of investment

Leverage used as the transition variable

Threshold estimate is 0.10, lower than the mean (0.24), with
more than 73% of observations falling into the high-leverage
regime.

Past investment has a much higher positive impact for
highly-levered firms, suggesting that firms with high leverage
attempt to respond to growth options quickly.

The effect of Tobin’s Q is higher for lowly-levered firms,
providing a support that by lowering the risky "debt
overhang" to control underinvestment incentives ex ante,
firms can take more growth opportunities and make more
investments ex post, though these impacts are rather small.

We find the more negative impacts of the leverage when firms
are highly levered.
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A dynamic threshold panel data model of investment

The coeffi cient on cash flow is significantly higher for firms in
the high-leverage regime;

A finding consistent with the prediction that cash flow should
have a stronger effect on the level of investment for financially
constrained firms.

Notice, however, that non-dynamic threshold model of
investment by Hansen (1999) fails to find conclusive evidence
in favor of this prediction.
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Tobin’s Q as the transition variable

Threshold is estimated at 0.56 with about 59% of
observations falling into the higher growth regime.

Past investment has a slightly stronger positive effect for firms
with low Tobin’s Q, but the differentials are statistically
insignificant.

The coeffi cient on Tobin’s Q in the low regime is significantly
higher, indicating that firms with low growth options respond
more strongly to changes in their investment opportunities.

Surprisingly, we find a negative relationship between leverage
and investment only in the lower growth regime.
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The sensitivity of investment to cash flow is relatively higher
for high-growth firms than low-growth firms.

This supports the hypothesis that cash flow should be more
relevant for firms with potentially high financial constraints.

Our results are qualitatively similar to González et al. (2005)
regarding the impacts on investment of Tobin’s Q and
leverage. However, they document an opposite evidence that
the coeffi cient on the (lagged) cash flow is positive but
considerably smaller for the higher regime.
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Table: A dynamic threshold panel data model of investment
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xit \ qit Cash Flow -Leverage Tobin Q

Lower Regime (φ1)

I−1 0.580
(0.132)

0.590
(0.123)

0.382
(0.226)

CF 0.245
(0.121)

0.600
(0.118)

−0.044
(0.209)

Q −0.017
(0.016)

−0.013
(0.014)

0.368
(0.173)

L −0.128
(0.049)

−0.029
(0.087)

−0.386
(0.184)

Upper Regime (φ2)

I−1 −0.215
(0.480)

0.253
(0.158)

0.365
(0.142)

CF 0.012
(0.128)

−0.043
(0.146)

0.217
(0.084)

Q 0.028
(0.021)

0.021
(0.014)

−0.031
(0.010)

L 0.825
(0.195)

2.968
(0.725)

0.194
(0.095)

Difference (δ)

I−1 −0.796
(0.561)

−0.336
(0.439)

−0.016
(0.325)

CF −0.233
(0.154)

−0.643
(0.203)

0.261
(0.264)

Q 0.045
(0.035)

0.034
(0.024)

−0.401
(0.175)

L 0.953
(0.207)

2.998
(0.745)

0.581
(0.147)

Threshold 0.358
(0.039)

0.100
(0.033)

0.561
(0.244)

Upper Regime (%) 19.4 26.4 58.9

Linearity test 0.0 0.0 0.003

J-test 60.1
(0.004)

33.3
(0.185)

45.4
(0.091)

No. of IVs 36 36 43
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In sum, we find that the results on the relationships between
investment and past investment, as well as cash flow, Tobin’s
Q and leverage are generally consistent with theoretical
predictions.

More importantly, the cash flow sensitivity of investment is
significantly stronger for cash-constrained, high-growth and
high-leveraged firms, a consistent finding with an original
hypothesis by Farazzi et al. (1988) that the sensitivity of
investment to cash flows is an indicator of the degree of
financial constraints facing the firms.

Our results demonstrate the usefulness of the proposed
dynamic threshold panel data estimation despite that the
transition variables used in the current study may be
imperfect measures of financial constraints.
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A dynamic threshold panel data model of dividend
smoothing

Lintner (1956) suggests that firms gradually adjust dividends
in response to changes in earnings, implying that firm
managers make dividend adjustment in response to
unanticipated (permanent) changes in firms’earnings towards
a long-run target payout ratio.
The number of empirical studies find evidence in favour of
such dividend smoothing at both firm and aggregate levels.
Adjustment of dividends may be asymmetric as managers
react differently to earnings shocks.
Brav et al. (2005) provide recent survey evidence that firms
are more likely to increase their dividend than to cut it whilst
the magnitude of the average cut is more severe than that of
the average dividend increase.



Dynamic Panels with Threshold Effect and Endogeneity

Empirical Applications

A dynamic threshold panel data model of dividend smoothing

Leary and Michaely (2011) find that a firm is less likely to
smooth dividends and move towards the target when its
dividend is below the target whilst it is more likely to smooth
dividends and leave them unchanged when its dividend is
above target.

At the aggregate level employing the SP500 data over 1871Q1
- 2004Q2, Kim and Seo (2010) estimate the threshold VECM
for the (log) dividend-price relationship and find that the
upward stickiness (smoothing) in the lower regime (when its
dividend is below the target) is a far more prominent than the
downward stickiness in the upper regime.

