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Abstract

This paper addresses a challenging issue as how best to model nonlinear asymmet-

ric dynamics and cross-sectional heterogeneity, simultaneously, in the dynamic threshold

panel data framework, under which both threshold variable and regressors are allowed to

be endogenous. Depending on whether the threshold variable is strictly exogenous or not,

we propose two different estimation methods: the first-differenced two-step least squares

and the first-differenced GMM. The former exploits the fact that the threshold variable

is strictly exogenous to achieve the super-consistency of the threshold estimator. We pro-

vide asymptotic distributions of the two estimators with and without exogeneity of the

threshold variable, respectively. The bootstrap-based testing procedure for the presence of

threshold effect is also developed. Monte Carlo studies provide a support for our theoret-

ical predictions. Finally, using the UK and the US company panel data, we provide two

empirical applications investigating an asymmetric sensitivity of investment to cash flows

and an asymmetric dividend smoothing.
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1 Introduction

In the time series literature there have been many studies that examine the implications of

the existence of a particular kind of nonlinear asymmetric dynamics. Examples are Markov-

Switching, Smooth Transition and Threshold Autoregression Models. The popularity of these

models lies in allowing us to draw inferences about the underlying data generating process or

to yield reliable forecasts in a manner that is not possible using linear models. Until recently,

however, most econometric analysis has stopped short of studying the issues of nonlinear asym-

metric mechanisms explicitly within a dynamic panel data context. Hansen (1999) develops

a static panel threshold model where regression coeffi cients can take on a small number of

different values, depending on the value of exogenous stationary variable. González et al.

(2005) generalise this approach and develop a panel smooth transition regression model which

allows the coeffi cients to change gradually from one regime to another.1 In a broad context

these models are a specific example of the panel data approach that allows coeffi cients to vary

randomly over time and across cross-sectional units as surveyed by Hsiao (2003, Chapter 6).

These approaches are static, the validity of which has not yet been established in dynamic

panels, though increasing availability of the large panel data sets has also prompted more

rigorous econometric analyses of dynamic heterogeneous panels. Surprisingly, however, there

has been almost no rigorous study investigating an important issue of nonlinear asymmetric

mechanism in dynamic panels, especially when time periods are short, though there is a huge

literature on GMM estimation of linear dynamic panels with heterogeneous individual effects,

e.g., Arellano and Bond (1991), Ahn and Schmidt (1995), Arellano and Bover (1995), Blundell

and Bond (1998), Alvarez and Arellano (2003), and Hayakawa (2012).

Another limitation is the maintained assumption of exogeneity of the regressors and/or the

threshold variable. While the endogenous transition in the Markov-Switching model has been

studied by Kim et al. (2008), not much progress has been made in the threshold regression

literature. The standard least squares approach, such as Hansen (2000) and Seo and Linton

(2007), requires exogeneity in all the covariates. Caner and Hansen (2004) relax this require-

ment by allowing for endogenous regressors, but they still assume the threshold variable to be

exogenous. See also Hansen (2011) for an extensive survey.

In the dynamic panel context, Dang et al. (2012) have recently proposed the generalised

GMM estimator applicable for dynamic panel threshold models, which can provide consistent

estimates of heterogeneous speeds of adjustment as well as a valid testing procedure for thresh-

1See Fok et al. (2005) for a large T treatment of smooth transition regression, thus not requiring the fixed

effect or first difference transformation to estimate the model.
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old effects in short dynamic panels with unobserved individual effects. Ramirez-Rondan (2013)

has extended the Hansen’s (1999) work to allow the threshold mechanism in dynamic panels,

and proposed the maximum likelihood estimation techniques, following the approach by Hsiao

et al. (2002). In order to allow endogenous regressors, Kremer et al. (2013) have considered

a hybrid dynamic version by combining the forward orthogonal deviations transformation by

Arellano and Bover (1995) and the instrumental variable estimation of the cross-section model

by Caner and Hansen (2004). However, the crucial assumption in all of these studies is that

either regressors or the transition variable or both are exogenous. We note in passing that

the endogeneity in the threshold variable can occur in various examples, e.g., Kourtellos et

al. (2009) and Yu (2013). Furthermore, in dynamic panels, it may naturally arise as a result

of the first-difference (FD) transformation applied to remove unobserved heterogeneity even if

the original threshold variable were exogenous.

We aim to fill this gap by explicitly addressing an important issue as how best to model

nonlinear asymmetric dynamics and cross-sectional heterogeneity, simultaneously. To this end

we extend the approaches by Hansen (1999, 2000) and Caner and Hansen (2004) to the dy-

namic panel data model with endogenous regressors and threshold variable, and develop the

general estimation and inference theory. We propose the two estimation methods based on the

FD transformation, and evaluate their properties by the diminishing threshold effect asymp-

totics of Hansen (2000). Our approach is expected to avoid any sample selection bias problem

(Hansen, 2000) associated with any arbitrary sample-splitting approach. More importantly, it

will overcome the main limitedness in the existing literature, namely, the maintained assump-

tion of exogeneity of regressors and\or the transition variable that may hamper the usefulness
of threshold regression models in a general context.

As a general approach, we first develop the FD-GMM method in which the (time-varying)

threshold variable can be endogenous or weakly exogenous. Next, considering that the least

squares estimator is Oracle effi cient in the standard regression, we also propose a more effi cient

two-step least squares (FD-2SLS) estimator in the special case where the threshold variable is

strictly exogenous, but regressors are still allowed to be endogenous. The FD-2SLS approach

generalizes the Caner and Hansen’s the cross-section estimation to the dynamic panel data

modelling. Furthermore, we identify cases where our FD-2SLS is able to estimate unknown

parameters more effi ciently than their method.

We develop the asymptotic theory for both the FD-GMM and the FD-2SLS estimators.

First of all, the FD-GMM estimator is shown to be asymptotically normal. Thus, the standard

inference based on the t- or Wald statistic is feasible, though the convergence rate is slower

than
√
n, depending on an unknown quantity under the diminishing threshold framework.
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Importantly, here, the asymptotic normality holds true irrespective of whether the regression

function is continuous or not. This is in contrast to the least squares approach, where the

discontinuity of the regression function changes the asymptotic distribution in a dramatic way.

Hence, inference on the threshold parameter can be carried out in the standard manner. Next,

we establish that the FD-2SLS estimator satisfies the oracle property where the threshold es-

timate and the slope estimate are asymptotically independent under the assumption of strict

exogeneity of the threshold variable. We allow for general continuous or discontinuous non-

linear regression models for the reduced form, and provide the corrected asymptotic variance

formula for the estimator of the slope parameters. Although the FD-2SLS estimator of the

threshold parameter is shown to be super-consistent, its inference is non-standard but can be

easily conducted by inverting a properly weighted LR statistic, which follows a known pivotal

asymptotic distribution (Hansen, 2000).

We also provide formal testing procedures for identifying the threshold effect. They are

based on the supremum type statistics and they have non-standard asymptotic distributions

due to the loss of identification under the null hypothesis of no threshold effect. But, the

critical values or the p-values of the tests can be easily evaluated by the bootstrap.

Monte Carlo studies show that the overall simulation results, focusing on the bias, standard

error, and mean square error of the two-step FD-GMM estimator, provide support for our

theoretical predictions. Given that there are many different ways to compute the weight

matrix in the first step, we also propose to consider an averaging of a class of the two-step

FD-GMM estimators that are obtained by randomising the weight matrix in the first step.

The averaging turns out to be quite successful in reducing the sampling errors, so that we

recommend the use of the averaging method in practice, even in the other types of non-linear

models applying the GMM techniques.

Using the UK and the US company panel data, we demonstrate the usefulness of the

proposed dynamic threshold panel data modelling by providing two empirical applications

investigating an asymmetric sensitivity of investment to cash flows and an asymmetric dividend

smoothing. In the first application we employ a balanced panel dataset of 560 UK firms over

the period 1973-1987, and find that the cash flow sensitivity of investment is significantly

stronger for cash-constrained, high-growth and high-leveraged firms, a consistent finding with

an original hypothesis by Farazzi et al. (1988) that the sensitivity of investment to cash flows is

an indicator of the degree of financial constraints. In the second application with the balanced

panel dataset of 246 US firms over the period 1990 - 2001, we find that dividend smoothing is

relatively stronger for firms that tend to pay the higher (target) dividend payout especially in

the long-term perspective, a finding generally consistent with the survey evidence in Brav et
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al. (2005) and the micro empirical evidence in Leary and Michaely (2011).

The plan of the paper is as follows: Section 2 discusses the model set-up. Section 3

describes the detailed estimation steps for FD-GMM and FD-2SLS. Section 4 develops an

asymptotic theory for both estimators, including consistent and effi cient estimation of threshold

parameter. Section 5 provides the bootstrap-based inference for threshold effects. Finite

sample performance of the FD-GMM estimator is examined in Section 6. Two empirical

applications are presented in Section 7. Section 8 concludes. Mathematical proofs are collected

in an Appendix.

2 The Model

Consider the following dynamic panel threshold regression model:

yit =
(
1, x′it

)
φ11 (qit ≤ γ) +

(
1, x′it

)
φ21 (qit > γ) + εit, i = 1, ..., n; t = 1, ..., T, (1)

where yit is a scalar stochastic variable of interest, xit is the k1 × 1 vector of time-varying

regressors, that may include the lagged dependent variable, 1 (·) is an indicator function, and
qit is the transition variable. γ is the threshold parameter, and φ1 and φ2 the slope parameters

associated with different regimes. The regression error, εit consists of the error components:

εit = αi + vit, (2)

where αi is an unobserved individual fixed effect and vit is a zero mean idiosyncratic random

disturbance. In particular, vit is assumed to be a martingale difference sequence,

E (vit|Ft−1) = 0,

where Ft is a natural filtration at time t. It is worthwhile to mention that we do not assume xit
or qit to be measurable with respect to Ft−1, thus allowing endogeneity in both the regressor,

xit and the threshold variable, qit. But, as will be shown, effi cient estimation depends on

whether qit is exogenous or not. As we will consider the asymptotic experiment under large

n with a fixed T, the martingale difference assumption is just for expositional simplicity. The

sample is generated from random sampling across i.

A leading example of interest is the self-exciting threshold autoregressive (SETAR) model

popularized by Tong (1990), in which case we have

xit = qit = yi,t−1.
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We allow for both “fixed threshold effect” and “diminishing or small threshold effect” for

statistical inference for the threshold parameter, γ by defining (e.g. Hansen, 2000):

δ = δn = δ0n
−α for 0 ≤ α < 1/2. (3)

It is well-established in the linear dynamic panels that the fixed effects estimator of the

autoregressive parameters is biased downward (e.g. Nickell, 1981). To deal with the correlation

of the regressors with individual effects in (2), we follow Arellano and Bond (1991) and consider

the first-difference transformation of (1) as follows:

∆yit = β′∆xit + δ′X ′it1it (γ) + ∆εit, (4)

where β
k1×1

=
(
φ12, ..., φ1,k1+1

)′, δ
(k1+1)×1

= φ2 − φ1, and

Xit
2×(1+k1)

=

 (1, x′it)(
1, x′i,t−1

)  and 1it (γ)
2×1

=

(
1 (qit > γ)

−1 (qit−1 > γ)

)
.

Let θ =
(
β′, δ′, γ

)′ and assume that θ belongs to a compact set, Θ = Φ × Γ ⊂ Rk, with
k = 2k1+2. It is worthwhile to note that the transformed model, (4) consists of 4 regimes, which

are generated by two threshold variables, qit and qit−1. This change in the model characteristic

is relevant in inference with the least squares estimation as discussed in Section 4.2.

The OLS estimator obtained from (4) will be biased since the transformed regressors are

now correlated with ∆εit. To fix this problem we need to find an l × 1 vector of instrument

variables,
(
z′it0 , ...., z

′
iT

)′ for 2 < t0 ≤ T, such that

E
(
z′it0∆εit0 , ..., z

′
iT∆εiT

)′
= 0, (5)

or, for each t = t0, ..., T,

E (∆εit|zit) = 0. (6)

Notice that zit may include lagged values of (xit, qit) and lagged dependent variables if not

included in xit or qit already. The number of instruments may be different for each time t.

