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Abstract

In this paper we study dynamic panel data models with stochastic
volatility in a macroeconomic context. The models are represented in state
space forms and estimated using particle �lter techniques in both a fre-
quentist framework (maximization of approximate simulated-likelihood)
and in a Bayesian framework (particle Metropolis-Hastings sampler). A
two-step LSDV-QML estimator is also proposed. Ignoring the existence
of stochastic volatility might induce systematically false rejection in panel
unit root tests. Monte Carlo studies show that particle-�lter based esti-
mators are more precise than other estimators on average in �nite samples
in the presence of stochastic volatility and even in the case of homoscedas-
ticity especially when T is large. Our methodology is straightforwardly
applied to panel VAR models.

Keywords: Dynamic Panel Data Models, Stochastic Volatility, Particle Fil-
ters, State Space Modeling, Least Squares Dummy Variable, Quasi-Maximum
Likelihood, Panel Unit Root Tests

1 Introduction

It has been well documented that there is time-varying volatility in macroe-
conomic time series data. Many studies focused on the moderated volatility
in the growth rate of U.S. real GDP. For example, Kim and Nelson (1999)
and McConnell and Perez-Quiros (2000) independently identi�ed a structural
decline in the volatility in the �rst quarter of 1984. Blanchard and Simon
(2001) argued however that the substantial reduction in volatility commenced
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in 1950s, was interrupted during 1970s and reverted to the long-run trend in
late 1980s. They concluded that the moderation is possibly caused by the de-
crease in the volatility of consumption, investment and government spending
and there exists a strong relationship between the trend in output volatility and
in�ation volatility. Weiss (1984) analysed 16 U.S. macroeconomic time series
and showed the evidence of conditional heteroscedasticity. Stock and Watson
(2003) found the decline in volatility was common among many U.S. macroeco-
nomic time series. One of their conclusions is the moderation is associated more
with a decrease in the magnitude of unforecastable disturbances than with the
propagation mechanism of those disturbances. Fernández-Villaverde and Rubio-
Ramírez (2013) provided an updated documentation of the great moderation in
the U.S. economy. Besides, they showed the presence of time-varying volatility
of the Emerging Markets Bond Index+ spread reported by J.P. Morgan. Blan-
chard and Simon (2001) and Stock and Watson (2003) found the time variation
in volatility also happened in other developed countries.

Traditionally homoscedasticity is assumed for the innovations of macroeco-
nomic time series. Recently, motivated by the studies mentioned above, several
papers relaxed the assumption and incorporated time-varying volatility in the
models. Sims and Zha (2006) studied a structural vector autoregression with
regime switching. They found that allowing time variation across regimes in
the variance of the disturbances only rather than also in coe�cients would
�t the data best. The best �t however cannot account for the movement of
U.S. in�ation of the 1970s and 1980s. Fernández-Villaverde and Rubio-Ramírez
(2007) and Justiniano and Primiceri (2008) both estimated DSGE models with
stochastic volatility on the structural shocks. The former used particle �lters
for estimation to study the e�ect of nonlinearity, while the latter estimated the
linearized models using Bayesian Markov chain Monte Carlo methods (MCMC).
Koop and Korobilis (2010) discussed the time-varying parameter vector autore-
gression (VAR) models with multivariate stochastic volatility using MCMC.
These papers all support the necessity for considering time-varying volatility in
macroeconomic modelling. Hamilton (2010) argued that time-varying volatility
should be considered even when the conditional mean is the direct object of
interest. One reason is that hypothesis tests on the mean might be invalid if the
dynamic of variance is misspeci�ed. Another is that statistical e�ciency gains
can be obtained by incorporating appropriate features of time-varying volatility
into the estimation of the conditional mean.

Dynamic panel data models have become increasingly popular in macroe-
conomics to study common relationships across countries or regions, such as
growth convergence (e.g. Islam, 1995), purchasing power parity (e.g. Frankel
and Rose, 1996) and mean reversion of interest rates (Wu and Chen, 2001).
Compared to the microeconomic panel, the time dimension T is relatively large
(>20) and the cross-sectional dimension N is relatively small (<100) in a typ-
ical macroeconomic panel dataset. Judson and Owen (1999) compared the �-
nite sample performance of di�erent estimation techniques including the least
squares dummy variable (LSDV) and generalized method of moments (GMM)
in a macro panel setting. Panel unit root tests have been often used in macro
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panels since Levin and Lin (1992) as nonstationarity deserves more attention
when T grows large.

In this paper, we study the estimation and inference of dynamic panel data
models with stochastic volatility in a macroeconomic context. We propose a
class of parameter estimators using particle �lters (also known as sequential
Monte Carlo methods) which are simulation-based �ltering techniques to esti-
mate the posterior density of the state-space for nonlinear and non-Gaussian
state space models (see Creal 2012 for a survey of the methods for economic
applications). There are various particle �ltering algorithms including the boot-
strap �lter (Gordon et al., 1993), auxiliary particle �lters (Pitt and Shephard,
1999), mixed Kalman �lters (Chen and Liu, 2000) among others. Di�erent al-
gorithms di�er mainly in the choices of incremental importance distributions
and resampling algorithms which are aimed to improve the level of statistical
e�ciency in terms of Monte Carlo variation. After estimating the posterior
density, the likelihoods can be computed for the models where there is no ana-
lytical solution. The simulated likelihood can be used in parameter estimation
either in a frequentist way (e.g. maximization of the log-likelihood) or in a
Bayesian framework such as particle MCMC (Andrieu et al., 2010). We also
propose a two-step estimator LSDV-QML (Quasi-Maximum Likelihood) and
investigate its asymptotic properties. We �nd that asymptotic variance of the
LSDV estimators can be much larger when the stochastic volatility exists and
naively ignoring stochastic volatility would lead to systematically false rejection
in Harris and Tzavalis (1999)'s panel unit root tests.

The paper is organized as follows. Section 2 introduces dynamic panel data
models with stochastic volatility. Section 3 discusses the particle-�lter based
estimators. Section 4 proposes the two-step LSDV-QML estimator and investi-
gates its asymptotic properties. Section 5 presents the Monte Carlo simulation
to study the �nite sample properties of our estimators. Section 6 concludes the
paper.

2 Model Speci�cations

In general, we study a linear dynamic panel data model with the following
speci�cation

yit = B(L)yi,t−1 + γxit + µi + εit (1)

where i = 1, ..., N and t = 1, ..., T ; B(L) denotes a polynomial of the lag op-
erator; xit is a K × 1 vector of additional regressors and γ is the associated
coe�cient vector; µi is the individual e�ect; εit is the disturbance speci�ed as
martingale di�erence sequences, i.e. E(εit|Yi,t−1) = 0 in which Yi,t−1 is the
information set including all observations of yit up to t− 1.

