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Theme

yit = B(L)yi ,t−1 + γxit + µi + εit

I εit : martingale di�erence sequences parameterized through

stochastic volatility

I In a macroeconomic context: T is relatively large (>20); N is

relatively small (<100)
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Contribution

I E�cient estimation by particle �lter techniques

I Frequentist approach: maximization of approximate
simulated-likelihood

I Bayesian approach: particle Metropolis-Hastings sampler

I Two-step LSDV-QML: fast but less e�cient

I Ignoring the existence of stochastic volatility might induce

systematically false rejection in panel unit root tests

I Monte Carlo studies show that particle-�lter based estimators

are more precise than other estimators on average in the

presence of stochastic volatility and even in the case of

homoscedasticity

I Our methodology is straightforwardly applied to panel VAR

models
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Motivation

Time-varying volatility in macroeconomic time series:

I Evidence of conditional heteroskedasticity in the residuals of

many estimated dynamic regression models in

macroeconomics: Weiss (1984)

I U.S. real GDP: Kim and Nelson (1999), McConnell and

Perez-Quiros (2000), Blanchard and Simon (2001).

I Other macro variables: Stock and Watson (2003),

Fernández-Villaverde and Rubio-Ramírez (2013).

4 /32



Motivation

Figure : U.S. Real GDP Growth, Absolute Deviations from Mean (from
Fernández-Villaverde and Rubio-Ramírez, 2013)
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Motivation

Some attempts in modeling stochastic volatility in macroeconomics

I DSGE: Fernández-Villaverde and Rubio-Ramírez (2007)

I VAR: e.g., Koop and Korobilis (2010)

I Hamilton (2010)

I Hypothesis tests on the mean might be invalid if the variance
is misspeci�ed

I Statistical e�ciency gains can be obtained by incorporating
observed features of time-varying volatility into the estimation
of the conditional mean.

6 /32



Motivation

Dynamic panel data models in macroeconomic applications: study

common relationships across countries or regions

I purchasing power parity

I mean reversion of interest rates

I growth convergence

Panel unit root tests

I Levin and Lin (1992)

I Harris and Tzavalis (1999):

√
N(β̂LSDV − 1 +

3

T + 1
)

d→ N(0,
3(17T 2 − 20T + 17)

5(T − 1)(T + 1)3
)
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Baseline Model

yit = βyi ,t−1 + µi + εit

εit = σitεit

log(σ2it) = µ+ φ(log(σ2i ,t−1)− µ) + ηit(
εit
ηit

)
∼ N(0,

[
1 0

0 θ2

]
)
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Particle Filters
Nonlinear and non-Gaussian state space models

yt = ht(xt , εt)

xt = mt(xt−1, ηt)

Particle �lters: simulation-based �ltering techniques to approximate

the posterior density p(x1:t |y1:t , θ) by a discrete distribution made

of weighted draws (x
(j)
1:t , ŵ

(j)
t ) (j = 1, . . . ,M) termed particles.

Algorithms di�er mainly in the choices of incremental importance

distributions and resampling algorithms which are aimed to improve

the level of statistical e�ciency in terms of Monte Carlo variation.

I bootstrap �lter (Gordon et al., 1993)

I auxiliary particle �lters (Pitt and Shephard, 1999)

I mixture Kalman �lters (Chen and Liu, 2000)

I .....
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Mixture Kalman Filters (Chen and Liu, 2000)

yt = Z (αt,1)αn,2 + εt

αt,2 = T (αt,1)αt−1,2 + ηt

εt ∼ N(0,H(αt,1)) ηt ∼ N(0,Q(αt,1))

αt,1 follows a �rst order Markov process

I Particle state variables αt,1 : simulation

I M draws or particles per period: (α
(j)
t,1, ŵ

(j)
i,t|t−1) (j = 1, . . . ,M)

I Kalman state variables αt,2 : conditionally normal given αt,1,
Kalman �lters
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State Space Forms