3 Estimation

Depending upon whether qit is endogenous or not and whether the conditional moment restric-

tion (6) holds or not, we will develop different estimation methods.
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3.1 FD-GMM

We allow for the threshold variable qit to be endogenous, and develop a two-step GMM esti-

mation. To this end we consider the l × 1 vector of the sample moment conditions:

ḡn (θ) =
1

n

n∑
i=1

gi (θ) ,

where

gi (θ) =


zit0

(
∆yit0 − β′∆xit0 − δ′X ′it01it0 (γ)

)
...

ziT
(
∆yiT − β′∆xiT − δ′X ′iT1iT (γ)

)
 . (1)

Also, let gi =
(
z′it0∆εit0 , ..., z

′
iT∆εiT

)′ and Ω = E (gig
′
i) , where Ω is assumed to be finite and

positive definite. For a positive definite matrix, Wn such that Wn
p−→ Ω−1, let

J̄n (θ) = ḡn (θ)′Wnḡn (θ) . (2)

Then, the GMM estimator of θ is given by

θ̂ = arg min
θ∈Θ

J̄n (θ) . (3)

Since the model is linear in β and δ for each γ and the objective function J̄n (θ) is not

continuous in γ, the grid search algorithm is more practical. Let

ḡ1n =
1

n

n∑
i=1

g1i, and ḡ2n (γ) =
1

n

n∑
i=1

g2i (γ) ,

where

g1i
l×1

=


zit0∆yit0

...

ziT∆yiT

 , g2i (γ)
l×(k−1)

=


zit0

(
∆xit0 ,1it0 (γ)′Xit0

)
...

ziT
(
∆xiT ,1iT (γ)′XiT

)
 .

Then, the GMM estimator of β and δ, for a given γ, is given by(
β̂ (γ)′ , δ̂ (γ)′

)′
=
(
ḡ2n (γ)′Wn ḡ2n (γ)

)−1
ḡ2n (γ)′Wn ḡ1n.

Denoting the objective function evaluated at β̂ (γ) and δ̂ (γ) by Ĵn (γ), we obtain the GMM

estimator of θ by

γ̂ = argmin
γ∈Γ

Ĵn (γ) , and
(
β̂
′
, δ̂
′)′

=
(
β̂ (γ̂)′ , δ̂ (γ̂)′

)′
.

[6]



The asymptotic property of the GMM estimator, γ̂, which will be presented in Section 4, is

different from the conventional least squares estimator, e.g., Chan (1993) and Hansen (2000).

The two-step optimal GMM estimator is obtained as follows: first, estimate the model by

minimising J̄n (θ) with Wn = Il or

Wn =



2
n

∑n
i=1 zit0z

′
it0

−1
n

∑n
i=1 zit0z

′
it0+1 0 · · ·

−1
n

∑n
i=1 zit0+1z

′
it0

2
n

∑n
i=1 zit0+1z

′
it0+1

. . . . . .

0
. . . . . . −1

n

∑n
i=1 ziT−1z

′
iT

...
. . . −1

n

∑n
i=1 ziT z

′
iT−1

2
n

∑n
i=1 ziT z

′
iT



−1

(4)

and collect residuals, ∆̂εit; second, re-estimate the parameter θ by minimising J̄n (θ) with

Wn =

(
1

n

n∑
i=1

ĝiĝ
′
i −

1

n2

n∑
i=1

ĝi

n∑
i=1

ĝ′i

)−1

, (5)

where ĝi =
(

∆̂εit0z
′
it0
, ..., ∆̂εiT z

′
iT

)′
.

3.2 FD-2SLS

This subsection considers the case where the threshold variables, qit and qi,t−1 in (4) , are

exogenous and the conditional moment restriction, (6) holds. That is, zit includes qit and

qi,t−1. In this case, we can improve upon the GMM estimator presented above. In particular,

the threshold estimate, γ̂ can achieve the effi cient rate of convergence, as obtained in the

classical regression model (e.g., Hansen, 2000), and the slope estimate, β̂ and δ̂ can achieve the

semi-parametric effi ciency bound (Chamberlain, 1987) under homoskedasticity as if the true

threshold value, γ0, is known. This strong result can be obtained since the two sets of estimators

are asymptotically independent. Our approach, while motivated by Caner and Hansen (2004),

is different from their approach, as described below leaving aside the modification necessary

due to the first-difference transformation.

The first-differenced model, (4) with the conditional moment condition (6) and the exo-

geneity of q, implies the following regression of ∆yit on zit:

E (∆yit|zit) = β′E (∆xit|zit) + δ′E
(
X ′it|zit

)
1it (γ) . (6)

Assume that the reduced form regressions are given by, for each t,

E

(
1, x′it

1, x′it−1

|zit

)
=

(
1, F ′1t (zit; b1t)

1, F ′2t (zit; b2t)

)
= Ft (zit; bt)

2×(1+k1)

, (7)
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where bt = (b′1t, b
′
2t)
′ is an unknown parameter vector and Ft is a known function. Also let

Ht (zit; bt) = E (∆xit|zit) = F1t (zit; bt)− F2t (zit; bt) .

For instance, Caner and Hansen (2004) considered the linear regression and the threshold

regression for Ft.

Note that there are two regressions for xit due to the first difference transformation and the

possibility that zit varies over time. Furthermore, it is not suffi cient to consider the regression

E (∆xit|zit) only, due to the threshold effect in the structural form, (6) .

The above representation in (6) and (7) motivates a two-step estimation procedure:

1. For each t, estimate the reduced form, (7) by the least squares, and obtain the parameter

estimates, b̂t, t = t0, ..., T, and the fitted values, F̂it = Ft

(
zit; b̂t

)
.

2. Estimate θ by

min
θ∈Θ

M̂n (θ) =
1

n

n∑
i=1

T∑
t=t0

eit

(
θ, b̂t

)2
, (8)

where

eit (θ, bt) = ∆yit − β′Ht (zit; bt)− δ′Ft (zit; bt)
′ 1it (γ) .

This step can be done by the grid search as the model is linear in β and δ for a fixed γ.

Thus, β̂ (γ) and δ̂ (γ) can be obtained from the pooled OLS of ∆yit on Ĥit and F̂ ′it1it (γ) ,

and γ̂ is defined as the minimizer of the profiled sum of squares errors, M̂n (γ) .

This procedure produces a rate-optimal estimator for γ, implying that β and δ can be

estimated as if γ0 were known. In the special case with T = t0, we end up estimating a linear

regression model with a conditional moment restriction. The above two-step estimation yields

the optimal estimate for β and δ provided that the model is conditionally homoskedastistic,

i.e., E
(
∆ε2

it|zit
)

= σ2, see Chamberlain (1987). While it requires to estimate the conditional

heteroskedasticity to fully exploit the implications of the conditional moment restriction, (6)

under more general setup, it is reasonable to employ our two-step estimator and robustify the

standard errors for the heteroskedasticity. We will provide a heteroskedasticity-robust standard

error estimate for β̂ and δ̂. Further, the standard error estimate is corrected for the estimation

error in the first step estimation of b.

Remark 1 We compare our procedure with Caner and Hansen (2004). As their work is not

for the panel data, our comparison is based on the cross sectional regression framework and thus

there is no first difference transformation. Their procedure consists of three steps. The first
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two steps are identical to ours. Then, they split the sample, (yi, xi, zi)
n
i=1 into two according

to whether qi is greater than γ̂ (obtained in step 2) or not, and they estimate φ1 and φ2 using

each of two subsamples based on the standard GMM procedure for the linear regression. Their

approach can be optimal under the following unconditional moment conditions:

E

(
εizi1 {qi ≤ γ}
εizi1 {qi > γ}

)
= 0. (9)

However, this condition (9) does not fully exploit the implications of conditional moment re-

striction (6) even under homoskedasticity.

Remark 2 As another way to appreciate the unconditional moment condition (9) , observe that

its reduced form is the threshold regression.2 What is achieved through the three step estimation

procedure is the special case, where E (xi|zi) is a threshold regression whose threshold variable
and change point are the same as in the structural equation. However, two issues arise. First,

we can estimate γ more effi ciently. Consider the model for i = 1, ..., n:

yi = φ′1xi1 (qi ≤ γ) + φ′2xi1 (qi > γ) + εi,

xi = Γ′1zi1 (qi ≤ γ) + Γ′2zi1 (qi > γ) + ηi, (10)

where E (εi, η
′
i|zi) = 0. Rewriting this system by substitution yields:

yi = λ′1zi1 (qi ≤ γ) + λ′2zi1 (qi > γ) + ei, (11)

where E (ei|zi) = 0, λj = Γjφj, j = 1, 2, and ei = εi + η′i (φ11 (qi ≤ γ) + φ21 (qi > γ)). The

transformed model has the same threshold value as in the original model, and we thus advocate

the estimation of γ from the one-step regression, (11) rather than from the originally proposed

two-step estimation. The regression, (11) is a standard exogenous threshold regression and

the asymptotic distribution of the threshold estimate is provided by Hansen (2000) . Second, if

the (true) reduced form follows (10), the asymptotic distribution of γ̂ provided in Caner and

Hansen (2004) is not generally correct as the estimation error from the first step estimation

of γ affects the second step estimation of γ.3 Intuitively, the estimation error in the first step

affects the second step estimation of γ since the true thresholds are restricted to be the same

in both equations. The exact asymptotic characterisation is not of practical importance as we

do not recommend the two-step estimation of γ in this case.
2Note that the regression of (x′i1 {qi ≤ γ} , x′i1 {qi > γ})′ on (z′i1 {qi ≤ γ} , z′i1 {qi > γ})′ is equivalent to the

regression of xi on (z′i1 {qi ≤ γ} , z′i1 {qi > γ})′ .
3Lemma 1 in Caner and Hansen (2004) would be true with more restrictions. More specifically, their (A.7)

is true only when the threshold estimate is n-consistent, which is not the case in the maintained diminishing

threshold parameter setup. Accordingly, the high-level assumption (17) in their Assumption 2 is no longer

satisfied.
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3.2.1 Threshold Regression in Reduced Form

Motivated by the preceding remarks, we propose another estimation procedure for a special

case of (7) as follows:(
xit

xit−1

)
=

(
Γ1tzit1 {qit ≤ γ}+ Γ2tzit1 {qit > γ}+ η1,it

Γ3tzit1 {qit−1 ≤ γ}+ Γ4tzit1 {qit−1 > γ}+ η2,it

)

E

(
η1,it

η2,it

|zit

)
= 0. (12)

By substitution this yields a 4-regime threshold regression model:

∆yit = Λ′1tzit1 {qit ≤ γ}+ Λ′2tzit1 {qit > γ}

+Λ′3tzit1 {qit−1 ≤ γ}+ Λ′4tzit1 {qit−1 > γ}+ eit, (13)

where E (eit|zit) = 0, Λ1t = Γ′1tβ, Λ2t = (Γ′2tβ + (1,Γ′2t) δ), Λ3t = −Γ′3tβ, Λ4t = − (Γ′4tβ + (1,Γ′4t) δ) ,

and

eit = ∆εit +
(
0,1it (γ)′ η′it

)
φ1 +

(
0, (ι2 − 1it (γ))′ η′it

)
φ2,

with ηit =
(
η1,it, η2,it

)
and ι2 = (1,−1)′ . Thus, our proposal is:

1. Estimate γ by the pooled least square of (13), which can be done by the grid search,4

and denote the estimate by γ̃.

2. Fix γ at γ̃ and estimate Γjt, j = 1, ..., 4, in (12) by OLS, for each t.

3. Estimate β and δ in (6) by OLS with γ and the reduced form parameters fixed at the

estimates obtained from the preceding steps. Denote these estimates by β̃ and δ̃ for later

reference.

4 Asymptotic Distributions

This section develops an asymptotic theory for the FD-GMM and FD-2SLS estimators. There

are two frameworks in the literature. One is Hansen’s (2000) diminishing threshold assumption

and the other is fixed threshold assumption as in Chan (1993). For the GMM estimator we

present an asymptotics that accommodates both setups and for the 2SLS we develop the

asymptotic distribution only under the diminishing threshold framework. We also discuss

the estimation of unknown quantities in the asymptotic distributions such as the asymptotic

variances and the normalizing factors when an estimator is not asymptotically normal.
4That is, fix γ and obtain ẽit (γ) and Λ̃jt (γ), j = 1, ..., 4 by OLS for each t. Then, γ̃ is the minimiser of the

profiled sum of squared errors,
∑

i,t ẽ
2
it (γ) and Λ̃jt = Λ̃jt (γ̃) , j = 1, ..., 4.