One popular way of parameterizing martingale di�erences is through stochas-
tic volatility, which assumes two error processes so it is more �exible than
GARCH to model conditional heteroscedasticity. The standard speci�cation
is given by
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εit = σitεit

log(σ2
it) = µ+ φ(log(σ2

i,t−1)− µ) + ηit

where log(σ2
it) is log volatility whose evolution follows an AR(1) process with

mean vector µ and coe�cient φ; εit is independent of σ
2
it; εit and ηit follow a

joint normal distribution (
εit
ηit

)
∼ N(0,

[
σ2
ε 0

0 θ2

]
).

in which σ2
ε is set to 1 for indenti�ability reasons. In this setting, the conditional

variance of disturbances εit is σ
2
it which is time varying. Various extensions of

the basic speci�cation can be made. For example, it is possible to incorporate
dependence between εit and ηit, which is called the leverage e�ect suggested
by the evidence of stock returns; it is also possible to model error terms using
a fat-tailed distribution. When |φ| is less than 1, the log-volatility process is
strictly stationary given σ2

i1, which implies stationarity of εit.
We consider the �xed e�ect speci�cations under which no restrictions are

imposed on the data generating process of µi. Many possible speci�cations can
be allowed such as cross-sectional dependence, heteroskedasticity and correlation
between individual e�ects and disturbances.

The focus of the paper is on estimation of the unknown coe�cients in B(L)
and parameters in the distribution of disturbances. We consider AR(1) dynamic
panel models with no other regressors as the benchmark speci�cations, although
we will brie�y investigate the �nite sample performance of our estimators in the
models with an additional regressor in Section 5. Speci�cally, we discuss

yit = βyi,t−1 + µi + εit (2)

As for the existence of stochastic volatility, the tractable expressions for exact
likelihood functions are not known. State space models are useful means in time
series analysis to study dynamics of the system through latent variables named
state variables (Durbin and Koopman, 2012). It consists of an observation
equation and a transition equation. It is commonly assumed that the series
of state variables is a Markov chain and observation variables are conditionally
independent given the state variables. The �rst di�erence of the equation (2) can
be put into state space forms. One form, which is useful in studying statistical
properties of the model, is written as

∆yit =
[
1 εit

]
αit

αit =

[
βαi,t−1,1 + (β − 1)εi,t−1αi,t−1,2

e
µ(1−φ)+ηt

2 αφi,t−1,2

]
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where the state vector αit =

[
αit,1
αit,2

]
=

[
β∆yi,t−1 − σi,t−1εi,t−1

σit

]
. The condi-

tional density of the observation variable and the transition density are respec-
tively given by

g(∆yit|αit) =
1√

2παit,2
e
−

(∆yit−αit,1)2

2α2
it,2

q(αit|αi,t−1) =
1√

2παit,2θ/2
e−

2(log(αit,2/α
φ
i,t−1,2

)−µ(1−φ)
2

)2

θ2
1√

2π(β − 1)αi,t−1,2
e
−

(αit,1−βαi,t−1,1)2

2(β−1)2α2
i,t−1,2

Another form is

∆yit =
[
1 1 0

]
αit (3)

αit =

β β 0
0 0 1
0 0 0

αi,t−1 +

 0
1
−1

σitεit (4)

where the state vector αit =

 β∆yi,t−1
σitεit − σi,t−1εi,t−1

−σitεit

. We will use the latter state

space form throughout the remaining paper for the reason explained in the next
section.

Although it is not the focus of this paper, our methodology is straightfor-
wardly applied to panel VAR models which is

yit = B(L)yi,t−1 + µi + εit (5)

where yit is a K̃ × 1 vector of variables of interest; B(L) denotes a K̃ × K̃
matrix of polynomials of the lag operator; µi is a K̃× 1 vector of the individual
e�ects; εit is a K̃×1 vector of the disturbances speci�ed as martingale di�erence
sequences. In the multivariate case, there are several ways stochastic volatility
can be modelled. The basic speci�cation (Harvey et al., 1994) is given by

εit = V
1/2
it εit

hit = µi + Φi(hi,t−1 − µi) + ηit

where V
1/2
it = diag(σit,1, . . . , σit,K̃) and hit = (log(σ2

it,1), . . . , log(σ2
it,K̃

)) is a

vector of the series-speci�c log volatilities whose evolution follows a �rst order
stationary VAR with the mean vector µi and the coe�cient matrix Φi; εit and
ηit follow a joint normal distribution(

εit
ηit

)
∼ N(0,

[
Σε 0
0 Ση

]
).
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in which the diagonal elements of Σε are set to 1 for indenti�ability reasons. In

this setting, the conditional covariance matrix of disturbances εit is V
1/2
it ΣεV

1/2
it

which is time varying, while the conditional correlation matrix is Σε which is
constant. To simplify the model, the log volatilities are often assumed to become
conditionally independent, i.e. Φi and Ση are diagonal matrices.

A panel VAR(1) model is given by

yit = Byi,t−1 + µi + εit

For instance, K̃ = 2. Let εit = (εit,1, εit,2)′. Similar to single equation panel
data models, one state-space form is given by

∆yit =

[
1 0 εit,1
0 1 εit,2

]
αit

αit =

β11αi,t−1,1 + β12αi,t−1,2 + ((β11 − 1)εi,t−1,1 + β12εi,t−1,2)αi,t−1,3
β21αi,t−1,1 + β22αi,t−1,2 + (β21εi,t−1,1 + (β22 − 1)εi,t−1,2)αi,t−1,3

e
µ(1−φ)+ηt

2 αφi,t−1,3


where the state vectorB =

[
β11 β12
β21 β22

]
, αit =

αit,1αit,2
αit,3

 =

β11∆yi,t−1,1 + β12∆yi,t−1,2 − σi,t−1εi,t−1,1
β21∆yi,t−1,1 + β22∆yi,t−1,2 − σi,t−1εi,t−1,2

σit

.
Another form is

∆yit =

[
1 0 1 0 0 0
0 1 0 0 1 0

]
αit (6)

αit =


β11 β12 β11 0 β12 0
β21 β22 β21 0 β22 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

αi,t−1 +


0 0
0 0
1 0
−1 0
0 1
0 −1

σit
[
εit,1
εit,2

]
(7)

where the state vector αit =


β11∆yi,t−1,1 + β12∆yi,t−1,2
β21∆yi,t−1,1 + β22∆yi,t−1,2
σitεit,1 − σit−1εi,t−1,1

−σitεit,1
σitεit,2 − σit−1εi,t−1,2

−σitεit,2

 .