∆yit =
[
1 1 0

]
αit

αit =

β β 0
0 0 1
0 0 0

αi,t−1 +

 0
1
−1

σitεit
log(σ2it) = µ+ φ(log(σ2i,t−1)− µ) + ηit

where the particle state variable is σit and the Kalman state vector

αit =

 β∆yi,t−1
σitεit − σi,t−1εi,t−1

−σitεit

.
Variables of interests

I particle state variable σ
(j)
it

I conditonal means of Kalman state vector given Yi,t−1 and σ
2(j)
it :

m
(j)
it|t−1 = E(αit |Yi,t−1, σ2(j)it )

I conditonal variances of Kalman state vector Yi,t−1 and σ
2(j)
it :

Σ
(j)
it|t−1 = Var(αit |Yi,t−1, σ2(j)it )

I conditonal likelihood of observations log[L̂(∆yit |Yi,t−1, β, µ, φ, θ)]
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Algorithm

For i = 1, ...,N,

1. Set the starting values σ
2(j)
i2 , m

(j)
i2|1 and Σ

(j)
i2|1.

For t = 2, ...,T ,

2. Draw the particle state variable

log(σ
2(j)
i ,t+1) = (1− φ)log(µ) + φlog(σ

2(j)
it ) + θη

(j)
i ,t+1

3. Compute the conditional likelihood for each particle j . That is,

l
(j)
it = −0.5log|V (j)

it | − 0.5v
(j)
it (V

(j)
it )−1v

(j)
it
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Algorithm
4. Update the particle weight

w
(j)
i,t+1|t = w

(j)
it|t−1 + l

(j)
it

ŵ
(j)
i,t+1|t =

exp(w
(j)
i,t+1|t)∑M

j=1
exp(w

(j)
i,t+1|t)

5. Resample with replacement M particles σ
2(j)
i,t+1

, m
(j)
it|t−1 and Σ

(j)
it|t−1

with the weight ŵ
(j)
i,t+1|t every three increments. After doing this, reset

w
(j)
it|t−1 = 0 and ŵ

(j)
it|t−1 = 1

M
.

6. Update Kalman �lter estimates of m
(j)
it|t−1 and Σ

(j)
it|t−1.

7. Go back to step 2.
Simulation-based estimate of the joint log-likelihood

log[L̂(∆yit |Yi,t−1, β, µ, φ, θ)] = log[
M∑
j=1

ŵ
(j)
it|t−1exp(l

(j)
it )]

13 /32



Resampling

I Weight degeneracy problem

As the series grows over time, one particle's normalized importance

weight converges to one while the others converge to zero. In other

words, the discrete distribution made of weighted draws would

become degenerate. The estimator will be imprecise because it is

�nally a function of a single draw.

I Resampling: aimed to mitigate the weight degeneracy problem

by eliminating the particles which have low importance weights

and multiplying the heavily weighted particles.

I multinomial resampling: Gordon et al. (1993)

I It draws new particles {σ̃2(j)it , m̃
(j)
it|t−1, Σ̃

(j)
it|t−1}

M
j=1 from the

point mass distribution {σ2(j)it ,m
(j)
it|t−1,Σ

(j)
it|t−1, ŵ

(j)
it|t−1}

M
j=1

I strati�ed resampling (Kitagawa, 1996)
I residual resampling (Liu and Chen, 1998)
I systematic resampling (Carpenter et al., 1999)
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Frequentist approach

Direct maximization of the simulated likelihood su�ers from

discontinuity induced from the generalized inverse operation at the

resampling stage, which makes invalid the common gradient-based

optimization methods.

I Pitt (2002) overcame the problem of non-smoothness by

developing a new resampling method, but his method is valid

only when the dimension of state space is one.

I Expectation Maximization algorithm: numerically stable and

computationally cheap but only guaranteed to be locally

optimal.

I Olsson and Rydén (2008): step functions or B-spline

interpolation, and showed consistency and asymptotic

normality of the estimators which maximize the approximate

likelihood under some assumptions.
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Frequentist approach

Olsson and Rydén (2008)

I Discretize the parameter space Ω by a grid Ω̄ , {ωg}Gg=1 ⊆ Ω.