[10]



4.1 FD-GMM

Partition θ =
(
θ′1, γ

)′ with θ1 =
(
β′, δ′

)′. As the true value of δ is δn, the true values of θ and
θ1 are denoted by θn and θ1n, respectively. Define:

Gβ
l×k1

=


−E

(
zit0∆x

′
it0

)
...

−E (ziT∆x′iT )

 , Gδ
l×(k1+1)

(γ) =


−E

(
zit01it0 (γ)′Xit0

)
...

−E
(
ziT1iT (γ)′XiT

)
 ,

and

Gγ
l×1

(γ) =


{

Et0−1

[
zit0 (1, xit0−1)′ |γ

]
pt0−1 (γ)− Et0

[
zit0 (1, xit0)

′ |γ
]
pt0 (γ)

}
δ0

...{
ET−1

[
ziT (1, xiT−1)′ |γ

]
pT−1 (γ)− ET

[
ziT (1, xiT )′ |γ

]
pT (γ)

}
δ0

 ,
where Et [·|γ] stands for the conditional expectation given qit = γ and pt (·) denotes the density
of qit.

Assumption 1 The true value of β is fixed at β0 while that of δ depends on n, for which we

write δn = δ0n
−α for some 0 ≤ α < 1/2 and δ0 6= 0, and all θn are interior points of Θ.

Furthermore, Ω is finite and positive definite.

This is a standard assumption for the threshold regression model as in Hansen (2000).

Assumption 2 (i) The threshold variable, qit has a continuous and bounded density, pt, such

that pt (γ0) > 0, for all t = 1, ..., T ; (ii) Et

(
zit

(
x′it, x

′
i,t−1

)
|γ
)
is continuous at γ0, where

Et (·|γ) = E (·|qit = γ) and Et

(
zit

(
x′it, x

′
i,t−1

)
|γ
)
δ0 6= 0 for some t.

The smoothness assumption on the distribution of the threshold variable and some condi-

tional moments are standard. However, we do not require the discontinuity of the regression

function at the change point. This is a novel feature of the GMM. As a consequence, we do

not need a prior knowledge on the continuity of the model to make inference for the threshold

model.

Assumption 3 Let G = (Gβ, Gδ (γ0) , Gγ (γ0)), and G is of the full column rank.

This is a standard rank condition in GMM. Then, we have:

[11]



Theorem 1 Under Assumptions 1-3, as n→∞,
√
n

(
β̂ − β0

δ̂ − δn

)
n1/2−α (γ̂ − γ0)

 d−→ N
(

0,
(
G′Ω−1G

)−1
)
.

The asymptotic variance matrix contains δ0, and the convergence rate of γ̂ hinges on the

unknown quantity, α. These two quantities cannot be consistently estimated in separation,

but they cancel out in the construction of t-statistic. Thus, confidence intervals for θ can be

constructed in the standard manner. Let

Ω̂ =
1

n

n∑
i=1

ĝiĝ
′
i −
(

1

n

n∑
i=1

ĝi

)(
1

n

n∑
i=1

ĝ′i

)
,

where ĝi = gi

(
θ̂
)
and

Ĝβ =


− 1
n

∑n
i=1 zit0∆x

′
it0

...

− 1
n

∑n
i=1 (ziT∆x′iT )

 , Ĝδ =


− 1
n

∑n
i=1

(
zit01it0 (γ̂)′Xit0

)
...

− 1
n

∑n
i=1

(
ziT1iT (γ̂)′XiT

)
 .

Then, Gγ may be estimated by the standard Nadaraya-Watson kernel estimator: that is, for

some kernel, K and bandwidth h, such as the Gaussian kernel and Silverman’s rule of thumb

(e.g., Hardle and Linton (1994) for more discussions on the choice of kernel and the bandwidth),

let:

Ĝγ =


1
nh

∑n
i=1 zit0

[
(1, xit0−1)′K

(
γ̂−qit0−1

h

)
− (1, xit0)

′K
(
γ̂−qit0
h

)]
δ̂

...
1
nh

∑n
i=1 ziT

[
(1, xiT−1)′K

(
γ̂−qiT−1

h

)
− (1, xiT )′K

(
γ̂−qiT
h

)]
δ̂

 . (14)

Furthermore, let V̂s = Ω̂−1/2
(
Ĝβ, Ĝδ

)
and V̂γ = Ω̂−1/2Ĝγ . Then, the asymptotic variance-

covariance matrix for the regression coeffi cient, θ1 can be consistently estimated by(
V̂ ′s V̂s − V̂ ′s V̂γ

(
V̂ ′γ V̂γ

)−1
V̂ ′γ V̂s

)−1

,

while the t-statistic for γ = γ0 defined by(
V̂ ′γ V̂γ − V̂ ′γ V̂s

(
V̂ ′s V̂s

)−1
V̂ ′s V̂γ

)√
n (γ̂ − γ0) ,

converges to the standard normal distribution. Therefore, the confidence intervals can be

constructed as in the standard GMM case.

Alternatively, the standard nonparametric bootstrap, which resamples across i with re-

placement, can be employed to construct the confidence intervals, see Section 5 for details.

[12]



4.2 FD-2SLS

This section presents the asymptotic theory for the 2SLS estimator of θ. Here a few technical

issues arise such as the multiple threshold variables as a result of the first difference transfor-

mation. We begin with the case where the reduced form is the regular nonlinear regression

and the reduced form parameter estimates are asymptotically normal. Next, we consider the

case where the reduced form is the threshold regression.

Some elements of xit may belong to zit, in which case the reduced form is identity, and some

elements of E (xit|zit) may be identical to E (xit|zit+1) for some t. Thus, we collect all distinct

reduced form regression functions, Ft, t = t0, ..., T, that are not identities, and denote it as

f (zi, b) , where zi and b are the collections of all distinct elements of zit and bt, t = t0, ..., T .

Accordingly, denote the collection of the corresponding elements of xit’s by ẋi. Then, the

reduced form regression can be written as:

ẋi = f (zi, b) + ηi with E (ηi|zi) = 0. (15)

Let b̂ denote the least squares estimate. We now follow the convention that fi (b) = f (zi, b),

fi = f (zi, b0), f̂i = f
(
zi, b̂

)
, etc., where b0 indicates the true value of b, when there is no

confusion. We consider the two cases. The first case is where b̂ is asymptotically normal and

the second is the threshold regression.

4.2.1 Linearisable Reduced Form

This section considers the reduced forms, which allow for stochastic linearisation and thus

the asymptotic normality of reduced form parameter estimates. We assume the asymptotic

normality of b̂, and the existence of a matrix-valued influence function, ḟ below. More primitive

conditions to yield this asymptotic normality of b̂ are provided in the Appendix. {yc:

where??} Notice that |A| denotes the Euclidean norm if A is a vector, and the vector induced
norm if A is a matrix.

Assumption 4 There exists a matix-valued function, ḟ (zi, b) such that E
∣∣∣ḟi∣∣∣2 <∞ for some

a > 0 and
√
n
(
b̂− b0

)
=
(

Eḟiḟ
′
i

)−1 1√
n

n∑
i=1

ḟiηi + op (1) .

We begin with this high-level assumption because our main goal is to illustrate how the

estimation error in the first step affects the asymptotic distribution of the estimator of the

[13]



regression parameters, β and δ and of the threshold parameter, γ in the second step. We

introduce some more notations. Let:

Ξi (γ, b)
(2k1+1)×(T−t0+1)

= (Ξit0 (γ, bt0) , ...,ΞiT (γ, bT )) ,

where

Ξit (γ, bt)
(2k1+1)×1

=

[
Hit (bt)

Fit (bt)
′ 1it (γ)

]
.

Also, let ei be the vector stacking
{

∆εit + β′0 (∆xit − E (∆xit|zit))
}T
t=t0

. Then, define

M1 (γ)
(2k1+1)×(2k1+1)

= E
[
Ξi (γ) Ξi (γ)′

]
, and V1 (γ)

(2k1+1)×(2k1+1)

= A (γ) Ω (γ, γ)A (γ)′ ,

where

Ω (γ1, γ2)
((2k1+1)+kb)×((2k1+1)+kb)

= E

[(
Ξi (γ1) ei,

ḟiηi

)(
e′iΞ
′
i (γ2) , η′iḟ

′
i

)]
,

A (γ)
(2k1+1)×((2k1+1)+kb)

=

(
I(2k1+1), −E

[
∂

∂b′

T∑
t=t0

(
H ′itβ0

)
Ξit (γ)

](
Eḟiḟ

′
i

)−1
)
.

For γ̂, introduce:

M2 (γ) =
T∑
t=t0

[
Et

[((
1, F ′1,it

)
δ0

)2 |γ] pt (γ) + Et−1

[((
1, F ′2,it

)
δ0

)2 |γ] pt−1 (γ)
]
,

V2 (γ) =
T∑
t=t0

(
Et

[(
eit
(
1, F ′1,it

)
δ0

)2 |γ] pt (γ) + Et−1

[(
eit
(
1, F ′2,it

)
δ0

)2 |γ] pt−1 (γ)
)

+2
T−1∑
t=t0

Et
[
eiteit+1

(
1, F ′1,it

)
δ0

(
1, F ′2,it+1

)
δ0|γ

]
pt (γ) .

Following the notational convention, we write Vj = Vj (γ0) and Mj = Mj (γ0) for j = 1, 2.

We further assume:

Assumption 5 The true value of β is fixed at β0 while that of δ depends on n, for which we

write δn = δ0n
−α for some 0 < α < 1/2 and δ0 6= 0.

If α = 0, the asymptotic distribution for γ̂ is different from the one obtained here. However,

the convergence rate result in the proof of the theorem is still valid.

[14]



Assumption 6 (i) The threshold variable, qit has a continuous and bounded density, pt, such

that pt (γ0) > 0, for all t = 1, ..., T ; (ii) Et (wit|γ) is continuous at γ0 for all t, and non-zero

for some t, where wit is either
(
eit

(
1, F ′1,it

)
δ0 + eit+1

(
1, F ′2,it+1

)
δ0

)2
,
((

1, F ′1,it

)
δ0

)2
, or((

1, F ′2,it

)
δ0

)2
.

Assumption 7 For some ε > 0 and some ζ > 0, E
(

supt≤T,|b−b0|<ε |eitf (zit, b)|2+ζ
)
<∞ and

for all ε > 0 E
(

supt≤T,|b−b0|<ε |eit (f (zit, b)− f (zit))|2+ζ
)

= O
(
ε2+ζ

)
.

Assumption 8 The minimum eigenvalue of the matrix EΞit (γ) Ξ′it (γ) is bounded below by a

positive value for all γ ∈ Γ and t = 1, ..., T .

The asymptotic confidence intervals can be constructed by inverting a test statistic. In par-

ticular, Hansen (2000) advocates the LR inversion for the construction of confidence intervals

for the threshold value for which we define the LR statistic as

LRn (γ) = n
M̂n (γ)− M̂n (γ̂)

M̂n (γ̂)
.

Then, we present the main asymptotic results for the 2SLS estimator and the LR statistic

in the following Theorem:

Theorem 2 Let Assumptions 5-8 hold. Then,

√
n

(
β̂ − β0

δ̂ − δn

)
d−→ N

(
0,M−1

1 V1M
−1
1

)
,

and

n1−2αM
2
2

V2
(γ̂ − γ0)

d−→ argmin
r∈R

(
|r|
2
−W (r)

)
, (16)

where W (r) is a two-sided standard Brownian motion and it is independent of the normal

variate in the first limit. Furthermore,

M2σ
2
e

V2
LR (γ0)

d−→ inf
r∈R

(|r| − 2W (r)) ,

where σ2
e = E

(
e2
it

)
.