It is straightforward to extend the state space forms to the model with an
arbitrary K̃.

3 Particle-Filter-Based Estimation and Inference

In this section we estimate the panel models using particle-�lter-based methods.
Particle �lters can be regarded as the extension of Kalman �lters to address non-
linear and non-Gaussian state space models. It is a simulation-based technique
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to obtain �ltered and smoothed estimates of the states as well as the unbiased
estimate of the likelihood given some regularity conditions. In nonlinear and
non-Gaussian state space models, posterior density of state variables seldom
has the closed-form expression so it is approximated by a discrete distribution
made of weighted draws called particles. Particle �lters can be implemented
in several ways, varying with choices of incremental importance distributions
and resampling algorithms leading to di�erent levels of statistical e�ciency. In
this paper, the special structure of our state space models allows for the use of
mixture Kalman �lters (Chen and Liu, 2000) also called Rao�Blackwellization.
Speci�cally, a class of state space models suitable for mixture Kalman �lters
can be written as

yt = Z(αt,1)αt,2 + εt

αt,2 = T (αt,1)αt−1,2 + ηt

where εt ∼ N(0, H(αt,1)), ηt ∼ N(0, Q(αt,1)) and αt,1 follows a �rst order
Markov process; the state vector αt = (α′t,1, α

′
t,2)′. The parameter matrices Z,

T , H and Q depend on part of the state vector αt,1. The structure is special in
that it is a linear normal state space model conditional on αt,1. Mixture Kalman
�lters integrate out the subset of the state variable αt,2 in order to reduce
the Monte Carlo variation of the simulation-based estimators and improve the
statistical e�ciency. The state space forms of panel data models can be written
as this structure such as (3)-(4) or (6)-(7) in which σit and αit correspond to
αt,1 and αt,2, respectively. Next we will show the speci�c algorithm of mixture
Kalman �lters. For simplicity we restrict our exposition to the model (2), while
it is straightforward to adapt it for other speci�cations.

3.1 Mixture Kalman Filters

As the model is a linear normal state space model conditional on part of the
state variables, the resulting system can be addressed by Kalman �lters. The

particle state variable in our model is σ
2(j)
it where the superscript j indexes the

particle. Let m
(j)
it|t−1 = E(αit|Yi,t−1, σ2(j)

it ) and Σ
(j)
it|t−1 = Var(αit|Yi,t−1, σ2(j)

it )

denote prediction mean and variance for particle j which can be recursively
derived in Kalman �lters. At the end of each iteration over time, the al-
gorithm produces M simulated state variables and the corresponding weight

{σ2(j)
it ,m

(j)
it|t−1,Σ

(j)
it|t−1, ŵ

(j)
it|t−1}

M
j=1.

Given the values of parameters β, µ, φ and θ, the algorithm of mixture
Kalman �lters is as follows.

For i = 1, ..., N ,
1) Set the starting values. For the particle j = 1, ...,M, draw

log(σ
2(j)
i2 ) ∼ N(log(µ),

θ2

1− φ2
)
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and set the

m
(j)
i2|1 =

β∆yi1
0
0



Σ
(j)
i2|1 =

0 0 0

0 2σ
2(j)
i2 −σ2(j)

i2

0 −σ2(j)
i2 σ

2(j)
i2


It should be noted that because of the special structure, only the entry in the

2rd row of m
(j)
i2|1 matters for inference. Similarly, only the entry in the 2rd row

and 2rd column of Σ
(j)
i2|1 matters.

The log importance weight w
(j)
i2|1 = 0 and the normalized importance weight

ŵ
(j)
i2|1 = 1

M .

For t = 2, ..., T ,
2) Draw

log(σ
2(j)
i,t+1) = (1− φ)log(µ) + φlog(σ

2(j)
it ) + θη

(j)
i,t+1

for each j = 1, ...,M where η
(j)
i,t+1 follows the standard normal distribution.

3) Compute the conditional likelihood for each particle j. That is,

l
(j)
it = −0.5log|V (j)

it | − 0.5v
(j)
it (V

(j)
it )−1v

(j)
it

where the forecast error v
(j)
it = ∆yit −

[
1 1 0

]
m

(j)
it|t−1 and forecast variance

V
(j)
it =

[
1 1 0

]
Σ

(j)
it|t−1

1
1
0

.
Update the w

(j)
i,t+1|t = w

(j)
it|t−1 + l

(j)
it and ŵ

(j)
i,t+1|t =

exp(w
(j)

i,t+1|t)∑M
j=1 exp(w

(j)

i,t+1|t)
.

4) Resample with replacement M particles σ
2(j)
i,t+1, m

(j)
it|t−1 and Σ

(j)
it|t−1 with

the weight ŵ
(j)
i,t+1|t every three increments1. After doing this, reset w

(j)
it|t−1 = 0

and ŵ
(j)
it|t−1 = 1

M .

5) Update Kalman �lter estimates

m
(j)
i,t+1|t =

β β 0
0 0 1
0 0 0

m(j)
it|t−1 +K

(j)
it v

(j)
it

Σ
(j)
i,t+1|t =

β β 0
0 0 1
0 0 0

Σ
(j)
it|t−1L

(j)′

it +

 0
1
−1

σ2(j)
i,t+1

[
0 1 −1

]
1It is an ad-hoc choice for stability of the algorithm, see Shephard (2013).
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whereK
(j)
it =

β β 0
0 0 1
0 0 0

Σ
(j)
it|t−1

1
1
0

 (V
(j)
it )−1 and L

(j)
it =

β β 0
0 0 1
0 0 0

−K(j)
it

[
1 1 0

]
.

6) Go to 2).

The particle estimate of conditional log-likelihood is recorded

log[L̂(∆yit|Yi,t−1, β, µ, φ, θ)] = log[

M∑
j=1

ŵ
(j)
it|t−1exp(l

(j)
it )]

so the simulation-based estimate of the joint log-likelihood is

log[L̂(∆y1, . . . ,∆yN |β, µ, φ, θ)] =

N∑
i=1

T∑
t=1

log[

M∑
j=1

ŵ
(j)
it|t−1exp(l

(j)
it )] (8)

where ∆yi = (yi1, . . . , yiT ).
Resampling is used in the literature of particle �lters to alleviate the weight

degeneracy problem (Creal, 2012). Without resampling, as the series grows
over time, one particle's normalized importance weight converges to one while
the others converge to zero. In other words, the discrete distribution made
of weighted draws would become degenerate. Resampling is a crucial means
to make the algorithm stable by eliminating the particles which have low im-
portance weights and multiplying the heavily weighted particles. The simplest
resampling algorithm is multinomial resampling introduced in Gordon et al.