Let [ω] denote the closest point in the grid to ω ∈Ω

log[L̂(∆y1, . . . ,∆yN |ω)] ≈ log[L̂(∆y1, . . . ,∆yN |[ω])]

I Maximize approximate simulated-likelihood

I Advantage: theoretical proof of consistency and asymptotic

normality, good �nite sample performance, fast.

I Limit: asymptotic proof requires compact state space

I potentially released given new results of uniform convergence
properties in time dimension in the general state space models.
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Bayesian approach

Andrieu et al. (2010) combined particle �lters with standard

MCMC algorithms

I Particle independent Metropolis-Hastings sampler

I A random walk proposal is used for log(β) , log(µ) , log(φ)
and log(θ).

I Noninformative prior f (β, µ, φ, θ) = 1.
I Probability of accepting β∗ , µ∗ , φ∗ and θ∗ can be written as

min

{
1,
L̂(∆y1, . . . ,∆yN |β∗, µ∗, φ∗, θ∗)β∗µ∗φ∗θ∗

L̂(∆y1, . . . ,∆yN |β, µ, φ, θ)βµφθ

}
.

Metropolis-Hastings sampler can work provided the estimated
likelihood is unbiased.
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LSDV-QML

LSDV

β̂LSDV =

∑N
i=1 yi ,(−1)Qyi∑N

i=1 yi ,(−1)Qyi ,(−1)

where Q = I − ιι′/T and ι is a T -dimension vector of ones.
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LSDV-QML

Assumptions
1. |β| < 1.

2. The initial values of yit follow the steady state distribution

yi0 = µi
1−β +

∑∞
t=0 β

tεi ,−t .
3. The stochastic volatility is stationary: |φ| < 1.

4. The initial values of log(σ2it) follow the steady state distribution

log(σ2i0) = µ+
∑∞

t=0 β
tηi ,−t .

5. {εit} (i = 1, . . . ,N; t = 1, . . .T ) are i.i.d. variables across both

time and individuals with E(εit) = 0 and Var(εit) = 1 and

E(ε4it) = κ <∞ and independent of µi and ηit for all i and t.

6. {ηit} (i = 1, . . . ,N; t = 1, . . .T ) are i.i.d. variables normally

distributed across both time and individuals with E(ηit) = 0 and

Var(ηit) = θ2 <∞.
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LSDV-QML

(LSDV Estimators: Stationary)

Under Assumptions 1-6, as N →∞ and T →∞,

√
NT [β̂LSDV − (β − 1

T
(1 + β))]

d→ N(0,B(β, φ, θ))

where B(β, φ, θ) = (1− β2)2
∑∞

t=1[exp( θ
2φt

1−φ2 )β2t−2].

I Stochastic volatility changes asymptotic variances of the

estimator while keeps unchanged asymptotic means.

I If φ > 0 and θ > 0, B(β, φ, θ) > B(β, 0, 0) which is equal to

1− β2 same as in Alvarez and Arellano (2003).

I When β = 0.7, for example, asymptotic variance is

approximately 0.51 for the model without stochastic volatility,

but can be 1.52 when φ = 0.9 and θ = 0.5.
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LSDV-QML

Assumptions
7. The data generation process has a unit root: β = 1.

8. The initial values yi0 are �xed.

(LSDV Estimators: Unit Root)

Under Assumptions 3-8, as N →∞ and T is �xed,

√
N(β̂LSDV − (1− 3

T + 1
))

d→ N(0,Bu(φ, θ))

where

Bu(φ, θ) =
36(2−5T+2T 2)

5(−1+T )T (1+T )3
exp( θ2

1−φ2 )κ+
∑T−1

t=1 [exp( θ
2φt

1−φ2 )C (t)]

in which
C(t) =
36(−9t5+30t4T−5t3T (2+11T )+5t2T(1+2T+13T2)−2t(−2+5T+5T2+20T4)+T(−4+10T+5T2+9T4))

5(−1+T )2T2(1+T )4
.
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LSDV-QML

I If φ > 0 and θ > 0, Bu(φ, θ) > Bu(0, 0) which is equal to
3(17T 2−20T+17)
5(T−1)(T+1)3

as in Harris and Tzavalis (1999).

I When T = 20, for example, asymptotic variance is

approximately 0.02 for the model without stochastic volatility,

but can be 0.07 when φ = 0.9 and θ = 0.5.