The first step estimation error contributes the asymptotic variance of β̂ and δ̂ through

Ω, while it has no effect on the asymptotic distribution of γ̂. Estimation of the asymptotic

variances of β̂ and δ̂ is standard, i.e., the same as in the linear regression due to the asymptotic

[15]



independence. The asymptotic distribution for γ̂ in (16) is symmetric around zero and has a

known distribution function,

1 +
√
x/2π exp (−x/8) + (3/2) exp (x) Φ

(
−3
√
x/2
)
− ((x+ 5) /2) Φ

(√
x/2
)
,

for x ≥ 0, where Φ is the standard normal distribution function. see Bhattacharya and

Brockwell (1976). The unknown norming factor, n2αV −1
2 M2

2 can be estimated by V̂
−1

2 M̂2
2 ,

where

M̂2 =

T∑
t=t0

1

nh

n∑
i=1

[((
1, F̂ ′1,it

)
δ̂
)2
k

(
qit − γ̂
h

)
+
((

1, F̂ ′2,it

)
δ̂
)2
k

(
qit−1 − γ̂

h

)]
,

V̂2 =

T∑
t=t0

1

nh

n∑
i=1

((
êit

(
1, F̂ ′1,it

)
δ̂
)2
k

(
qit − γ̂
h

)
+
(
êit

(
1, F̂ ′2,it

)
δ̂
)2
k

(
qit−1 − γ̂

h

))

+2

T−1∑
t=t0

1

nh

n∑
i=1

êitêit+1

(
1, F̂ ′1,it

)
δ̂
(

1, F̂ ′2,it+1

)
δ̂k

(
qit − γ̂
h

)
.

The normalisation factor, V −1
2 M2σ

2
e for the LR statistic can be estimated by V̂

−1
2 M̂2σ̂

2
e, where

σ̂2
e = (n (T − t0 + 1))−1∑n

i=1

∑T
t=t0

ê2
it. Notice that it becomes 1 under the leading case of con-

ditional homoskedasticity and the martingale difference sequence assumption for eit. Hansen

(2000) provides the distribution function of the asymptotic distribution of the LRn statistic,

which is
(
1− e−x/2

)2
.

4.2.2 Threshold Regression in Reduced Form

Now, consider the case where the reduced form is a threshold regression as described in (12).

The estimator, θ̂ is obtained from the three-step procedure following (12). Despite the dif-

ference in the estimation procedure, the asymptotic distributions of θ̂ can be presented by a

slight modification of Theorem 2.

Corollary 3 Let Assumptions 1, 2, and 10-8 hold. Furthermore, assume that Λ1−Λ2 = n−αδ1

and Λ3−Λ4 = n−αδ2. Define M1, M2, V1 and V2 as in Theorem 2, where ḟit in V2 is given by

ḟ1,it = (zit1 {qit ≤ γ0} , zit1 {qit > γ0})⊗ Ik1
ḟ2,it = (zit1 {qit−1 ≤ γ0} , zit1 {qit−1 > γ0})⊗ Ik1 ,

and δ′0F1,it and δ′0F2,it in M2 and V2 are replaced with δ′1zit and δ
′
2zit, respectively. Then, the

asymptotic distribution of θ̃ is the same as in Theorem 2.
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5 Testing for Linearity

The preceding asymptotic results provide ways to make inference for unknown parameters and

their functions. However, it is well-established that the test for threshold effects requires us to

develop the different asymptotic theory due to the presence of unidentified parameters under

the null hypothesis. Specifically, we consider the null hypothesis of interest as

H0 : δ0 = 0, for any γ ∈ Γ, (17)

against the alternative

H1 : δ0 6= 0, for some γ ∈ Γ.

Then, a natural test statistic for the null hypothesis H0 is,

supW = sup
γ∈Γ

Wn (γ) ,

where Wn (γ) is the standard Wald statistic for each fixed γ, that is,

Wn (γ) = nδ̂ (γ)′ Σ̂δ (γ)−1 δ̂ (γ) ,

where δ̂ (γ) is the estimate of δ, given γ by either FD-GMM or FD-2SLS, and Σ̂δ (γ) is the

consistent asymptotic variance estimator for δ̂ (γ) . In the FD-GMM case, we may employ

Σ̂δ (γ) = R
(
V̂s (γ) V̂s (γ)

)−1
R′, where V̂s (γ) is computed as in Section 4 with γ̂ = γ and

R =
(
0(k1+1)×k1 ,Ik1+1

)
. In the FD-2SLS case, we can simply use the same formula for the

estimation of the asymptotic variance of δ̂ (γ) since the estimation error in γ does not affect

the estimation of δ. The supremum type statistic is an application of the union-intersection

principle commonly used in the literature, e.g., Davies (1977), Hansen (1996), and Lee et al.

(2011).

The limiting distribution of supW depends on the associated estimation methods. If δ

were estimated by FD-2SLS, the limit is the supremum of the square of a Gaussian process

with some unknown covariance kernel, yielding a non-pivotal asymptotic distribution. For

FD-GMM, the Gaussian process is given by a simpler covariance kernel, though it seems not

easy to pivotalise the statistic.

Theorem 4 (i) Consider the FD-GMM estimation. Let G (γ) = (Gβ, Gδ (γ)) and D (γ) =

G (γ)′Ω−1G (γ). Suppose that infγ det (D (γ)) > 0 and Assumption 2 (i) holds. Then, under

the null (17), we have

supW
d−→ sup

γ∈Γ
Z ′G (γ)′D (γ)−1R′

[
RD (γ)−1R′

]−1
RD (γ)−1G (γ)Z,
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where Z ∼ N
(
0,Ω−1

)
.

(ii) Consider the 2SLS estimation. Suppose that Assumptions 6(i) , 7, 8, 10 and 11 hold.

Then, under the null (17) ,

supW
d−→ sup

γ∈Γ
B (γ)′M1 (γ)−1R′

[
RM1 (γ)−1 V1 (γ)M1 (γ)−1R′

]−1
RM1 (γ)−1B (γ) ,

where B (γ) is a mean-zero Gaussian process with covariance kernel, A (γ1) Ω (γ1, γ2)A (γ2)′.

When the reduced form is a threshold regression, our test can be performed using the model

(13). A null hypothesis in this case is that both the reduced form and the structural equations

are linear for all t; that is,

H′0 : Λ1t − Λ2t = Λ3t − Λ4t = 0, for all γ ∈ Γ and t = t0, ..., T. (18)

As the model (13) is estimated by the pooled OLS for each γ, the construction of supW statistic

is standard (e.g., Hansen, 1996).

Notice that these limiting distributions are not asymptotically pivotal and critical values

cannot be tabulated. Hence, we bootstrap or simulate the asymptotic critical values or the

p-values of the tests following Hansen (1996). Here we describe the bootstrap procedure in

details.

Let θ̂ be either the FD-GMM or the FD-2SLS estimator, and construct:

∆̂εit = ∆yit −∆x′itβ̂ − δ̂
′
X ′it1it (γ̂) ,

for i = 1, ..., n, and t = t0, ..., T . Then,

1. Let i∗ be a random draw from {1, ..., n}, and X∗it = Xi∗t, q∗it = qi∗t, z∗it = zi∗t and

∆ε∗it = ∆̂εi∗t. Then, generate

∆y∗it = ∆x∗′it β̂ + ∆ε∗it for t = t0, ..., T.

2. Repeat step 1 n times, and collect {(∆y∗it, X∗it, q∗it, z∗it) : i = 1, ..., n; t = t0, ..., T}.

3. Construct the supW statistic, say supW∗, from the bootstrap sample using the same

estimation method for θ̂.

4. Repeat steps 1-3 B times, and evaluate the bootstrap p-values by the frequency of the

supW∗ tests that exceed the sample statistic, supW.

Note that when simulating the bootstrap samples, the null is imposed in step 1.
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6 Monte Carlo Experiments

This section explores finite sample performance of the FD-GMM estimator. The finite sample

property of the least squares estimators and the testing for the presence of threshold effect

have been examined extensively in the literature, albeit in the regression setup. However, up

to our knowledge, the GMM estimator is first to be examined in this general context. In this

section, we thus focus on the GMM estimator.

We consider the following two models:

yit = (0.7− 0.5yit−1) 1 {yit−1 ≤ 0}+ (−1.8 + 0.7yit−1) 1 {yit−1 > 0}+ σ1uit,

yit = (0.52 + 0.6yit−1) 1 {yit−1 ≤ 0.8}+ (1.48− 0.6yit−1) 1 {yit−1 > 0.8}+ σ2uit,

for t = 1, ..., 10, and i = 1, ..., n, where uit are iid N (0, 1). The first model from Tong (1990)

allows a jump in the regression function at the threshold point. The second is the continuous

model considered by Chan and Tsay (1998). In both models the threshold is located around

the center of the distribution of the threshold variable. In terms of the previous notation in

(4) , the unknown true parameter values are β = −0.5 and δ = (−2.5, 1.2)′ in the first model

and β = 0.6 and δ = (0.96,−1.2)′ in the second . All the past levels of yit are used as the

instrumental variables.

In general, there are many different ways to compute the weight matrix, Wn in the first

step. There is no way to tell which is optimal; provided that the first step estimators are

all consistent, all the second step estimators are asymptotically equivalent. In this regard,

we also consider an averaging of a class of FD-GMM estimators as defined in Section 3.1.

The averaging does not change the first order asymptotic distribution but it is expected to

be particularly relevant when the sample size is small. We propose to randomize the weight

matrix, Wn in the first step as follows: We compute Wn in (5) with

ĝi =
(
∆ε̃it0z

′
it0 , ...,∆ε̃iT z

′
iT

)′
,

where ε̃it’s are randomly generated from N (0, 1). In our experiment below, we do this 100

times and take the average of the second step estimators.

We examine the bias, standard error (s.e.), and mean square error (MSE) of the FD-GMM

estimator with 1,000 iteration. For n = 50, 100 and 200, we set σ1 = 1 and σ2 = 0.5. The

simulation results are reported in Tables 1-3. First, looking at the MSEs presented in Table

1, those of the FD-GMM estimator for each parameter generally decreases as the sample size

rises, but some parameters, particularly δ1 and δ2, are estimated with much larger MSEs.

The continuous design yields higher MSEs for estimation of the regression coeffi cients which is
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consistent with our theoretical finding. When we compare the MSEs of the original FD-GMM

estimator with those of the averaging estimator, we find that the averaging significantly reduces

the MSEs. In some cases the gains are so large that the MSEs of the original estimator are as

twice as those of the averaging estimator.5 As a rule of thumb, we find that the reduction in

MSEs by averaging becomes larger when the original MSEs are rather big, though this gain

becomes smaller as the sample size increases. Turning to biases and standard errors as reported

in Tables 2 and 3, we observe that the averaging always reduces the stand errors, but it has

a mixed effect on the biases. In particular, when the bias of the original FD-GMM estimator

is large (those of δ1 and δ2), then the averaging reduces it and vice versa. As a result, the

average biases of the FD-GMM estimator is almost the same as that of the averaging whilst

the standard deviation of the former is always larger than that of the latter. This implies that

the averaging has positive bias reduction effects on the FD-GMM estimator.

We have also performed the same experiment by fixing the intercepts across the regimes as

follows:

yit = 0.7− 0.5yit−11 {yit−1 ≤ 1.5}+ 0.7yit−11 {yit−1 > 1.5}+ σ1uit,

yit = 0.52 + 0.6yit−11 {yit−1 ≤ 0.4} − 0.6yit−11 {yit−1 > 0.4}+ σ2uit,

where the threshold values also change such that they stay at the middle of distribution. From

the results reported in Tables 4-6, we find that the averaging reduces MSEs and standard

errors even more substantially. Furthermore, the biases are greatly reduced by the averaging

for more than 70% of the cases. Hence, we recommend the practitioner to apply the averaging

method to reduce the sampling errors associated with the two-step FD-GMM estimators.

7 Empirical Applications

7.1 A dynamic threshold panel data model of investment

An important research question in the investment literature is whether capital market imper-

fection affects the firm’s investment behaviour. Farazzi et al. (1988) find that investment

spending by firms with low dividend payments is strongly affected by the availability of cash

flows, rather than just by the availability of positive net present value projects. Their empirical

findings support the hypothesis that cash flow has a significantly positive effect on investment

for financially constrained firms, suggesting that the sensitivity of investment to cash flows is

an indicator of the degree of financial constraints.

5Only in the case of the jump DGP with n = 50, the averaging is slightly worse than the original estimator,

but the difference is negligibly small.
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One of the main methodological problems facing the conventional investment literature

is that the distinction between constrained and unconstrained firms is routinely based on an

arbitrary threshold level of the measure used to split the sample. Furthermore, firms are not

allowed to change groups over time since the split-sample is fixed for the complete sample

period. Hence, we apply a threshold model of investment in dynamic panels to address this

problem. Most popular investment model takes the form of a Tobin’s Q model in which the

expectation of future profitability is captured by the forward-looking stock market valuation:

Iit = β1CFit + β2Qit + εit (19)

where Iit is investment, CFit cash flows, Qit Tobin’s Q, and εit consists of the one-way error

components, εit = αi+vit.6 The coeffi cient β1 represents the cash flow sensitivity of investment.