(1993). It draws new particles {σ̃2(j)
it , m̃

(j)
it|t−1, Σ̃

(j)
it|t−1}

M
j=1 from the point mass

distribution {σ2(j)
it ,m

(j)
it|t−1,Σ

(j)
it|t−1, ŵ

(j)
it|t−1}

M
j=1 . Speci�cally,

1) Draw M uniform numbers {U (j)}Mj=1on the interval [0, 1].

2) Generate M multinomial variables ij = F−1(U (j)) where the generalized

inverse function F−1(u) = i if
∑i−1
j=1 ŵ

(j)
it|t−1 < u ≤

∑i
j=1 ŵ

(j)
it|t−1.

3) New particles {σ̃2(j)
it , m̃

(j)
it|t−1, Σ̃

(j)
it|t−1} = {σ2(ij)

it ,m
(ij)

it|t−1,Σ
(ij)

it|t−1} and cor-

responding log weights w̃
(j)
it|t−1 = 0 for j = 1, ...,M .

Let N
(j)
it|t−1 denote the number of times {σ2(j)

it ,m
(j)
it|t−1,Σ

(j)
it|t−1} is drawn

with replacement. Multinomial resampling is unbiased in the sense that ex-
pected N (j) given all weights is proportional to its normalized weight, i.e.

E(N
(j)
it|t−1|ŵ

(1)
it|t−1, . . . , ŵ

(M)
it|t−1) = Mŵ

(j)
it|t−1.

Other resampling methods in the literature consist of strati�ed resampling
(Kitagawa, 1996), residual resampling (Liu and Chen, 1998) and systematic
resampling (Carpenter et al., 1999), all of which are unbiased algorithms but
can be more e�cient than multinomial resampling under some circumstances.
We choose multinomial resampling because it appears to be a requirement for
good asymptotic performance of the estimation method in Olsson and Rydén
(2008) we will use later.
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Next we will estimate parameters using the simulated estimate of likelihood
(8) in both a frequentist and a Bayesian framework. Reviews on the existing
methods for parameter estimation using particle �lters can be found in Kantas
et al. (2009) and Creal (2012).

3.2 Maximization of Approximate Simulated-Likelihood

Although (8) is an unbiased estimator of the exact likelihood under some regu-
larity conditions (Del Moral, 2004), direct maximization of the simulated likeli-
hood su�ers from discontinuity induced from the generalized inverse operation
at the resampling stage, which makes invalid the common gradient-based op-
timization methods. Pitt (2002) overcame the problem of non-smoothness by
developing a new resampling method, but his method is valid only when the
dimension of state space is one, which is too restricted in practical applications.
Several papers performed maximum likelihood estimation via the Expectation
Maximization algorithm, e.g. Olsson et al. (2008), which is numerically stable
and computationally cheap but only guaranteed to be locally optimal. Olsson
and Rydén (2008) approximated the likelihood by means of step functions or
B-spline interpolation, and showed consistency and asymptotic normality of the
estimators which maximize the approximate likelihood under some assumptions.
This is the only work we are aware of which studies asymptotic properties of
parameter estimators in the particle �lter literature. One of their assumptions
is a compact state space which is obviously not the case in our model. We will
however still use their method for parameter estimation for two reasons. One
is that the compactness assumption can be potentially released given new re-
sults of uniform convergence properties in time dimension (Douc et al. (2012),
Whiteley (2011))2, although the full proof of the extension is beyond the scope
of this paper; the other reason is the good performance of Monte Carlo studies
shown below.

Olsson and Rydén (2008) discretized the parameter space Ω by a grid Ω̄ ,
{ωg}Gg=1 ⊆ Ω. Let [ω] denote the closest point in the grid to ω ∈Ω3. The grid-
based particle approximation of the likelihood using piecewise constant functions
is given as

log[L̂(∆y1, . . . ,∆yN |ω)] ≈ log[L̂(∆y1, . . . ,∆yN |[ω])]

The approximation can also be made via spline interpolation, which is more
e�cient than piecewise constant functions but su�ers from higher computation
costs as the dimension of parameter space grows. Although this particle �lter
based method is pretty slower than other frequentist type of approaches such
as OLS and GMM. it is much faster than some Bayesian methods like particle
Metropolis-Hastings sampler described in the next section.

2Thanks Professor Arnaud Doucet for indicating this point in a personal correspondence.
3If there is more than one point having the smallest distance from ω, the point with lowest

index g will be chosen.

10



3.3 Particle Metropolis-Hastings Sampler

Andrieu et al. (2010) combined particle �lters with standard MCMC algo-
rithms such as independent Metropolis�Hastings sampler, marginal Metropo-
lis�Hastings sampler or Gibbs sampler. Speci�cally, they showed the asymp-
totic convergence and good performance of a MCMC algorithm when using an
unbiased particle-based estimator of the likelihood. An attractive feature of
particle MCMC methods is minimal tuning: we only need to design a proposal
distribution for parameters. The disadvantage is the high computation cost
with O(NTM) operations per MCMC step in panel models. In the paper we
use particle independent Metropolis-Hastings sampler to estimate parameters.
A random walk proposal is used for log(β) , log(µ) , log(φ) and log(θ) with stan-
dard deviations varing with N and T in order to achieve the best acceptance
probability. Let β∗, µ∗, φ∗ and θ∗ denote the candidate draws; β , µ , φ and θ
denote the existing values. Using the noninformative prior f(β, µ, φ, θ) = 1, the
probability of accepting β∗ , µ∗ , φ∗ and θ∗ can be written as

min

{
1,
L̂(∆y1, . . . ,∆yN |β∗, µ∗, φ∗, θ∗)β∗µ∗φ∗θ∗

L̂(∆y1, . . . ,∆yN |β, µ, φ, θ)βµφθ

}
.

4 LSDV-QML Estimation and Inference

In this section, we propose a consistent two-step estimator which is much faster
than particle-�lter based estimators by virtue of e�ciency losses. In the �rst
step, we estimate the AR coe�cients using LSDV by ignoring the existence of
stochastic volatility. In the second step, the parameters in stochastic volatility
are estimated using QML with the residuals obtained in the �rst step estimation.

LSDV eliminates the �xed e�ect by within transformation ỹit = yit − ȳi
where ȳi =

∑T
t=1 yit. The estimate of β is then obtained using OLS on the

transformed equation ỹit = βỹi,t−1 + ε̃it. It can be written as

β̂LSDV =

∑N
i=1 yi,(−1)Qyi∑N

i=1 yi,(−1)Qyi,(−1)
(9)

where Q = I − ιι′/T and ι is a T -dimension vector of ones. The transformation
induces endogeneity due to the correlation between ỹit−1 and ε̃it. As a result,
�nite sample biases are non-negligible for a �xed T (Nickell, 1981).