I Bu(φ, θ) > Bu(0, 0) implies that naively ignoring stochastic

volatility would systematically reject Harris and Tzavalis' panel

unit root test more frequently than it should be, although the

estimates lose only a little statistical e�ciency, so stochastic

volatility corrected variance is needed.
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LSDV-QML

I Estimate the error terms using the �rst-step estimator, i.e.,

ε̂it = yit − β̂LSDV yi ,t−1 − µ̂i

where µ̂i = 1
T

∑T
t=1(yit − β̂LSDV yi ,t−1) is a consistent

estimator of the individual e�ect.

I Calculate the quasi-likelihood of ε̂it via Kalman �lters in a

state space form (Harvey and Shephard, 1996)

log(ε̂2it) = log(σ2it) + E(log(ε2it)) + ξit

log(σ2it) = µ+ φ(log(σ2i ,t−1)− µ) + ηit

where E(log(ε2it)) = 1.27 and ξit is a normal variable with mean

zero and variance 4.93.
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Panel VAR

yit = B(L)yi ,t−1 + µi + εit

εit = V
1/2
it εit

hit = µi + Φi (hi ,t−1 − µi ) + ηit(
εit
ηit

)
∼ N(0,

[
Σε 0

0 Ση

]
).
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Panel VAR
2-variable vector

yit = Byi,t−1 + µi + εit

∆yit =

[
1 0 1 0 0 0
0 1 0 0 1 0

]
αit

αit =


β11 β12 β11 0 β12 0
β21 β22 β21 0 β22 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

αi,t−1 +


0 0
0 0
1 0
−1 0
0 1
0 −1

σit
[
εit,1
εit,2

]

where the state vector αit =


β11∆yi,t−1,1 + β12∆yi,t−1,2
β21∆yi,t−1,1 + β22∆yi,t−1,2
σitεit,1 − σit−1εi,t−1,1

−σitεit,1
σitεit,2 − σit−1εi,t−1,2

−σitεit,2

 .
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Monte Carlo Studies

yit = βyi ,t−1 + (1− β)µi + εit

µi =
√
τ(
qi − 1√

2
)ςi

εit = σitεit

log(σ2it) = µ+ φ(log(σ2i ,t−1)− µ) + ηit

where qi ∼ χ21; εit , ςi ∼ N(0, 1) and ηit ∼ N(0, θ2); qi , εit , ςi and
ηit are all i.i.d. within series and also independent of each others.

I τ = 1: the degree of cross-section to time-series variation.

I µ = log(0.04): long-run mean of the log volatility.

I less persistent β = 0.5; persistent β = 0.9; unit root β = 1.

I persistent stochastic volatility: φ = 0.9, θ = 0.5;
homoscedasticity : φ = θ = 0.
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Simulation results of β̂ when β = 0.5
T N φ LSDV IV GMM SGMM PF

20 20 0 -0.082 0.005 -0.093 0.059 -0.079

(0.095) (0.193) (0.110) (0.190) (0.093)

0.9 -0.077 0.022 -0.093 0.050 -0.075

(0.102) (0.176) (0.123) (0.130) (0.095)

50 0 -0.087 0.011 -0.048 0.100 -0.085

(0.090) (0.110) (0.062) (0.131) (0.088)

0.9 -0.093 0.012 -0.070 0.047 -0.094

(0.322) (0.121) (0.095) (0.100) (0.101)

50 20 0 -0.030 0.005 -0.035 -0.057 -0.025

(0.044) (0.075) (0.048) (0.249) (0.044)

0.9 -0.033 0.007 -0.039 -0.032 -0.028

(0.053) (0.094) (0.058) (0.177) (0.048)

50 0 -0.030 -0.001 -0.032 0.048 -0.025

(0.035) (0.047) (0.037) (0.106) (0.035)

0.9 -0.030 0.000 -0.036 0.031 -0.026

(0.045) (0.071) (0.050) (0.076) (0.041)
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Simulation results of β̂ when β = 0.9
T N φ LSDV IV GMM SGMM PF