If firms are not financially constrained, external finance can be raised to fund future investments

without the use of internal finance. In this case, cash flows are least relevant to investment

spending and β1 is expected to be close to zero. In contrast, if firms were to face certain

financial constraints, β1 would be expected to be significantly positive. Extensions of this

Tobin’s Q model involve additional financing variables such as leverage to control for the effect

of capital structure on investment (Lang et al., 1996) as well as lagged investment to capture

the accelerator effect of investment in which past investments have a positive effect on future

investments (Aivazian et al., 2005). Therefore, we consider the following augmented dynamic

investment model:

Iit = φIit−1 + θ1CFit + θ2Qit + θ3Lit + εit, (20)

where Lit represents leverage. We then extend (20) into the dynamic panel data framework

with threshold effects as:

Iit = (φ1Iit−1 + θ11CFit + θ21Qit + θ31Lit) 1{qit≤γ} (21)

(φ2Iit−1 + θ12CFit + θ22Qit + θ32Lit) 1{qit>γ} + αi + vit,

where 1{qit≤c} and 1{qit>c} are an indicator function, qit is the transition variable and γ the

threshold parameter.

We employ the same data set as used in Hansen (1999) and González et al. (2005). This

dataset is a balanced panel of 565 US firms over the period 1973-1987, which is extracted

from an original data set constructed by Hall and Hall (1993). Hence, this study allows for

comparisons with the existing literature. Following González et al. (2005), we exclude five

6We have also estimated the model with the two-way error components by including the time dummies. The

results, available upon request, are qualitatively similar.
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companies with extreme data values, and consider a final sample of 560 companies with 7840

company-year observations.7

Table 7 summarises the estimation results for the dynamic threshold model of investment,

(21), with cash flow, leverage and Tobin’s Q used as the transition variable, which are ex-

pected to proxy the certain degree of financial constraints. This choice is broader than Hansen

(1999) who considers only leverage and González et al. (2005) who employ both leverage and

Tobin’s Q. In each case we only report the FD-GMM estimation results which allow for both

(contemporaneous) regressors and the transition variable to be (possibly) endogenous.8 The

estimation results are reported respectively in the low and high regimes.

When cash flow is used as the transition variable, the results for (21) show that the thresh-

old estimate is 0.36 such that about 80% of observations fall into the lower cash-constrained

regime. The coeffi cient on lagged investment is significantly higher for firms with low cash flows,

suggesting that the accelerator effect of investment is stronger for cash-constrained firms. The

coeffi cient on Tobin’s Q reveals an expected finding that firms respond to growth opportunities

more quickly when they are cash-unconstrained than when they are constrained. Next, we find

the more negative impacts of the leverage when firms are cash-constrained. This is consistent

with our expectations that the leverage should have a negative impact on investment and a

stronger impact for the constrained firms, which is in line with the overinvestment hypothesis

about the role of leverage as a disciplining device that prevents firms from over-investing in

negative net present value projects (e.g. Jensen, 1986). Finally and importantly, the sensitivity

of investment to cash flow is significantly higher for cash-constrained firms than for cash-rich

firms. Firms with limited cash resources are likely to face some forms of financial constraints

(Kaplan and Zingales, 1997). Hence, this finding supports the evidence for the role of financial

constraints in the investment-cash flow sensitivity.

When the leverage is used as the transition variable, we find that the threshold estimate

is 0.10, lower than the mean leverage (0.24), with more than 73% of observations falling into

the high-leverage regime. We find that past investment has a much higher positive impact on

current investment for highly-levered firms, suggesting that firms with high leverage attempt

to respond to growth options quickly, hence a higher accelerator effect. The effect of Tobin’s

Q on investment is higher for lowly-levered firms, which provides a support for the argument

that by lowering the risky "debt overhang" to control underinvestment incentives ex ante,

7An exact definition of the variables is as follow: Investment is measured by investment to the book value

of assets, Tobin’s Q the market value to the book value of assets, leverage long-term debt to the book value of

assets, cash flow is cash flow to the book value of assets.
8Notice that the previous empirical studies (e.g. Hansen, 1999; González et al., 2005) use the lagged values

of Q and CF to avoid the potential endogenous regressors.
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firms are able to take more growth opportunities and make more investments ex post, though

these impacts are rather small. We also find the more negative impacts of the leverage when

firms are highly levered. The coeffi cient on cash flow is significantly higher for firms in the

high-leverage regime, a finding consistent with the prediction that cash flow should be more

relevant and have a stronger effect on the level of investment for financially constrained firms.

Notice, however, that Hansen (1999), who considers leverage as the transition variable, fails

to find conclusive evidence in favor of this prediction by estimating a non-dynamic threshold

model of investment.9

When using Tobin’s Q as the transition variable, the threshold is estimated at 0.56 with

about 59% of observations falling into the higher growth regime. We now find that past

investment has a slightly stronger positive effect on current investment for firms with low

Tobin’s Q, but the differential impacts are statistically insignificant. The coeffi cient on Tobin’s

Q in the low regime is significantly higher, indicating that firms with low growth options

respond more strongly to changes in their investment opportunities. Surprisingly, we find a

negative relationship between leverage and investment only in the lower growth regime. The

sensitivity of investment to cash flow is also relatively higher for high-growth firms than low-

growth firms. This, therefore, supports the hypothesis that cash flow should be more relevant

for firms with potentially high financial constraints.10

Table 7 about here

In sum, when examining a dynamic threshold panel data estimation of Tobin’s Q model

of investment by using the Tobin’s Q, leverage and cash flow as a possible transition vari-

able, we find that the results on the relationships between investment and past investment,

as well as cash flow, Tobin’s Q and leverage are generally consistent with theoretical predic-

tions. More importantly, the cash flow sensitivity of investment is significantly stronger for

cash-constrained, high-growth and high-leveraged firms, a consistent finding with an original

hypothesis by Farazzi et al. (1988) that the sensitivity of investment to cash flows is an indica-

tor of the degree of financial constraints facing the firms. Methodologically, our results clearly

demonstrate the usefulness of the proposed dynamic panel data estimation with threshold ef-

fects despite the fact that the transition variables used in the current study may have caveats

9Notice, however, that the non-dynamic threshold model of investment developed by Hansen (1999) fails to

find conclusive evidence in favor of this prediction.
10When comparing our results with those reported in González et al. (2005), who apply the static panel

smooth transition regression model, we find that their results are qualitatively similar to ours regarding the

impacts on investment of both Tobin’s Q and leverage. However, they document an opposite evidence that the

coeffi cient on the (lagged) cash flow is positive but considerably smaller for the higher regime.
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since these variables are imperfect measures of financial constraints.11

7.2 A dynamic threshold panel data model of dividend smoothing

In a seminal study on dividend policy, Lintner (1956) suggests that firms gradually adjust

dividends in response to changes in earnings, implying that firm managers make dividend

adjustment in response to unanticipated (permanent) changes in firms’ earnings towards a

long-run target payout ratio. The number of empirical studies generally find evidence in

favour of such dividend smoothing at both firm and aggregate levels, e.g. Fama and Babiak

(1968), Marsh and Merton (1987), Skinner (2008) and Cho et al. (2013).

However, the adjustment of dividends may be asymmetric as managers react differently to

earnings shocks across different market conditions. In particular, Brav et al. (2005) provide

recent survey evidence that firms are more likely to increase their dividend than to cut it whilst

the magnitude of the average cut is more severe than the magnitude of the average dividend

increase. Applying the two-stage approach by Fama and Babiak (1968) to the data at the firm

level in the US, Leary and Michaely (2011) find that a firm is less likely to smooth dividends and

move towards the target when its dividend is below the target whilst it is more likely to smooth

dividends and leave them unchanged when its dividend is above target. Alternatively, at the

aggregate level employing the SP500 data over 1871Q1 - 2004Q2, Kim and Seo (2010) estimate

the threshold VECM for the (log) dividend-price relationship (assuming that real stock prices

are proxy for permanent earnings) and find that the upward stickiness (smoothing) in the lower

regime (when its dividend is below the target) is a far more prominent than the downward

stickiness in the upper regime. Notice that there is a conflict between the results of smoothing

asymmetry at the disaggregate and the aggregate level, though the micro-evidence in Leary

and Michaely (2011) is more consistent with the survey evidence reported in Brav et al. (2005).

Hence, we examine the issue of asymmetric dividend smoothing by extending the Lintner’s

(1956) partial adjustment model into the following dynamic panel data threshold model:

∆dit = (φ1di,t−1 + θ1eit) 1{qit≤γ} + (φ2di,t−1 + θ2eit) 1{qit>γ} + αi + vit. (22)

We follow Skinner (2008) and construct the annual firm data on dividend per share real price

11Kaplan and Zingales (1997) find that the relationship between cash flows and investment is not monotonic

with respect to financial constraints. Consequently, a large body of the literature seeks to address the question

of what measures can be used to classify firms as ‘financially constrained’and ‘unconstrained’. Several criteria

have been suggested, including size, age, leverage, financial slack, market to book value, dividend payout and

bond rating (e.g. Hovikimian and Titman, 2006). An alternative approach would be to use indices computed

to control for financial constraints, e.g. Whited and Wu (2006). Nonetheless, all these issues are beyond the

scope of the current paper.
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(d), earnings per share (e) and return on asset (ROA) over the period 1990 - 2001 from

CRSP/Compustat. By excluding companies with non-paying dividend observations and keep-

ing the companies with the full period observations over 12 years, we obtain the final balanced

panel dataset for 246 firms with 2,952 company-year observations. We also follow the literature

and consider the two candidates for qit = {ROAit, eit}. Both measures are expected to pro-
vide a reasonable proxy for the market conditions (sentiments). Hence, this study is expected

to contribute to the existing literature on dividend policy by incorporating asymmetries in

dividend adjustment at the disaggregate firm level.

Table 8 presents the estimation results for the dynamic threshold model of the asymmetric

dividend smoothing, (22). When return on asset is used as the transition variable, the results

for (22) show that the threshold estimate is 0.148 such that 61% of observations falling into the

higher ROA regime. The coeffi cient on lagged dividend is significantly higher for firms with the

higher ROA (0.905 vs 0.804), suggesting that the dividend smoothing is stronger for firms with

the higher ROA. As expected, the impact reaction of dividend to earning is stronger for the

higher ROA regime at 0.038 than for the lower regime at 0.005, but it is statistically significant

only at the upper regime. Furthermore, we find that the long-run target payout coeffi cients,

estimated by β̂1 = θ̂1/
(

1− φ̂1

)
and β̂2 = θ̂2/

(
1− φ̂2

)
, are 0.007 and 0.43 respectively for

firms with lower and higher ROA. Next, when earnings per share (EPS) is used as the transition

variable, we find that the threshold is estimated at 0.605, lower than the median, with more

than 64% of observations falling into the high-EPS regime. Here the results are qualitatively

similar to those when ROA is used as the transition variable. In particular, the coeffi cient on

lagged dividend is significantly higher for firms with higher EPS, suggesting that the dividend

smoothing is stronger for firms with higher EPS.

Table 8 about here

These results, combined together, suggest that dividend smoothing is substantially stronger

for firms that tend to pay the higher (target) dividend payout especially in the long-term

perspective, a finding generally consistent with survey evidence in Brav et al. (2005).12

12McMillan (2007) applies the asymmetric ESTR model to the data for a number of countries, and provides

similar empirical evidence that the log dividend yields are characterised by an inner random walk regime and the

reverting outer regimes where the speed of reversion differs between positive and negative dividend-yield changes,

such that price rises greater than the level supported by dividends exhibit a greater degree of persistence than

price falls relative to dividends. However, this type of asymmetry persistence may arise from the interaction of

noise and fundamental traders in terms of the positive feedback trading, e.g. Shleifer (2000)
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8 Conclusion

The investigation of nonlinear asymmetric dynamic modelling has assumed a prominent role.