Now we explore the asymptotic properties of the �rst-step estimator when
the series is stationary or has a unit root. Basically we will extend the theorems
in Harris and Tzavalis (1999) and Alvarez and Arellano (2003).

Assumptions
1. |β| < 1.
2. The initial values of yit follow the steady state distribution yi0 = µi

1−β +∑∞
t=0 β

tεi,−t.
3. The stochastic volatility is stationary:|φ| < 1.
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4. The initial values of log(σ2
it) follow the steady state distribution log(σ2

i0) =
µ+

∑∞
t=0 β

tηi,−t.
5. {εit} (i = 1, . . . , N ; t = 1, . . . T ) are i.i.d. variables across both time

and individuals with E(εit) = 0 and Var(εit) = 1 and E(ε4it) = κ < ∞ and
independent of µi and ηit for all i and t.

6. {ηit} (i = 1, . . . , N ; t = 1, . . . T ) are i.i.d. variables normally distributed
across both time and individuals with E(ηit) = 0 and Var(ηit) = θ2 <∞.

Theorem 1. (LSDV Estimators: Stationary)
Under Assumptions 1-6, as N →∞ and T →∞,

√
NT [β̂LSDV − (β − 1

T
(1 + β))]

d→ N(0, B(β, φ, θ))

where B(β, φ, θ) = (1− β2)2
∑∞
t=1[exp( θ

2φt

1−φ2 )β2t−2].

If φ > 0 and θ > 0, B(β, φ, θ) > B(β, 0, 0) which is equal to 1 − β2 same
as in Alvarez and Arellano (2003). Stochastic volatility changes asymptotic
variances of the estimator while keeps unchanged asymptotic means. When
β = 0.7, for example, asymptotic variance is approximately 0.51 for the model
without stochastic volatility, but can be 1.52 when φ = 0.9 and θ = 0.5.

Assumptions
7. The data generation process has a unit root: β = 1.
8. The initial values yi0 are �xed.

Theorem 2. (LSDV Estimators: Unit Root)
Under Assumptions 3-8, as N →∞ and T is �xed,

√
N(β̂LSDV − (1− 3

T + 1
))

d→ N(0, Bu(φ, θ))

where Bu(φ, θ) =
36(2−5T+2T 2)

5(−1+T )T (1+T )3 exp( θ2

1−φ2 )κ+
∑T−1
t=1 [exp( θ

2φt

1−φ2 )C(t)] in which

C(t) =
36(−9t5+30t4T−5t3T (2+11T )+5t2T(1+2T+13T 2)−2t(−2+5T+5T 2+20T 4)+T(−4+10T+5T 2+9T 4))

5(−1+T )2T 2(1+T )4 .

Additionally, as N →∞ and T →∞,

√
NT (β̂LSDV − 1 +

3

T + 1
)
d→ N(0,

51

5
)

Even if it is always consistent, there is an asymptotic bias term in the asymp-
totic distribution. If φ > 0 and θ > 0, Bu(φ, θ) > Bu(0, 0) which is equal to
3(17T 2−20T+17)
5(T−1)(T+1)3 as in Harris and Tzavalis (1999). Stochastic volatility changes

asymptotic variance of the estimator when T is �xed but keep it asymptotically
same when T →∞ . When T = 20, for example, asymptotic variance is approx-
imately 0.02 for the model without stochastic volatility, but can be 0.07 when
φ = 0.9 and θ = 0.5. Bu(φ, θ) > Bu(0, 0) implies that naively ignoring stochas-
tic volatility would systematically reject Harris and Tzavalis (1999)'s panel unit
root test more frequently than it should be, although the estimates lose only a
little statistical e�ciency.

12



In the second step, we �rst estimate the error terms using the �rst-step
estimator, i.e.,

ε̂it = yit − β̂LSDV yi,t−1 − µ̂i

where µ̂i = 1
T

∑T
t=1(yit − β̂LSDV yi,t−1) is a consistent estimator of the indi-

vidual e�ect. Next, we use QML (Harvey and Shephard, 1996) to estimate the
parameters in stochastic volatility. Speci�cally, we calculate the quasi-likelihood
of ε̂it via Kalman �lters in a state space form

log(ε̂2it) = log(σ2
it) + E(log(ε2it)) + ξit

log(σ2
it) = µ+ φ(log(σ2

i,t−1)− µ) + ηit

where E(log(ε2it)) = 1.27 and ξit is a normal variable with mean zero and variance
4.93. QML estimators of φ, θ and µ are consistent and asymptotically normal.

5 Monte Carlo Studies

In this section, we investigate the �nite-sample performance of particle-�lter-
based estimators and LSDV-QML estimators. For the moment, we study the
frequentist approach in Section 3.2 rather than the Bayesian approach in Section
3.3 because the former is much faster than the latter. When estimating β̂,
we compare our estimators with some standard estimators in the literature
including instrumental variables (IV) (Anderson and Hsiao, 1982), standard
GMM (GMM) (Arellano and Bond, 1991) and system GMM (SGMM) (Blundell
and Bond, 1998). The quality of the estimators are evaluated by biases and root
mean square errors (RMSE). Our study complements previous Monte Carlo
studies for panel data models in a macroeconomic context such as Judson and
Owen (1999). Next we will brie�y review each candidate estimator other than
LSDV and particle �lters.

1) IV overcomes endogeneity by applying to the �rst-di�erenced equation
the two-stage least squares method with lagged levels or lagged di�erences be-
ing instrumental variables, such as yi,t−2 or 4yi,t−2. The Anderson-Hsiao IV
estimators are consistent for a �xed T as N → ∞. We will use yi,t−2 as the
instrument, since Arellano (1989) showed the estimators using lagged di�er-
ences as instruments have very large variance. IV estimators have very poor
�nite sample properties when the instrument is only weakly correlated with the
endogenous variable. The problem arises when β is su�ciently close to one as
shown in our results.

2) GMM exploits a set of linear orthogonality conditions aimed for improving
e�ciency, i.e. E(yi,t−s4εit) = 0 for t > 3 and s > 2 given predetermined initial
conditions E(yi1εit) = 0 for t > 2, serially uncorrelated shocks E(εitεis) = 0 for
t 6= s and random e�ect E(µiεis) = 0. GMM estimators are all consistent but
the relative e�ciency depends on the weight matrix. We use one-step GMM
instead of two-step GMM for its better �nite sample performance. Similar to

13



IV estimators, standard �rst-di�erenced GMM estimators in Arellano and Bond
(1991) are also subject to the problem of weak instruments in case β → 1.