20 20 0 -0.127 -0.227 -0.166 -0.110 -0.127

(0.134) (2.111) (0.178) (0.168) (0.133)

0.9 -0.129 -0.035 -0.168 -0.092 -0.117

(0.141) (0.803) (0.185) (0.125) (0.128)

50 0 -0.130 0.013 -0.127 -0.034 -0.126

(0.131) (0.160) (0.138) (0.053) (0.127)

0.9 -0.135 0.019 -0.150 -0.064 -0.124

(0.138) (0.164) (0.163) (0.084) (0.127)

50 20 0 -0.046 0.007 -0.053 -0.295 -0.038

(0.050) (0.102) (0.058) (0.383) (0.045)

0.9 -0.049 0.010 -0.057 -0.182 -0.031

(0.057) (0.119) (0.065) (0.244) (0.040)

50 0 -0.045 -0.001 -0.054 -0.087 -0.039

(0.046) (0.058) (0.056) (0.108) (0.043)

0.9 -0.046 0.001 -0.060 -0.065 -0.027

(0.049) (0.088) (0.063) (0.082) (0.034)
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Simulation results of β̂ when β = 1
T N φ LSDV GMM SGMM PF

20 20 0 -0.152 -0.221 -0.088 -0.148

(0.155) (0.230) (0.119) (0.152)

0.9 -0.156 -0.233 -0.045 -0.152

(0.163) (0.247) (0.067) (0.158)

50 0 -0.153 -0.223 -0.062 -0.147

(0.154) (0.233) (0.080) (0.149)

0.9 -0.160 -0.261 -0.046 -0.157

(0.164) (0.273) (0.055) (0.159)

50 20 0 -0.063 -0.076 -0.235 -0.066

(0.065) (0.078) (0.281) (0.068)

0.9 -0.066 -0.082 -0.138 -0.053

(0.069) (0.087) (0.180) (0.055)

50 0 -0.061 -0.088 -0.082 -0.064

(0.061) (0.090) (0.094) (0.065)

0.9 -0.061 -0.098 -0.053 -0.049

(0.063) (0.100) (0.062) (0.051)
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Other simulation results

LSDV-QML PF

β T N φ φ̂ θ̂ µ̂ φ̂ θ̂ µ̂

0.5 50 20 0 0.221 0.231 -0.001 0.271 0.116 -0.001

(0.402) (0.360) (0.003) (0.410) (0.165) (0.003)

0.9 -0.004 -0.025 0.002 -0.027 0.072 0.003

(0.042) (0.133) (0.008) (0.050) (0.121) (0.009)

50 0 0.251 0.200 -0.001 0.283 0.064 -0.001

(0.413) (0.302) (0.002) (0.412) (0.089) (0.002)

0.9 0.004 -0.040 0.001 -0.013 0.037 0.001

(0.030) (0.087) (0.004) (0.028) (0.066) (0.006)
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Other simulation results

Robustness of β̂: the shocks have t-distribution with degree of

freedom 5.

β = 0.5
T N φ LSDV PF

t Normal t Normal

50 20 0 -0.032 -0.030 -0.023 -0.025

(0.042) (0.044) (0.039) (0.044)

0.9 -0.038 -0.033 -0.030 -0.028

(0.078) (0.053) (0.045) (0.048)

50 0 -0.032 -0.030 -0.023 -0.025

(0.036) (0.035) (0.034) (0.035)

0.9 -0.043 -0.030 -0.027 -0.026

(0.073) (0.045) (0.041) (0.041)
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Other simulation results

yit = βyi ,t−1 + αxit + (1− β)µi + εit

xit = qxi ,t−1 + ζit

N = 50, T = 50, β = 0.5, α = 0.7, φ = 0.9, θ = 0.5,
µ = log(0.04), q = 0.9, ζit ∼ N(0, 0.01)

β̂ α̂ φ̂ θ̂ µ̂

LSDV-QML -0.027 0.025 -0.004 -0.020 0.001

(0.038) (0.045) (0.030) (0.087) (0.005)

PF -0.030 -0.062 -0.025 -0.004 0.008

(0.042) (0.071) (0.046) (0.070) (0.009)
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