It is clear that misclassifying a stable nonlinear process as linear can be misleading in time

series and dynamic panel data analysis. Increasing availability of the large and complex panel

data sets has also prompted rigorous econometric analyses of dynamic heterogeneous panels,

especially when the time period is short. Recently, some progress has been made, e.g., Dang

et al. (2012), Kremer et al. (2013) and Ramirez-Rondan (2013). However, all of these studies

maintain the assumption that the regressors and/or the threshold variable are exogenous. This

limitation may hamper the usefulness of threshold regression models in a general context. In

this paper we have explicitly addressed this challenging issue by extending the approaches

by Hansen (1999, 2000) and Caner and Hansen (2004) and developing the dynamic threshold

panel data model, which allows both regressors and threshold effect to be endogenous.

In particular, depending upon whether a threshold variable is endogenous or not, we have

proposed the two alternative estimation procedures, respectively called FD-GMM and FD-

2SLS, on the basis of the FD transformation for removing unobserved individual effects. Their

asymptotic properties are derived through employing the diminishing threshold effect and the

empirical process theory. The FD-GMM approach works well in the general case where both

threshold variable and regressors are allowed to be endogenous. Furthermore, FD-2SLS is

shown to be a more effi cient estimation method in the special case when the threshold variable

is strictly exogenous.

Our proposed approaches are expected to avoid any sample selection bias problem associ-

ated with an arbitrary sample-splitting or the dummy variable approach and greatly extend

the scope of the applicability of the dynamic threshold panel data model in Economics and Fi-

nance, as demonstrated in our two empirical applications to assessing an asymmetric sensitivity

of investment to cash flows and an asymmetric dividend smoothing.

Finally, we note several avenues for further researches following the current study. First,

the FD-2SLS is more effi cient than the FD-GMM if the exogeneity condition of the threshold

variable is met, though it is still uncertain if the FD-GMM is most effi cient in case of the

endogenous threshold variable. This will be an interesting future research topic. Next, given

that conventional estimation procedures can be significantly affected by the presence of cross-

sectionally correlated errors (e.g., Pesaran, 2006; Bai, 2009), it would be desirable to explicitly

control for the cross-section dependence in the dynamic threshold panel data framework. Fur-

thermore, researches to develop similar estimation algorithms for models with multivariate

stochastic covariates and for alternative nonlinear models will be under way.
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A Proof of Theorems

A.1 GMM

In this section we derive the asymptotic normality of the FD-GMM estimator, which allows

for multiple threshold variables and multiple regimes. As described in Section 2, the FD

transformation changes the model characteristic such that the number of threshold variables is

more than one. Specifically, the moment indicator, gi (θ) defined in (1) contains the indicator

function, 1 {qit > γ} for t = t0 − 1, t0, ..., T, although the jumps arise at the same value, γ.

Here, we allow for γ to vary over t, which may prove useful in some applications. With this

generalization, and imposing (4) and Assumption 1, we consider a more general form of moment

condition than that presented in (1), that is,

gn (wi; θ) = gi − ξ′i (β − β0)− ζi (γ0)′ (δ − δn)− (ζi (γ)− ζi (γ0))′ δ, (23)

where wi stands for the data of an i-th individual, ζi (γ) =
∑T

j=t0−1 ζij1
(
qij > γj

)
, γ is the

collection of all γt’s, ξi and ζij’s are the k1 × l and the (k1 + 1) × l matrix transformations
of wi, respectively. The function, ζi (γ) is introduced due to the FD transformation, and we

index g (·, ·) by subscript n to make explicit the dependence of the true value δn on the sample
size n, reflecting the shrinking threshold assumption.

Next, we assume that

Assumption 9 (i) δn = δ0n
−α for some 0 ≤ α < 1/2 and δ0 6= 0, and all θn are interior

points of Θ, which is compact.

(ii) For all n = 1, 2, ..., Egn (wi; θ) = 0 if and only if θ = θn.

(iii) The threshold variable qit has continuous and bounded density at γ0 for all t, Eζi (γ) is

continuously differentiable at γ0 and G
′Ω−1G is nonsingular and finite, where

G
l×k

=

(
−Eξ′i,−Eζi (γ0)′ ,− ∂

∂γ ′
Eζi (γ0)′ δ0

)
,

where k = (2k1 + 1) + T − t0 + 2.

(iv) Ω is finite and positive definite.

Then, we have
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Lemma 5 Let Assumption 9 hold and denote by θ̂ the GMM estimator of θ, which is the

minimizer of J̄n (θ) in (2) with g as defined in (23). Then,
√
n

(
β̂ − β0

δ̂ − δn

)
n1/2−α (γ − γ0)

 d−→ N
(

0,
(
G′Ω−1G

)−1
)
.

Proof of Lemma 5. We fix W = Ω−1 hereafter. Write gni (θ) for gn (wi; θ) and thus

ḡn (θ) = 1
n

∑n
i=1 gni (θ) and let ḡn indicate ḡn (θ) evaluated at the true value θn, i.e. ḡn (θn).

We proceed in two steps by first establishing consistency and then deriving convergence rate

and asymptotic normality.

Consistency: Given the linearity in the slope parameters for a fixed γ, we can write(
β̂ (γ)− β0

δ̂ (γ)− δn

)
=
(
ζ̄n (γ)′Wnζ̄n (γ)

)−1
ζ̄n (γ)′Wn

(
ḡn +

1

n

n∑
i=1

(ζi (γ0)− ζi (γ)) δn

)
, (24)

where ζ̄n (γ) = 1
n

∑n
i=1

[
ξ′i, ζi (γ)′

]
. Let ζ̄n (γ)

p−→ ζ (γ) uniformly, which follows from the

standard uniform law of large numbers (ULLN). Thus,

nα

(
β̂ (γ)− β0

δ̂ (γ)− δn

)
p−→
(
ζ (γ)′W ζ (γ)

)−1 (
ζ (γ)′W (ζ2 (γ0)− ζ2 (γ)) δ0

)
,

as ḡn = Op
(
n−1/2

)
due to Assumption 9 (iv) . Since ḡn (θ) is continuous in β and δ for any

given γ, the continuous mapping theorem and standard algebra yield that

nαḡn

(
β̂ (γ) , δ̂ (γ) ,γ

)
p−→
(
I + ζ (γ)

(
ζ (γ)′W ζ (γ)

)−1
ζ (γ)′W

)
(ζ2 (γ0)− ζ2 (γ)) δ0.

The term in the first brackets in the right hand side is positive definite and ζ2 (γ) = ζ2 (γ0) if

and only if γ = γ0. Therefore, p limn→∞ n2αJ̄n

(
β̂ (γ) , δ̂ (γ) ,γ

)
is continuous and uniquely

minimzed at γ = γ0 and the convergence is uniform, which implies the consistency of γ̂.

Convergence rate and Asymptotic normality: Let Jn (θ) = E (gni (θ))′WnE (gni (θ))

and Dn = 2κ−1
n G′Wnḡn, where κn is a diagonal matrix whose first 2k1 + 1 diagonals are ones

and the other kq elements are nα’s. We first claim that for any hn → 0,

sup
|θ−θn|≤hn

√
nRn (θ)

1 +
√
n |θ − θn|

= op (1) , (25)
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where

Rn (θ) = J̄n (θ)− J̄n (θn)− Jn (θ)−D′n (θ − θn) .

Note that κnDn = Op
(
n−1/2

)
from the CLT and Jn (θ) = 2 (θ − θn)′ κ−1

n G′WnGκ
−1
n (θ − θn)+

o
(
|θ − θn|2

)
. Following the same line of arguments as in the proof of Theorem 7.1 in Newey

and McFadden (1994) , we can establish that κ−1
n

(
θ̂ − θn

)
= Op

(
n−1/2

)
, where we use

κ−1
n

(
θ̂ − θn

)
instead of θ̂−θ0. Let θ̃−θn = (G′WG)−1G′Wnḡn, then it again follows from the

same proof that θ̃−θn−κ−1
n

(
θ̂ − θn

)
= op

(
n−1/2

)
. Therefore, we obtain the limit distribution

as in this Lemma.

Proof of (25) Define a centered empirical process

εn (θ) =
√
n (ḡn (θ)− Egni (θ)− ḡn)

and decompose Rn to obtain a bound (see the proof of Theorem 7.2 of Newey and McFadden

for the detail) such that
√
nRn (θ)

1 +
√
n |θ − θn|

≤
5∑
j=1

rjn (θ) ,

where

r1n (θ) =
(
2 + |θ − θn| /

√
n
) ∣∣εn (θ)′Wnεn (θ)

∣∣ / (1 +
√
n |θ − θn|

)
r2n (θ) =

∣∣∣(Egni (θ)−Gκ−1
n (θ − θn)

)′
Wn

√
nḡn

∣∣∣ / [|θ − θn| (1 +
√
n |θ − θn|

)]
r3n (θ) =

∣∣√n (Egni (θ) + ḡn)′Wnεn (θ)
∣∣ / (1 +

√
n |θ − θn|

)
r4n (θ) =

∣∣Egni (θ)′Wnεn (θ)
∣∣ /́ |θ − θn|

r5n (θ) =
√
n
∣∣Egni (θ)′ (Wn −W ) Egni (θ)

∣∣ / [|θ − θn| (1 +
√
n |θ − θn|

)]
.

First note that sup|θ−θn|≤hn |εn (θ)| = op (1) if the empirical process
√
n (ḡn (θ)− Egni (θ)) is

stochastically equicontinuous. However, gn (wi, θ) is a sum of four terms, of which the first

is free of θ and the next two are linear in θ1. For the last term, note that δ is bounded

and ζi (γ) is the sum of ζij1
{
qij > γj

}
’s. Notice, however, that this function, as indexed

by γ ∈ {|γ − γ0| ≤ hn} and centered at ζij1
{
qij > γj0

}
, constitutes a Vapnik-Chervonenkis

(VC) class. Thus, Theorem 2.14.1 of van der Vaart and Wellner (1996) yields the desired result

by choosing an envelope function as
∣∣ζij∣∣ 1{∣∣qij − γj0∣∣ ≤ hn} . Next, note that

sup
|θ−θn|≤hn

√
nEgni (θ) /

(
1 +
√
n |θ − θn|

)
≤ sup
|θ−θn|≤hn

|Egni (θ)| / |θ − θn| = O (1) ,
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due to the differentiability. For the same reason, sup|θ−θn|≤hn
∣∣Egni (θ)−Gκ−1

n (θ − θn)
∣∣ / |θ − θn| =

o (1) . Therefore, these and the Cauchy-Schwarz inequality yields that sup|θ−θn|≤hn |rjn (θ)| =
op (1) for all j.

Proof of Theorem 1. We check the regularity conditions in Lemma 5. First we demonstrate

that gn (θn) = 0 if and only if θ = θn. That is, suppose β = β0 and δ = δn but γ 6= γ0, then

E (gn (wi; θ)) = δ′n

(
E
(
1it (γ)′Xitz

′
it

)′ − E
(
1it (γ0)′Xitz

′
it

)′)′
t=t0,...,T

6= 0

due to the rank condition in Assumption 3. Similarly, if either β 6= β0 or δ 6= δn, but γ = γ0,

then

E (gn (wi; θ)) =
(
−E

(
∆xitz

′
it

)′
(β − β0) ,−E

(
1it (γ0)′Xitz

′
it

)′
(δ − δn)

)
t=t0,...,T

6= 0.

And if φ 6= φ0 and γ 6= γ0, the rank condition is suffi cient since
(
(β − β0)′ , (δ − δn)′ , δ′

)
6= 0.

The other conditions in Assumption 9 are readily satisfied.

A.2 2SLS

Recall the notational convention that we write g for g (θ0, b0) or g (θ) for g (θ, b0) for a given

random function g (·, ·) when there is no confusion. This is repeatedly used in this section.
Before we prove Theorem 2, we discuss a set of more primitive suffi cient conditions for the

asymptotic normality in Assumption 4. One way to characterize the asymptotic property of

the reduced form regression, Ft, is through the empirical process theory. Let ‖·‖Q,2 indicate the
L2-norm with respect to a probability measure, Q, and denote the covering number and the

bracketing number, respectively, by N (·, ·, ·) and by N[] (·, ·, ·). The notation, P is reserved for

the true probability measure. The entropy (with bracketing) is the log of the covering number

(the bracketing number). Either of the following entropy integral conditions is imposed to

achieve the asymptotic tightness. The first is the uniform-entropy condition:∫ ∞
0

sup
ξ<ξ0

sup
Q

√
logN

(
ε
∥∥f̄ξ∥∥Q,2 ,Fξ, L2 (Q)

)
dε <∞, (26)

where the supremum is taken over all the finitely discrete measure, Q on the sample space,

Fξ a class of functions with an envelope f̄ξ. The second is the bracketing entropy integral
condition given by ∫ ∞

0
sup
ξ<ξ0

√
logN[]

(
ε
∥∥f̄ξ∥∥P,2 ,Fξ, L2 (P)

)
dε <∞. (27)
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Then, we introduce the following assumptions, which are suffi cient to obtain Assumption

4.