3) System GMM uses extra moment conditions including the lagged di�er-
ences as instruments for equations in levels given an additional initial condition
E(4yi2µi) = 0. A large improvement in �nite sample properties is expected
particularly when β → 1 provided that the extra initial condition is valid. The
validity of initial conditions depends on the proper design of data generation
process. We employ the two-step version of system GMM estimators, where the
second step estimators are based on the residuals from the one-step estimators.

The baseline data generation process in our Monte Carlo studies is

yit = βyi,t−1 + (1− β)µi + εit

µi =
√
τ(
qi − 1√

2
)ςi

εit = σitεit

log(σ2
it) = µ+ φ(log(σ2

i,t−1)− µ) + ηit

where qi ∼ χ2
1; εit, ςi ∼ N(0, 1) and ηit ∼ N(0, θ2); qi, εit, ςi and ηit are all i.i.d.

within series and also independent of each others. For β we consider three types,
i.e. β = 0.5 for a series which is not very persistent, β = 0.9 for a very persistent
series and β = 1 which is a unit root process. Binder et al. (2005) showed
that τ , which measures the degree of cross-section to time-series variation, can
in�uence the �nite sample performance of GMM-type estimators. We set τ = 1.
µ represents the long-run mean of the log volatility and is set equal to log(0.04).
We want to check the performance of particle �lter based estimators both when
stochastic volatility exists and not, so for φ and θ we consider two cases: φ = θ =
0 is a panel model without stochastic volatility; φ = 0.9 and θ = 0.5 represents
an example of persistent stochastic volatility. For initialization, we set yi0 = 0
and discard the �rst 100 observations of the simulated data in order that the
series is long enough to eliminate the initial e�ect. As the particle �lter based
estimation is relatively computationally intensive, we can only carry out 100
replications for all experiments in this section.

Tables 1-3 list the basic simulation results. Our �ndings suggest that particle-
�lter-based estimators are more precise than other estimators on average, al-
though no estimator is the best choice in all circumstances, which varies with
the size of the panel. As T grows, all estimators other than system GMM be-
come more precise, since the burnin peroid of 100 observations is perhaps not
long enough to eliminate the initial e�ect for system GMM estimators. When
T = 50, particle-�lter-based estimators are more precise than the others in the
presence of stochastic volatility and even in the case of homoscedasticity, except
that in the unit root case without stochastic volatility where LSDV is slightly
better. When T = 20, system GMM shows advantage over the others in many
cases, while particle �lters are best when N = 20 and standard GMM is best

14



T N φ LSDV IV GMM SGMM PF

20 20 0 -0.082 0.005 -0.093 0.059 -0.079
(0.095) (0.193) (0.110) (0.190) (0.093)

0.9 -0.077 0.022 -0.093 0.050 -0.075
(0.102) (0.176) (0.123) (0.130) (0.095)

50 0 -0.087 0.011 -0.048 0.100 -0.085
(0.090) (0.110) (0.062) (0.131) (0.088)

0.9 -0.093 0.012 -0.070 0.047 -0.094
(0.322) (0.121) (0.095) (0.100) (0.101)

50 20 0 -0.030 0.005 -0.035 -0.057 -0.025
(0.044) (0.075) (0.048) (0.249) (0.044)

0.9 -0.033 0.007 -0.039 -0.032 -0.028
(0.053) (0.094) (0.058) (0.177) (0.048)

50 0 -0.030 -0.001 -0.032 0.048 -0.025
(0.035) (0.047) (0.037) (0.106) (0.035)

0.9 -0.030 0.000 -0.036 0.031 -0.026
(0.045) (0.071) (0.050) (0.076) (0.041)

Table 1: Summary of simulation results of β̂ when β = 0.5. In each circum-
stance, the �rst row gives the biases and the second row gives RMSE in brackets.
Numbers in bold font indicate the estimator with the smallest RMSE.

when N = 50 if β = 0.5. Table 4 studies the robustness of particle-�lter-based
estimators and LSDV under the fat-tail distribution (student t distribution with
degree of freedom 5). Comparing Tables 1 and 4, one can see that particle �l-
ters are almost una�ected by the fat tails but LSDV estimators are a�ected in
the presence of stochastic volatility. Table 5 lists the summary of simulation
results of φ̂, θ̂ and µ̂. The estimates in the presence of stochastic volatility are
much more precise than those without stochastic volatility, which su�ers from
the boundary issue we will solve soon.

We also study an AR(1) panel model with an additional regressor. Speci�-
cally, the data generation processes for the dependent variable and the additional
regressor are

yit = βyi,t−1 + αxit + (1− β)µi + εit

xit = qxi,t−1 + ζit

where the additional regressor xit follows an AR(1) process with coe�cient
q = 0.9 and N(0, 0.01) error terms. α is set equal to 0.7. The data generation
processes for µi and εit are same as before. Table 6 lists the simulation result
when N = 50, T = 50, β = 0.5, φ = 0.9, θ = 0.5 and µ = log(0.04). The
results show that the estimates of α are acceptable although they are a little
less precise than those of β.
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T N φ LSDV IV GMM SGMM PF

20 20 0 -0.127 -0.227 -0.166 -0.110 -0.127
(0.134) (2.111) (0.178) (0.168) (0.133)

0.9 -0.129 -0.035 -0.168 -0.092 -0.117
(0.141) (0.803) (0.185) (0.125) (0.128)

50 0 -0.130 0.013 -0.127 -0.034 -0.126
(0.131) (0.160) (0.138) (0.053) (0.127)

0.9 -0.135 0.019 -0.150 -0.064 -0.124
(0.138) (0.164) (0.163) (0.084) (0.127)

50 20 0 -0.046 0.007 -0.053 -0.295 -0.038
(0.050) (0.102) (0.058) (0.383) (0.045)

0.9 -0.049 0.010 -0.057 -0.182 -0.031
(0.057) (0.119) (0.065) (0.244) (0.040)

50 0 -0.045 -0.001 -0.054 -0.087 -0.039
(0.046) (0.058) (0.056) (0.108) (0.043)

0.9 -0.046 0.001 -0.060 -0.065 -0.027
(0.049) (0.088) (0.063) (0.082) (0.034)

Table 2: Summary of simulation results of β̂ when β = 0.9. In each circum-
stance, the �rst row gives the biases and the second row gives RMSE in brackets.
Numbers in bold font indicate the estimator with the smallest RMSE.