There is a conflict between the results at the disaggregate and
the aggregate level, though the micro-evidence in Leary and
Michaely (2011) is more consistent with the survey evidence
in Brav et al. (2005).
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We examine the issue of asymmetric dividend smoothing by
extending the Lintner’s (1956) partial adjustment model:

∆dit = (φ1di,t−1 + θ1eit) 1{qit≤γ}+(φ2di,t−1 + θ2eit) 1{qit>γ}+αi+vit.
(24)

We construct the annual firm data on dividend per share real
price (d), earnings per share (e) and return on asset (ROA)
over the period 1990 - 2001 from CRSP/Compustat.
By excluding companies with non-paying dividend
observations and keeping the companies with the full period
observations over 12 years, we obtain the final balanced panel
dataset for 246 firms with 2,952 company-year observations.
We consider qit = {ROAit, eit}. Both measures are expected
to provide a reasonable proxy for market conditions.
This study is expected to contribute to the existing literature
on dividend policy by incorporating asymmetries in dividend
adjustment at the disaggregate firm level.
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Table 8 presents the estimation results for the dynamic
threshold model of the asymmetric dividend smoothing, (24).

When ROA is used as the transition variable, the results show
that the threshold estimate is 0.148 such that 61% of
observations falling into the higher ROA regime.

Coeffi cient on lagged dividend is significantly higher for firms
with the higher ROA (0.905 vs 0.804), suggesting that
dividend smoothing is stronger for firms with higher ROA.

As expected, the impact reaction of dividend to earning is
stronger for the higher regime at 0.038 than for the lower
regime at 0.005, but statistically significant only at the upper.

Furthermore, the long-run target payout coeffi cients,
β̂1 = θ̂1/

(
1− φ̂1

)
and β̂2 = θ̂2/

(
1− φ̂2

)
, are 0.007 and

0.43 for firms with lower and higher ROA.
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Next, when EPS is used as the transition variable, the
threshold is estimated at 0.605, lower than median, with more
than 64% of observations falling into the high regime.

Here the results are qualitatively similar to those when ROA is
used as the transition variable.

In particular, the coeffi cient on lagged dividend is significantly
higher for firms with higher EPS, suggesting that the dividend
smoothing is stronger for firms with higher EPS.

These results suggest that dividend smoothing is substantially
stronger for firms that tend to pay the higher (target)
dividend payout especially in the long-term perspective, a
finding generally consistent with survey evidence in Brav et al.
(2005).
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Table: A dynamic threshold panel data model of dividend smoothing
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xit \ qit ROA EPS

Lower Regime (φ1)

DPS−1 0.804
(0.030)

0.625
(0.108)

EPS 0.005
(0.005)

−0.021
(0.019)

Upper Regime (φ2)

DPS−1 0.905
(0.029)

0.771
(0.071)

EPS 0.038
(0.008)

0.054
(0.026)

Difference (δ)

DPS−1 0.105
(0.026)

0.147
(0.086)

EPS 0.033
(0.009)

0.054
(0.026)

Threshold 0.148
(0.022)

0.605
(0.511)

Upper Regime (%) 61.0 64.2

Linearity test 0.002 0.528

J-test 47.4
(0.078)

35.6
(0.122)

No. of IVs 40 32
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Concluding Remarks

The investigation of nonlinear asymmetric dynamic modelling
has recently assumed a prominent role.

Some progress has been made, e.g., Dang et al. (2012),
Kremer et al. (2013) and Ramirez-Rondan (2013).

However, all of these studies maintain the assumption that
the regressors and/or the threshold variable are exogenous.
This limitation may hamper the usefulness of threshold
regression models in a general context.

In this paper we have explicitly addressed this challenging
issue by extending the approaches by Hansen (1999, 2000)
and Caner and Hansen (2004) and developing the dynamic
threshold panel data model, which allows both regressors and
threshold effect to be endogenous.
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Depending upon whether a threshold variable is endogenous
or not, we have proposed the two alternative estimation
procedures, FD-GMM and FD-2SLS, on the basis of the FD
transformation for removing unobserved individual effects.

Their asymptotic properties are derived through employing the
diminishing threshold effect and the empirical process theory.

The FD-GMM approach works well in the general case where
both threshold variable and regressors are endogenous.

FD-2SLS is shown to be a more effi cient estimation method in
the special case when the threshold variable is strictly
exogenous.

Our proposed approaches are expected to avoid any sample
selection bias problem and greatly extend the scope of the
applicability of dynamic threshold panel data model, as
demonstrated in our two empirical applications.
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Finally, we note several avenues for further researches
following the current study.

First, the FD-2SLS is more effi cient than the FD-GMM if the
exogeneity condition of the threshold variable is met, though
it is still uncertain if the FD-GMM is most effi cient in case of
the endogenous threshold variable. This will be an interesting
future research topic.

Next, given that conventional estimation procedures can be
significantly affected by the presence of cross-sectionally
correlated errors (e.g., Pesaran, 2006; Bai, 2009), it would be
desirable to explicitly control for the cross-section dependence
in the dynamic threshold panel data framework.

Furthermore, researches to develop similar estimation
algorithms for models with multivariate stochastic covariates
and for alternative nonlinear models will be under way.
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