Assumption 10 The estimator, b̂ is consistent such that b̂ − b0 = Op
(
n−1/2

)
. The class of

functions, Fε = {f (·, b)− f (·, b0) : |b− b0| < ε, for some ε > 0}, with an envelope function f̄ε,
satisfies either of the entropy integral conditions, (26) and (27) and Ef̄4+a

ε (zi) = o
(
ε4+a

)
for

every η > 0 and some a > 0.

Assumption 11 There exists a kb × 2k1 (T − t0 + 1) matrix-valued function ḟ such that

E
[
f (zi, b)− f (zi, b0)− ḟ (zi)

′ (b− b0)
]2

= o
(
|b− b0|2

)
for any fb − fb0 ∈ Fε.

Assumption 10 is very general and allows for non-regular regression, such as threshold

model, as well as regular cases, where b̂ is
√
n-consistent and asymptotically normal. Assump-

tion 11 is a differentiability condition for the regression function, f in mean square, which

excludes the threshold regression.

Now, we turn to the proof of main theorem.

Proof of Theorem 2. First, we establish the consistency of the estimators. Recall that

eit (θ) = eit − (β − β0)′Hit − (δ − δn)′
(
F ′it1it

)
− [1it (γ)− 1it]′ Fitδ, (28)

and let Mn (θ) =
∑T

t=t0
E
(
e2
it (θ)

)
. Then, Mn (θ) is twice differentiable everywhere but γ =

γ0 and the second derivative with respect to β and δ is positive definite uniformly in γ by

Assumption 8. Furthermore, direct calculation reveals that ∂Mn (θ) /∂γ is positive if γ >

γ0 and negative if γ < γ0. Therefore, Mn (θ) is globally minimized and continuous at θ =

θn. Furthermore, supθ∈Θ

∣∣∣Mn

(
θ, b̂
)
−Mn (θ)

∣∣∣ p−→ 0 as supθ∈Θ

∣∣∣Mn

(
θ, b̂
)
−Mn (θ)

∣∣∣ p−→ 0, as

shown in the following rate proof and the uniform convergence of Mn (θ) is standard. Thus,

the consistency proof is complete.

Convergence rate We verify the conditions of Theorem 3.4.1 in van der Vaart and Wellner

(1996). We do so with rn =
√
n, δn = n−1/2, and φn (δ) = δ. Since rn =

√
n, the terms in the

expansion of Mn

(
θ, b̂
)
that are Op

(
n−1

)
are irrelevant in the verification of the conditions in

the theorem.
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Define

rit (θ, b) = eit (θ, b)− eit (θ)

= (Hit (b)−Hit)
′ β0 − 1′it (Fit (b)− Fit) δn

− (Hit (b)−Hit)
′ (β − β0)− 1′it (Fit (b)− Fit) (δ − δn)

− (1it (γ)− 1it)′ (Fit (b)− Fit) δ,

and write

Mn

(
θ, b̂
)
−Mn (θ) =

1

n

n∑
i=1

T∑
t=t0

(
r2
it

(
θ, b̂
)

+ 2eit (θ) rit

(
θ, b̂
))

.

The first term can be shown to be Op
(
n−1

)
uniformly in θ by applying a ULLN, the

√
n-

consistency of b̂ in Assumption 10, and the mean square differentiability of F in Assumption

11. Furthermore, for any K <∞,

sup
θ∈Θ,|b−b0|≤K/

√
n

∣∣∣∣∣ 1n
n∑
i=1

T∑
t=t0

eitrit (θ, b)

∣∣∣∣∣ = Op
(
n−1

)
, (29)

where eit is the first term in the expansion of eit (θ) in (28) . This can be verified by applying

Theorem 2.11.22 or 2.11.23 in van der Vaart and Wellner (1996). The uniform entropy integral

conditions in these theorems are easily satisfied since the class, I = {1 (q > γ) : γ ∈ Θ} is
a VC-class of functions, satisfying two entropy conditions (26) and (27), and the class F =

{(f (·, b)− f (·, b0)) : |b− b0| < ε} is assumed to satisfy either of them. We may recall that
the entropy results are preserved under the product and summations (e.g., Andrews, 1994).

Thus, it remains to verify the conditions in (2.11.21). The first requirement of the continuity

in the second mean is obvious. The second one is the conditions on the envelope. Noting

that all the terms in rit are bounded by a constant multiple of
∣∣Fit (b0 + hn−1/2

)
− Fit

∣∣, we set
|eit|
√
nf̄K/

√
n as an envelope function, which then satisfies the second condition in (2.11.21)

due to Assumption 7.

Due to (29) , it remains to verify the conditions of Theorem 3.4.1 for

M̃n (ψ) = −Mn (θ) + Rn (θ, b) , (30)

where Rn (θ, b) = 2
n

∑n
i=1

∑T
t=t0

rit (θ, b)
(
(β − β0)′Hit + (δ − δn)′ (F ′it1it) + [1it (γ)− 1it]′ Fitδ

)
and ψ =

(
θ′, b′

)′
. We use the distance function defined by

dn (θ, θn) = |β − β0|+ |δ − δn|+ |γ − γ0|1/(2−4α) .

Accordingly, let

M̃n (ψ) = −EM̃n (ψ) .

[36]



Assume ψ ∈ Θn × Bn, where Θn = {θ : dn (θ, θn) ≤ ε} for some ε > n−1/2 and Bn =

{b : |b− b0| ≤ K/
√
n} for some K < ∞. Note that ψn =

(
θ′n, b

′
0

)′ should correspond to θn
in Theorem 3.4.1 in van der Vaart and Wellner (1996).

We now verify the conditions in the theorem with the preceding definitions. The first

condition to check is:

sup
ε/2<dn(ψ,ψn)<ε

M̃n (ψ)− M̃n (ψn) ≤ −ε2,

which follows because M̃n (ψn) = −Mn (θn) , and

M̃n (ψ) = −Mn (θ) + 2E
T∑
t=t0

rit (θ, b)
(
(β − β0)′Hit + (δ − δn)′

(
F ′it1it

)
+ [1it (γ)− 1it]′ Fitδ

)
,

whose last term is O
(
n−1/2

)
due to Assumption 11 and the fact that |b− b0| ≤ K/

√
n.

The maximal inequality for
√
n
((
M̃n − M̃n

)
(ψ)−

(
M̃n − M̃n

)
(ψn)

)
is the second con-

dition to check. Begin with Mn (θ) , which is the first term of M̃, given in (30) . That is, we

need to check the maximal inequality for the centered empirical process:

1√
n

n∑
i=1

T∑
t=t0

[
e2
it (θ)− e2

it − Ee2
it (θ) + Ee2

it

]
.

The function, e2
it (θ) − e2

it is the sum of linear and quadratic functions of β and δ multiplied

by [1it (γ)− 1it] . This is a VC class of functions. In this case, a maximal inequality bound is
given by the L2 norm of an envelope. We may choose the following envelope:

2 |eit| |Fit| ε+ |Fit|2 ε2 + 2 |eit| |1it (γ)− 1it| |Fit| (|δn|+ ε) + |1it (γ)− 1it| |Fit|2 (|δn|+ ε)2 ,

for some C <∞. The first two terms are clearly O (ε) in L2 norm. As the last two terms can

be treated in a similar way, we only show:

E1/2
{
|eit|2 |Fit|2

(
1
(
|qit − γ0| ≤ ε2−4α

)
+ 1

(
|qit−1 − γ0| ≤ ε2−4α

))}
(|δn|+ ε) = O (ε) .

However, the standard algebra using the change-of-variables yields:

E1/2 |eit|2 |Fit|2 1
(
|qit − γ0| ≤ ε2−4α

)
|δn| = O

(
ε1−2α |δ0|n−α

)
= O (ε) ,

where the last equality follows since ε > n−1/2.

We proceed similarly for Rn (θ, b) . As Rn (θn, b0) = 0, the centering is not necessary.

We have already described that a class of functions of the type, rit (θ, b) ((β − β0)′Hit +
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(δ − δn)′ (F ′it1it) + [1it (γ)− 1it]′ Fitδ) satisfy either of the entropy integral conditions. An

envelope for this class might be:

C |Fit (b)− Fit| |Fit| (ε+ |1it (γ)− 1it| (|δn|+ ε)) ,

for a finite constant C depending on Θn×Bn. Then, it is clear that this envelope has L2 norm

of order O (ε) by the same reasoning as in the preceding discussion.

The last condition to be checked is:

M̃n

(
θ̂, b̂
)
≥ M̃n (θn, b0) +Op

(
n−1

)
.

But, we may assume that b̂ ∈ Bn without loss of generality. Then,

M̃n

(
θ̂, b̂
)

= Mn

(
θ̂, b̂
)

+Op
(
n−1

)
≥Mn

(
θn, b̂

)
+Op

(
n−1

)
= M̃n

(
θn, b̂

)
+Op

(
n−1

)
= M̃n (θn, b0) +Op

(
n−1

)
,

where the first and third equalities are due to (29) , the second inequality by construction,the

last equality follows because Mn (θ, b) does not depend on b for θ = θn. Thus,

√
ndn (θ, θ0) =

√
n
(
|θ1 − θ10|+ |γ − γ0|1/(2−4α)

)
= Op (1) .

Asymptotic distribution: Let h be a k-dimensional vector and rn be the k-dimensional

vector whose first k − 1 elements are
√
n and the last element is n1−2α. Also, let hn = h./rn,

where ./ is the elementwise division. We first derive the weak convergence of

n
(
Mn

(
θ, b̂
)
−Mn

(
θn, b̂

))
(31)

on Θn = {θ : θ = θn + hn for |h| ≤ K} for an arbitrary K <∞. Then, the argmax continuous
mapping theorem yields the desired result. As we already proved that the classes of functions

inMn satisfy either the uniform-entropy condition or the bracketing entropy integral condition,

it remains to verify the conditions on envelope functions and specify the covariance kernels of

the limit process.

To begin with, let ei = (eit0 , ..., eiT )′ , h = (h′c, hγ)′ , and Ξ2i

(
hγn

2α−1, b
)
denote the bottom

k1 + 1 rows of Ξi (γ, b) evaluated at γ = γ0 + hγn
2α−1 and define

mni (h, b) =
√
n [ei (θn + hn, b)− ei (b)]

= Ξi (b)′ hc −
√
n
(
Ξ2i

(
hγn

2α−1, b
)
− Ξ2i (b)

)′ (
δn + hδ/

√
n
)
.
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Also keeping the notational convention, we write êi = ei

(
b̂
)
, m̂ni (h) = mni

(
h, b̂
)
, and ei =

ei (b0) , etc. Then,

n
(
Mn

(
θn + hn, b̂

)
−Mn

(
θn, b̂

))
=

1

n

n∑
i=1

|m̂ni (h)|2 − 2√
n

n∑
i=1

ê′im̂ni (h) . (32)

We begin with the last term. Due to Assumption 4 and (15) , we may apply the mean value

theorem to get

1√
n

n∑
i=1

m̂ni (h)′ êi =
1√
n

n∑
i=1

m̂ni (h)′∆εi

+
1

n

n∑
i=1

m̂ni (h)′
∂Ξi

(
b̃
)′
θ10

∂b′

E
(
ḟiḟ
′
i

)−1

√
n

n∑
i=1

ḟiηi + op (1)

 , (33)

and

1√
n

n∑
i=1

m̂ni (h)′∆εi

=
1√
n

n∑
i=1

(
h′cΞi

(
b̂
)
− n

1
2
−α (δ0 + o (1))′

(
Ξ2i

(
hγn

2α−1, b̂
)
− Ξ2i

(
b̂
)))

∆εi. (34)

The first part of this expansion, h′cΞi (b) ∆εi, easily satisfies either of the entropy conditions

(26) and (27) by Assumption 10 as a class of functions indexed by b in a neighborhood of

b0. Then, with a proper moment condition, the first part of the empirical process above is

stochastically equicontinuous. For the second part, we need to consider a sequence of classes

of functions

Gn =
{
gn (b, hγ) = n

1
2
−αδ′0

(
Ξ2i

(
hγn

2α−1, b
)
− Ξ2i (b)

)
∆εi : |b− b0| < ε, |hγ | < K

}
,

with an envelope function,

Gn = n
1
2
−α |δ0|

(
sup
|b−b0|<ε

|∆εi| |f (zi, b)|
)
|1i (γ)− 1i (γ0)| .