T N φ LSDV GMM SGMM PF

20 20 0 -0.152 -0.221 -0.088 -0.148
(0.155) (0.230) (0.119) (0.152)

0.9 -0.156 -0.233 -0.045 -0.152
(0.163) (0.247) (0.067) (0.158)

50 0 -0.153 -0.223 -0.062 -0.147
(0.154) (0.233) (0.080) (0.149)

0.9 -0.160 -0.261 -0.046 -0.157
(0.164) (0.273) (0.055) (0.159)

50 20 0 -0.063 -0.076 -0.235 -0.066
(0.065) (0.078) (0.281) (0.068)

0.9 -0.066 -0.082 -0.138 -0.053
(0.069) (0.087) (0.180) (0.055)

50 0 -0.061 -0.088 -0.082 -0.064
(0.061) (0.090) (0.094) (0.065)

0.9 -0.061 -0.098 -0.053 -0.049
(0.063) (0.100) (0.062) (0.051)

Table 3: Summary of simulation results of β̂ when β = 1. In each circumstance,
the �rst row gives the biases and the second row gives RMSE in brackets. Num-
bers in bold font indicate the estimator with the smallest RMSE.
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T N φ LSDV PF

50 20 0 -0.032 -0.023
(0.042) (0.039)

0.9 -0.038 -0.030
(0.078) (0.045)

50 0 -0.032 -0.023
(0.036) (0.034)

0.9 -0.043 -0.027
(0.073) (0.041)

Table 4: Summary of simulation results of β̂ when β = 0.5 and the shocks have
t-distribution with degree of freedom 5. In each circumstance, the �rst row gives
the biases and the second row gives RMSE in brackets.

6 Conclusions

Motivated by the evidence of time-varying volatility in the residuals of many
estimated dynamic regression models in macroeconomics, we study dynamic
panel data models with stochastic volatility in a macroeconomic context. We
propose two classes of parameter estimators: one is based on the particle �l-
ter technique and the other is a two-step LSDV-QML estimator. For particle
�lters, we mainly study the frequentist approach which is the maximization
of approximate simulated-likelihood, since it is much faster than the particle
Metropolis-Hastings sampler. The main simulation result shows particle-�lter-
based estimators are more precise than the others on average in the presence of
stochastic volatility and even in the case of homoscedasticity especially when T
is large. We derive the asymptotic distribution of LSDV estimators in the pres-
ence of stochastic volatility. It implies that naively ignoring stochastic volatility
would systematically reject Harris and Tzavalis (1999)'s panel unit root test
more frequently than it should be. Our methodology can also be applied to
panel VAR models.
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Appendices

Proof of Theorems

Lemma 1. (Moments of Stochastic Volatility)
Under Assumptions 3-4,

E(σ2
it) = exp(µ+

θ2

2(1− φ2)
)

E(σ4
it) = exp(2µ+

2θ2

1− φ2
)

Covs−t = E(σ2
itσ

2
is) = exp(2µ+

θ2(1 + φ|t−s|)

1− φ2
)

Lemma 1 collects some useful moments of stochastic volatility process which
will be applied in the proof of theorems.

Lemma 2. Under Assumptions 1-6,

Var(
1

T

T∑
t=1

w2
it)→ 0

where wi,t−1 = yi,t−1 − µi
1−β .

Proof of Lemma 2
Firstly, note that wit is simply an AR(1) process with the error term being

a martingale di�erence, i.e. wit = βwi,t−1 + εit.
Next, we have

(1− β2)
1

T

T∑
t=1

w2
it =

1

T

T∑
t=1

ε2it − β2 1

T
(w2

iT − w2
i0) + 2β

1

T

T∑
t=1

wi,t−1εit

Since 1
T (w2

iT − w2
i0)

p→ 0 and 1
T

∑T
t=1 wi,t−1εit

p→ 0 given that {wi,t−1εit} is
a martingale di�erence series, we only need to prove Var( 1

T

∑T
t=1 ε

2
it)→ 0.

Because of Lemma 1, we know that {ε2it} is stationary and asymptoti-
cally uncorrelated with �nite moments up to the second order. Therefore,
1
T

∑T
t=1 ε

2
it

p→ E(ε2it) (e.g. White (2001)). As a result Var( 1
T

∑T
t=1 ε

2
it) → 0

and Var( 1
T

∑T
t=1 w

2
it)→ 0.

Proof of Theorem 1
Let xi = yi,(−1). First, note that

E(

N∑
i=1

x
′

iQεi) = NE(x
′

iQεi) = −N
exp(µ+ θ2

2(1−φ2) )

1− β
(1− 1− βT

T (1− β)
)
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since

E(x
′

iQεi) = E(x
′

iεi)−
1

T
ι
′
E(εix

′

i)ι

= 0−
exp(µ+ θ2

2(1−φ2) )

1− β
(1− 1− βT

T (1− β)
)

= −
exp(µ+ θ2

2(1−φ2) )

1− β
(1− 1− βT

T (1− β)
)

Next, we have∑N
i=1 x

′

iQεi√
NT

=
1√
NT

N∑
i=1

T∑
t=1

wit−1εit −
√
T

N

N∑
i=1

w̄i(−1)ε̄i

For the �rst part on the right-hand side,

Var(
1√
NT

N∑
i=1

T∑
t=1

wit−1εit) = Var(
1√
T

T∑
t=1

wit−1εit)

= E(w2
it−1ε

2
it)

= exp(2µ+
θ2

1− φ2
)

∞∑
t=1

[exp(
θ2φt

1− φ2
)β2t−2]

For the second part on the right-hand side,

Var(

√
T

N

N∑
i=1

w̄i(−1)ε̄i) = TVar(w̄i(−1)ε̄i)→ O(T−1)

Therefore,

Var(

∑N
i=1 x

′

iQεi√
NT

)→ exp(2µ+
θ2

1− φ2
)

∞∑
t=1

[exp(
θ2φt

1− φ2
)β2t−2]

Moreover,∑N
i=1 x

′

iQxi
NT

=

∑N
i=1 w

′

iQwi
NT

=
1

N

N∑
i=1

(
1

T

T∑
t=1

w2
i,t−1 − w̄2

i,(−1))

E(

∑N
i=1 x

′

iQxi
NT

) = E(w2
i,t−1)− E(w̄2

i,(−1))

=
exp(µ+ θ2

2(1−φ2) )

1− β2
−O(T−1)
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Because of Lemma 2,

Var(

∑N
i=1 x

′

iQxi
NT

) =
1

N
Var(

1

T

T∑
t=1

w2
i,t−1 − w̄2

i,(−1))→ 0

As a result, ∑N
i=1 x

′

iQxi
NT

p→
exp(µ+ θ2

2(1−φ2) )

1− β2

The remaining proof follows exactly that of Theorem 1 in Alvarez and Arel-
lano (2003).