Due to the permanence of the entropy conditions with respect to the product, as discussed

when deriving the rate, one of the two entropy conditions is satisfied for this sequence of classes,

which allows us to apply Theorem 2.11.22 or 2.11.23 in van der Vaart and Wellner (1996). It

is suffi cient to verify the conditions on the envelope Gn. The Lindeberg condition is satisfied
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since

E
(
G2
n1
(
|Gn| > η

√
n
))

≤ E2n1−2α |δ0|2
T∑

t=t0−1

1
(
|qit − γ0| ≤ hγn−1+2α

)
×
(

sup
|b−b0|<ε

|∆εi|2 |f (zi, b)|2
)

1

(
sup
|b−b0|<ε

|∆εi| |f (zi, b)| >
ηnα

2 (T + 1) |δ0|

)
≤ O

(
n−αζ

)
= o (1) .

due to Assumption 7. In view of the differentiability of f in square mean in Assumption 11,

the uniform continuity of gn (b, hγ) in square mean is obvious. Thus, the second part in (34)

is also stochastically equicontinuous. An obvious consequence is that

1√
n

n∑
i=1

mni

(
h, b̂
)′

∆εi =
1√
n

n∑
i=1

mni (h, b0)′∆εi + op (1) (35)

and the first term converges weakly to a Gaussian process, whose covariance kernel is specified

later. Thus, it follows that the second term in (32) is

2√
n

n∑
i=1

ê′im̂ni (h)

=

(
I − Emni (h) [IT ⊗ (ι⊗ β0)]′ ḟ ′iE

(
ḟiḟ
′
i

)−1
)

2√
n

n∑
i=1

[
mni (h)′ ei

ḟiηi

]
+ op (1) .

Recall that mni (h1) is the sum of a linear function of hc and gn (hγ) apart from the neg-

ligible term and thus the covariance terms between hc and hγ vanish due to the difference

in the convergence rates. For this, it is enough to observe that each element in the matrix

E
(
Ξ2i

(
hγn

2α−1
)
− Ξ2i

)
is bounded by, up to a constant,

E1
{
|qit − γ0| ≤ hγn2α−1

}
=

∫
1 {|q| ≤ 1} p

(
hγn

2α−1q + γ0

)
hγn

2α−1dq

= O
(
n2α−1

)
,

due to Assumption 2, where the change-of-variable is applied for the first equality. By the

same reasoning,

Emni (h)
∂Ξi

(
b̃
)′
θ10

∂b′
= h′cEΞi

∂Ξ′iθ10

∂b′
+ o (1) ,

and the limit of 1
n

∑n
i=1 |m̂ni (h)|2 is the sum of a quadratic function of hc and a function of hγ

without any interaction term. This implies the asymptotic independence between θ̂1 and γ̂.
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Turning to the asymptotic distribution of γ̂, redefine

gn (hγ) = n
1
2
−αδ′0

(
Ξ2i

(
hγn

2α−1
)
− Ξ2i

)
ei,

and note that gn (hγ) gn

(
h́γ

)
= 0 unless hγ and h́γ have the same sign. For hγ > h́γ ≥ 0,

n−1+2αE
(
gn (hγ) gn

(
h́γ

))
= δ′0

T∑
r,t=t0

E

[
eiteirF

′
it

[
1it
(
γ0 + hγn

2α−1
)
− 1it

] [
1ir

(
γ0 + h́γn

2α−1
)
− 1ir

]′
Fir

]
δ0.(36)

The evaluation of the expectation can be done in the same way as above. Thus, those expec-

tations involving the products of indicators of qit and qit′ with t 6= t′ will vanish. After some

algebra, we can show the limit of (36) is δ′0V2 (γ0) δ0

(
hγ − h́γ

)
, and more generally

δ′0V2 (γ0) δ0

∣∣∣hγ − h́γ∣∣∣ 1{sgn (hγ) = sgn
(
h́γ

)}
,

where V2 (γ) is given in section 4. This functional form of the covariance kernel implies that

the limit Gauss process is a two-sided Brownian motion originating from zero.

Now, applying a standard ULLN to 1
n

∑n
i=1

∑T
t=t0

mit (h, b)2, the consistency of b̂, the same

line of argument as above, we may conclude that

1

n

n∑
i=1

|m̂ni (h)|2 p−→ h′cEΞiΞ
′
ihc +M2 (γ0) |hγ | ,

Given the structure of the weak limit of (31), the minimizer ĥc is normally distributed

and the argmin ĥγ is that of a two-sided Brownian motion added by a linear trend. The

representation in main body of the theorem follows from Hansen (2000), in which it is shown

that for a two-sided standard Brownian motion W and for any positive constants c1 and c2

argmin
γ∈R

[c1 |γ| − 2
√
c2W (γ)] =

c2

c2
1

argmin
γ∈R

[
|γ|
2
−W (γ)

]
.

Furthermore, the same line of proof as that of Theorem 2 of Hansen (2000) goes through for

the convergence of LRn (γ0) given the results obtained above about θ̂1 and γ̂. This completes

the proof.

Proof of Corollary 3. This corollary is a direct consequence of Theorem 2.
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A.3 Testing

Proof of Theorem 4. (i) GMM case. Recall (24), and apply the standard ULLN and the

continuous mapping theorem to conclude that

Wn (γ)⇒

 Z ′Ω−1/2G (γ)′
(
G (γ)′Ω−1G (γ)

)−1
R′
[
R
(
G (γ)′Ω−1G (γ)

)−1
R′
]−1

× R
(
G (γ)′Ω−1G (γ)

)−1
G (γ) Ω−1/2Z,


where G (γ) = (Gβ, Gδ (γ)) and Z is the standard normal variate of dimension l, which is the

number of moment conditions.

(ii) 2SLS case. As the model is linear for each γ, the marginal convergence of δ̂ (γ) is

standard. And the tightness of the process can be checked following the same line of argument

as in the derivation of the asymptotic distribution of the 2SLS estimator. In fact, the current

case is simpler as the re-centering of the process at γ = γ0 is not necessary and δ0 = 0. Details

are omitted.
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Table 1: MSE of FD-GMM estimators

FD-GMM Averaging

DGP n γ β δ1 δ2 γ β δ1 δ2

Jump 50 0.063 0.077 0.179 0.498 0.115 0.096 0.185 0.566

100 0.089 0.075 0.207 0.600 0.087 0.066 0.172 0.517

200 0.066 0.068 0.174 0.536 0.067 0.056 0.144 0.474

Cont. 50 0.077 0.320 0.588 0.863 0.009 0.112 0.292 0.273

100 0.079 0.383 0.677 1.002 0.041 0.203 0.439 0.591

200 0.083 0.383 0.662 0.963 0.060 0.289 0.542 0.743

Table 2: Bias of FD-GMM estimators

FD-GMM Averaging

DGP n γ β δ1 δ2 γ β δ1 δ2

Jump 50 −0.041 0.005 −0.044 0.100 −0.269 0.199 −0.151 −0.390

100 −0.047 0.007 −0.044 0.095 −0.106 0.073 −0.070 −0.093

200 −0.029 −0.011 −0.018 0.098 −0.060 0.016 −0.034 0.033

Cont. 50 0.057 0.180 -0.288 0.184 0.055 0.105 -0.198 0.163

100 0.064 0.145 -0.271 0.199 0.057 0.099 -0.231 0.210

200 0.074 0.190 -0.298 0.162 0.067 0.158 -0.270 0.170

Table 3: Standard Error of FD-GMM estimators

FD-GMM Averaging

DGP n γ β δ1 δ2 γ β δ1 δ2

Jump 50 0.247 0.277 0.421 0.699 0.207 0.238 0.402 0.644

100 0.294 0.273 0.452 0.769 0.275 0.246 0.409 0.713

200 0.255 0.261 0.417 0.726 0.252 0.236 0.377 0.688

Cont. 50 0.272 0.537 0.711 0.911 0.080 0.317 0.503 0.497

100 0.274 0.601 0.777 0.981 0.194 0.440 0.621 0.739

200 0.279 0.589 0.757 0.968 0.236 0.514 0.685 0.845
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Table 4: MSE of FD-GMM estimators (restricted)

FD-GMM Averaging

DGP n γ β δ γ β δ

Jump 50 0.105 0.102 0.124 0.050 0.095 0.132

100 0.106 0.116 0.142 0.075 0.097 0.122

200 0.095 0.080 0.102 0.076 0.070 0.088

Cont. 50 0.033 0.075 0.155 0.019 0.067 0.143

100 0.039 0.094 0.192 0.030 0.085 0.177

200 0.039 0.082 0.170 0.034 0.080 0.168

Table 5: Bias of FD-GMM estimators (restricted)

FD-GMM Averaging

DGP n γ β δ γ β δ

Jump 50 0.009 0.051 -0.008 -0.029 -0.082 0.143

100 0.012 0.064 -0.047 0.021 0.031 -0.010

200 0.028 0.052 -0.047 0.025 0.041 -0.035

Cont. 50 0.013 -0.049 0.103 0.092 -0.008 0.038

100 0.021 -0.081 0.144 0.052 -0.053 0.098

200 0.014 -0.064 0.116 0.028 -0.051 0.094

Table 6: Standard Error of FD-GMM estimators (restricted)

FD-GMM Averaging

DGP n γ β δ γ β δ

Jump 50 0.324 0.315 0.352 0.222 0.297 0.335

100 0.325 0.334 0.374 0.273 0.310 0.350

200 0.307 0.278 0.316 0.275 0.261 0.295

Cont. 50 0.182 0.270 0.380 0.102 0.259 0.376

100 0.196 0.295 0.414 0.164 0.286 0.409

200 0.197 0.279 0.396 0.183 0.278 0.399
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Table 7: A dynamic threshold panel data model of investment

xit \ qit Cash Flow -Leverage Tobin Q

Lower Regime (φ1)

I−1 0.580
(0.132)

0.590
(0.123)

0.382
(0.226)

CF 0.245
(0.121)

0.600
(0.118)

−0.044
(0.209)

Q −0.017
(0.016)

−0.013
(0.014)

0.368
(0.173)

L −0.128
(0.049)

−0.029
(0.087)

−0.386
(0.184)

Upper Regime (φ2)

I−1 −0.215
(0.480)

0.253
(0.158)

0.365
(0.142)

CF 0.012
(0.128)

−0.043
(0.146)

0.217
(0.084)

Q 0.028
(0.021)

0.021
(0.014)

−0.031
(0.010)

L 0.825
(0.195)

2.968
(0.725)

0.194
(0.095)

Difference (δ)

I−1 −0.796
(0.561)

−0.336
(0.439)

−0.016
(0.325)

CF −0.233
(0.154)

−0.643
(0.203)

0.261
(0.264)

Q 0.045
(0.035)

0.034
(0.024)

−0.401
(0.175)

L 0.953
(0.207)

2.998
(0.745)

0.581
(0.147)

Threshold 0.358
(0.039)

0.100
(0.033)

0.561
(0.244)

Upper Regime (%) 19.4 26.4 58.9

J-test 60.1
(0.004)

33.3
(0.185)

45.4
(0.091)

No. of IVs 36 36 43
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Table 8: A dynamic threshold panel data model of dividend smoothing

xit \ qit ROA EPS

Lower Regime (φ1)

DPS−1 0.804
(0.030)

0.625
(0.108)

EPS 0.005
(0.005)

−0.021
(0.019)

Upper Regime (φ2)

DPS−1 0.905
(0.029)

0.771
(0.071)

EPS 0.038
(0.008)

0.054
(0.026)

Difference (δ)

DPS−1 0.105
(0.026)

0.147
(0.086)

EPS 0.033
(0.009)

0.054
(0.026)

Threshold 0.148
(0.022)

0.605
(0.511)

Upper Regime (%) 61.0 64.2

J-test 47.4
(0.078)

35.6
(0.122)

No. of IVs 40 32
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