Proof of Theorem 2
Under Assumptions 7-8,

yi,(−1) = ιyi0 + Cεi (10)

where

C =


0 0 · · · 0
1 0 · · · 0
...

. . .
. . .

...
1 1 · · · 0


By substituting (10) into (9), the bias term in LSDV estimators can be

written as

β̂ − 1 =

∑N
i=1{

∑T
t=1A1ε

2
it +

∑T
t=1

∑T
s=t+1B1εitεis}∑N

i=1{
∑T
t=1A2ε2it +

∑T
t=1

∑T
s=t+1B2εitεis}

where A1 = −T−tT , B1 = −T−s−tT , A2 = t(T−t)
T and B2 = 2t(T−s)

T .

The probability limits of the numerator and denominator are −T−12 E(σ2
it)

and T 2−1
6 E(σ2

it), respectively. Therefore,

β̂ − 1
p→ − 3

T + 1

Now we need to derive the asymptotic variance. Notice that

β̂−1+
3

T + 1
=

∑N
i=1{

∑T
t=1(A1 +A2

3
T+1 )ε2it +

∑T
t=1

∑T
s=t+1(B1 +B2

3
T+1 )εitεis}∑N

i=1{
∑T
t=1A2ε2it +

∑T
t=1

∑T
s=t+1B2εitεis}

The numerator has zero mean, so its variance is

N(A3E(σ4
it)κ+

T−1∑
t=1

B(t)Covt)

20



where

A3 =
(−2 + T )(−1 + T )(−1 + 2T )

15T (1 + T )

B(t) =
−9t5+30t4T−5t3T (2+11T )+5t2T(1+2T+13T 2)−2t(−2+5T+5T 2+20T 4)+T(−4+10T+5T 2+9T 4)

5T 2(1+T )2 .

As a result,

Var(
√
N (̂β − 1 +

3

T + 1
))→ Bu(φ, θ)

in which Bu(φ, θ) is given in Theorem 2. Theorem 2 is proved.
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LSDV-QML PF

β T N φ φ̂ θ̂ µ̂ φ̂ θ̂ µ̂
0.5 20 20 0 0.261 0.290 -0.002 0.323 0.132 -0.001

(0.440) (0.454) (0.005) (0.450) (0.195) (0.004)
0.9 0.009 -0.087 0.002 -0.055 0.116 0.001

(0.085) (0.246) (0.010) (0.085) (0.181) (0.010)
50 0 0.217 0.243 -0.002 0.380 0.093 -0.001

(0.398) (0.392) (0.004) (0.513) (0.128) (0.003)
0.9 0.019 -0.087 0.001 -0.026 0.068 0.001

(0.045) (0.153) (0.006) (0.050) (0.116) (0.007)
50 20 0 0.221 0.231 -0.001 0.271 0.116 -0.001

(0.402) (0.360) (0.003) (0.410) (0.165) (0.003)
0.9 -0.004 -0.025 0.002 -0.027 0.072 0.003

(0.042) (0.133) (0.008) (0.050) (0.121) (0.009)
50 0 0.251 0.200 -0.001 0.283 0.064 -0.001

(0.413) (0.302) (0.002) (0.412) (0.089) (0.002)
0.9 0.004 -0.040 0.001 -0.013 0.037 0.001

(0.030) (0.087) (0.004) (0.028) (0.066) (0.006)
0.9 20 20 0 0.276 0.250 -0.003 0.326 0.154 -0.003

(0.451) (0.421) (0.005) (0.444) (0.227) (0.004)
0.9 0.000 -0.096 0.001 -0.048 0.107 0.000

(0.126) (0.225) (0.010) (0.080) (0.179) (0.010)
50 0 0.205 0.271 -0.004 0.375 0.107 -0.003

(0.395) (0.406) (0.004) (0.516) (0.145) (0.003)
0.9 0.022 -0.102 0.000 -0.025 0.074 0.001

(0.053) (0.171) (0.005) (0.051) (0.130) (0.007)
50 20 0 0.215 0.254 -0.001 0.305 0.109 -0.001

(0.380) (0.377) (0.003) (0.433) (0.153) (0.003)
0.9 -0.003 -0.033 0.003 -0.016 0.055 0.003

(0.045) (0.130) (0.008) (0.041) (0.099) (0.008)
50 0 0.211 0.219 -0.001 0.355 0.067 -0.001

(0.368) (0.324) (0.002) (0.478) (0.090) (0.002)
0.9 0.004 -0.044 0.001 -0.011 0.028 0.001

(0.027) (0.085) (0.004) (0.031) (0.066) (0.005)
1 20 20 0 0.235 0.272 -0.005 0.325 0.165 -0.004

(0.420) (0.438) (0.006) (0.453) (0.224) (0.005)
0.9 0.012 -0.089 -0.001 -0.033 0.080 -0.001

(0.074) (0.220) (0.009) (0.067) (0.151) (0.010)
50 0 0.251 0.203 -0.005 0.365 0.111 -0.004

(0.425) (0.325) (0.005) (0.501) (0.163) (0.004)
0.9 0.024 -0.106 -0.001 -0.020 0.064 -0.001

(0.053) (0.169) (0.005) (0.044) (0.114) (0.007)
50 20 0 0.237 0.270 -0.002 0.289 0.123 -0.002

(0.413) (0.389) (0.004) (0.416) (0.176) (0.003)
0.9 0.001 -0.041 0.002 -0.024 0.070 0.000

(0.038) (0.123) (0.008) (0.049) (0.128) (0.008)
50 0 0.264 0.227 -0.002 0.325 0.076 -0.002

(0.428) (0.338) (0.003) (0.466) (0.112) (0.002)
0.9 0.009 -0.054 0.001 -0.006 0.023 0.001

(0.029) (0.094) (0.004) (0.029) (0.065) (0.005)

Table 5: Summary of simulation results of φ̂, θ̂ and µ̂. In each circumstance,
the �rst row gives the biases and the second row gives RMSE in brackets.
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β̂ α̂ φ̂ θ̂ µ̂
LSDV-QML -0.027 0.025 -0.004 -0.020 0.001

(0.038) (0.045) (0.030) (0.087) (0.005)
PF -0.030 -0.062 -0.025 -0.004 0.008

(0.042) (0.071) (0.046) (0.070) (0.009)

Table 6: Summary of simulation results of the AR(1) panel models with an
additional regressor when N = 50, T = 50, β = 0.5, α = 0.7, φ = 0.9, θ = 0.5
and µ = log(0.04). For each estimator, the �rst row gives the biases and the
second row gives RMSE in brackets.
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